1
|
Vu HM, Moran TE, Liang Z, Bao YJ, Carles PG, Keane JC, Cerney MG, Dahnke CN, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group a Streptococcus remains viable inside fibrin clots and gains access to human plasminogen for subsequent fibrinolysis and dissemination. Microbiol Spectr 2025; 13:e0260724. [PMID: 39804237 PMCID: PMC11792473 DOI: 10.1128/spectrum.02607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 02/05/2025] Open
Abstract
Group A Streptococcus (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape. A major unresolved question regards the temporal dynamics of how GAS enmeshed in a fibrin clot can access plasminogen for clot dissolution and eventual dissemination. Here, we reveal through live imaging studies that GAS trapped inside a fibrin clot can remain viable in a latent state, until access to plasminogen activates fibrinolysis and dissemination. RNA-sequencing (RNA-seq) analysis shows marked changes in the wild-type (WT)-GAS transcriptome from the time bacteria were enmeshed inside the clot (4 h) to when dissemination was initiated (8 h). To gain a more fully realized model of how GAS trapped in fibrin clots can disseminate in the blood system, we utilized a novel 3D endothelial microfluidic device to demonstrate that GAS is fully capable of fibrinolysis in an endothelial environment, revealing a major underappreciated route by which GAS may cause more invasive outcomes. Our findings reveal for the first time that GAS can engage a latent, growth-suspended phase whereby physical structures such as fibrin clots that immobilize an invading pathogen allow bacteria to remain viable until sufficient access to plasminogen allows it to initiate fibrinolysis and escape into surrounding blood system and tissues. IMPORTANCE Group A Streptococcus (GAS) is a human-specific bacterial pathogen that causes infections ranging in severity from mild to severe infections that can often be fatal. To protect the host, the innate immune system creates fibrin clots to trap bacteria and prevent deeper spread. GAS produces several factors that can initiate the dissolution of these fibrin clots to spread to deeper tissues, but we lack specific understanding of the timing of these events. Our studies demonstrate for the first time that GAS can delay their escape from fibrin clots to gain access to deeper tissues during infection, suggesting a key strategy that GAS utilize to cause more invasive disease.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yun-Juan Bao
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paulina G. Carles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica C. Keane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madelyn G. Cerney
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Caitlyn N. Dahnke
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Thacharodi A, Hassan S, Vithlani A, Ahmed T, Kavish S, Geli Blacknell NM, Alqahtani A, Pugazhendhi A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience 2025; 28:111677. [PMID: 39877071 PMCID: PMC11773489 DOI: 10.1016/j.isci.2024.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Streptococcus pyogenes is a Gram-positive bacterium, also known as Group A Streptococcus (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern. GAS infections are normally moderate, with symptoms of fever, pharyngitis, and pyoderma; nevertheless, if left untreated or with continued exposure to GAS or with recurring infections it can result in fatal outcomes. GAS produces a variety of virulence factors and exotoxins that can lead to deadly infections such as necrotizing fasciitis, impetigo, cellulitis, pneumonia, empyema, streptococcal toxic shock syndrome, bacteremia, and puerperal sepsis. In addition, post-immune mediated disorders such as post-streptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease contribute to extremely high death rates in developing nations. Despite substantial research on GAS infections, it is still unclear what molecular pathways are responsible for their emergence and how to best manage them. This review thus provides insights into the most recent research on the pathogenesis, virulence, resistance, and host interaction mechanisms of GAS, as well as novel management options to assist scientific communities in combating GAS infections.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi’s Laboratories, Department of Research and Development, Puducherry 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington 20036, USA
| | - Avadh Vithlani
- Senior Resident, Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Sanjana Kavish
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
3
|
Bergsten H, Nizet V. The intricate pathogenicity of Group A Streptococcus: A comprehensive update. Virulence 2024; 15:2412745. [PMID: 39370779 PMCID: PMC11542602 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
McEwan TBD, De Oliveira DMP, Stares EK, Hartley-Tassell LE, Day CJ, Proctor EJ, Nizet V, Walker MJ, Jennings MP, Sluyter R, Sanderson-Smith ML. M proteins of group A Streptococcus bind hyaluronic acid via arginine-arginine/serine-arginine motifs. FASEB J 2024; 38:e70123. [PMID: 39436142 DOI: 10.1096/fj.202401301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Collapse
Affiliation(s)
- Tahnee B-D McEwan
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - David M P De Oliveira
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily K Stares
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Christopher J Day
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Emma-Jayne Proctor
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Mark J Walker
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael P Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ronald Sluyter
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521. [PMID: 38575708 DOI: 10.1038/s41579-024-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Molina JJ, Kohler KN, Gager C, Andersen MJ, Wongso E, Lucas ER, Paik A, Xu W, Donahue DL, Bergeron K, Klim A, Caparon MG, Hultgren SJ, Desai A, Ploplis VA, Flick MJ, Castellino FJ, Flores-Mireles AL. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat Commun 2024; 15:2704. [PMID: 38538626 PMCID: PMC10973455 DOI: 10.1038/s41467-024-46974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.
Collapse
Affiliation(s)
- Jonathan J Molina
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurt N Kohler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Marissa J Andersen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ellsa Wongso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Elizabeth R Lucas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Paik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Karla Bergeron
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Klim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alana Desai
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Urology, University of Washington Medical Center, Seattle, WA, 98133-9733, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ana L Flores-Mireles
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
7
|
Molina JJ, Kohler KN, Gager C, Andersen MJ, Wongso E, Lucas ER, Paik A, Xu W, Donahue DL, Bergeron K, Klim A, Caparon MG, Hultgren SJ, Desai A, Ploplis VA, Flick MJ, Castellino FJ, Flores-Mireles AL. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. RESEARCH SQUARE 2023:rs.3.rs-3263501. [PMID: 37790429 PMCID: PMC10543281 DOI: 10.21203/rs.3.rs-3263501/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat due to multi-drug resistance development among the CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, we found that E. faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.
Collapse
Affiliation(s)
- Jonathan J. Molina
- Integrated Biomedical Sciences, University of Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Equal-contribution
| | - Kurt N. Kohler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Equal-contribution
| | - Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marissa J. Andersen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ellsa Wongso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth R. Lucas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew Paik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, MO 63110, USA
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karla Bergeron
- Department of Surgery, Washington University School of Medicine, MO 63110, USA
| | - Aleksandra Klim
- Department of Surgery, Washington University School of Medicine, MO 63110, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, MO 63110, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, MO 63110, USA
| | - Alana Desai
- Department of Surgery, Washington University School of Medicine, MO 63110, USA
- Department of Urology, University of Washington Medical Center, WA 98133-9733, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ana L. Flores-Mireles
- Integrated Biomedical Sciences, University of Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Lead contact
| |
Collapse
|
8
|
Satala D, Bednarek A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Recruitment and Activation of Plasminogen by Bacteria-The Involvement in Chronic Infection Development. Int J Mol Sci 2023; 24:10436. [PMID: 37445613 DOI: 10.3390/ijms241310436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The development of infections caused by pathogenic bacteria is largely related to the specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a significant role of hijacking of host proteolytic cascades by pathogens during invasion should not be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness at secondary infection sites after initial penetration through tissue barriers. In this review, the mechanisms of bacterial impact on host plasminogen-the precursor of the important plasma serine proteinase, plasmin-are characterized, principally focusing on cell surface exposition of various proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is also described, providing a remarkable example of a dual use of this host system in the development of chronic diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Ayinuola YA, Castellino FJ. Inactivation of the lysine binding sites of human plasminogen (hPg) reveals novel structural requirements for the tight hPg conformation, M-protein binding, and rapid activation. Front Mol Biosci 2023; 10:1166155. [PMID: 37081852 PMCID: PMC10110952 DOI: 10.3389/fmolb.2023.1166155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Accelerated activation of the human plasminogen zymogen (hPg) to two-chain active plasmin (hPm) is achieved following conformational changes induced by ligand-binding at the lysine-binding sites (LBSs) in four of the five hPg kringle domains. In this manner, pattern D skin-trophic strains of Group A streptococci (GAS), through the expression of surface plasminogen-binding M-protein (PAM), immobilize surface hPg, thereby enabling rapid hPg activation by GAS-secreted streptokinase (SK). Consequently, GAS enhances virulence by digesting extracellular and tight cellular junctional barriers using hPm activity. Many studies have demonstrated the singular importance of the kringle-2 domain of hPg (K2hPg) to PAM-binding using hPg fragments. Recently, we showed, using full-length hPg, that K2hPg is critical for PAM binding. However, these studies did not eliminate any modulatory effects of the non-K2hPg LBS on this interaction. Moreover, we sought to establish the significance of the intramolecular interaction between Asp219 of the LBS of K2hPg and its serine protease domain binding partner, Lys708, to conformational changes in hPg. In the current study, selective inactivation of the LBS of K1hPg, K4hPg, and K5hPg revealed that the LBS of these kringle domains are dispensable for hPg binding to PAM. However, the attendant conformational change upon inactivation of K4hPg LBS increased the affinity of hPg for PAM by an order of magnitude. This finding suggests that the native hPg conformation encloses PAM-binding exosites or sterically hinders access to K2hPg. While simultaneous inactivation of the LBS of K1hPg, K4hPg, and K5hPg inhibited hPg/SK association alongside hPg activation, the replacement of Lys708 generated a slight conformational change that optimally accelerated hPg activation. Thus, we accentuate disparate functions of hPg LBS and conclude, using intact proteins, that K2hPg plays a central role in regulating hPg activation.
Collapse
Affiliation(s)
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: Francis J. Castellino,
| |
Collapse
|
10
|
McEwan TBD, Sanderson-Smith ML, Sluyter R. Purinergic Signalling in Group A Streptococcus Pathogenesis. Front Immunol 2022; 13:872053. [PMID: 35422801 PMCID: PMC9002173 DOI: 10.3389/fimmu.2022.872053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- T B-D McEwan
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - M L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - R Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|