1
|
Meng Y, Ding J, Wang Y, Wang J, Huang W, Jiang W, Li J, Lang X, Zhang S, Liu Y, Liu X, Li H, Sun B. The transcriptional repressor Ctbp2 as a metabolite sensor regulating cardiomyocytes proliferation and heart regeneration. Mol Med 2025; 31:119. [PMID: 40140769 PMCID: PMC11948641 DOI: 10.1186/s10020-025-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND C-terminal binding protein-2 (Ctbp2) is an evolutionarily conserved transcriptional repressor that regulates fundamental processes such as cell proliferation and apoptosis. However, the potential role of Ctbp2 in cardiomyocyte proliferation and heart regeneration remains unclear. In this study, we aim to explore the important role of Ctbp2 in cardiomyocyte proliferation and the regeneration of injured adult hearts. METHODS AND RESULTS In this study, we found that the expression of Ctbp2 in cardiomyocytes is downregulated after adulthood. Silencing Ctbp2 in cardiomyocytes on the post-natal day 1 (P1) reduced the proliferation ability of cardiomyocytes, whereas overexpressing Ctbp2 enhanced the proliferation ability of cardiomyocytes. Additionally, overexpressing Ctbp2 via adeno-associated virus-9 (AAV9) had no effect on the hearts of normal adult mice, but in the case of heart injury, overexpression of Ctbp2 in adult mice cardiomyocytes promoted cardiomyocyte proliferation. Mechanistically, the transcriptional repressor Ctbp2 acts as a metabolite sensor, and its regulation of cardiomyocyte proliferation is influenced by the metabolites NADH/NAD+ and fatty acyl-CoAs. Ctbp2 is activated by the intracellular accumulation of NADH during cardiomyocyte ischemia and hypoxia, inhibiting the transcriptional activity of the transcription factor FoxO1, thereby repressing the expression of the target genes and cell cycle negative regulators p21 and p27, allowing cardiomyocytes to re-enter the cell cycle. In contrast, normal adult cardiomyocytes mainly use fatty acid oxidation metabolism as their primary energy source, and the intracellular production of fatty acyl-CoAs inactivates Ctbp2, thus preventing it from inhibiting FoxO1 mediated cell cycle arrest. CONCLUSION In conclusion, this study demonstrates that the Ctbp2-FoxO1-p21/p27 axis can promote cardiomyocyte proliferation and heart regeneration. As a metabolite sensor, Ctbp2 is activated during cardiomyocyte ischemia and hypoxia, while it is inactivated under normal conditions. This controllable and transient regulation of cardiomyocyte proliferation can avoid the detrimental effects on cardiac function caused by long-term regulation of cardiomyocyte proliferation, such as hypertrophic cardiomyopathy or heart failure. This provides new targets and new ideas for addressing the issues of cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianwen Ding
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wenkang Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jiayi Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xiujuan Lang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Sifan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
2
|
Peng H, Lv B, Du J, Huang Y, Cui Q, Cui C, Jin H. Identification of Metabolism-Related Hub Genes in Heart Failure via Comprehensive Transcriptome Analysis. Genes (Basel) 2025; 16:305. [PMID: 40149456 PMCID: PMC11941980 DOI: 10.3390/genes16030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Metabolic dysfunction is a key driver of heart failure (HF) progression. Identifying metabolic hub genes in HF may reveal novel therapeutic targets. METHODS Transcriptomic datasets from HF patients (GEO database) and metabolism-related genes (PathCards) were analyzed. Differentially expressed genes (DEGs) were intersected with metabolism-related genes, followed by the application of the LASSO, Random Forest, and XGBoost algorithms to prioritize hub genes. Candidate genes were validated via WGCNA, an HF mouse model, and plasma metabolomics. Diagnostic performance and metabolic associations were assessed using ROC analysis and ssGSEA. RESULTS We identified 1115 HF-associated DEGs (701 upregulated, 414 downregulated), with 119 linked to metabolism. The machine learning algorithms prioritized five genes, including SDC2, which was also validated using WGCNA and the mouse HF model. SDC2 mRNA and protein expression levels were markedly elevated in HF and demonstrated strong diagnostic accuracy. ssGSEA revealed the expression of SDC2 was correlated with dysregulated metabolic pathways, including fatty acid biosynthesis and glycerolipid metabolism, which are potentially associated with metabolic alterations in HF. CONCLUSIONS SDC2 emerges as a central regulator bridging metabolic dysfunction and HF pathogenesis, showing potential as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Qinghua Cui
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- School of Sports Medicine, Wuhan Sports University, No. 461 Luoyu Rd., Wuchang District, Wuhan 430079, China
| | - Chunmei Cui
- School of Sports Medicine, Wuhan Sports University, No. 461 Luoyu Rd., Wuchang District, Wuhan 430079, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Mitra A, Mandal S, Banerjee K, Ganguly N, Sasmal P, Banerjee D, Gupta S. Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination. Curr Cardiol Rep 2025; 27:15. [PMID: 39792206 DOI: 10.1007/s11886-024-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration. RECENT FINDINGS Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals. Unlike adult mammalian hearts, zebrafish can regenerate cardiomyocytes by re-entering the cell cycle, characterized by a metabolic switch from oxidative metabolism to increased glycolysis. Zebrafish provide a valuable model for studying metabolic regulation during cell cycle re-entry and cardiac regeneration. Proliferative cardiomyocytes have upregulated Notch, hippo, and Wnt signaling and decreased ROS generation, DNA damage in different zebrafish cardiac regeneration models. Understanding the correlation between metabolic switches during cell cycle re-entry of already differentiated zebrafish cardiomyocytes is being increasingly recognized as a critical factor in heart regeneration. Zebrafish studies provide insights into metabolic adaptations during heart regeneration, emphasizing the importance of a metabolic switch. However, there are mechanistic gaps, and extensive studies are required to aid in formulating therapeutic strategies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Nilanjan Ganguly
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Pramit Sasmal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Durba Banerjee
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St, Seattle, WA, 98109, USA.
| | - Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
| |
Collapse
|
4
|
Qin F, Luo X, Lu Q, Cai B, Xiao F, Cai G. Spatial pattern and differential expression analysis with spatial transcriptomic data. Nucleic Acids Res 2024; 52:e101. [PMID: 39470725 PMCID: PMC11602167 DOI: 10.1093/nar/gkae962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
The emergence of spatial transcriptomic technologies has opened new avenues for investigating gene activities while preserving the spatial context of tissues. Utilizing data generated by such technologies, the identification of spatially variable (SV) genes is an essential step in exploring tissue landscapes and biological processes. Particularly in typical experimental designs, such as case-control or longitudinal studies, identifying SV genes between groups is crucial for discovering significant biomarkers or developing targeted therapies for diseases. However, current methods available for analyzing spatial transcriptomic data are still in their infancy, and none of the existing methods are capable of identifying SV genes between groups. To overcome this challenge, we developed SPADE for spatial pattern and differential expression analysis to identify SV genes in spatial transcriptomic data. SPADE is based on a machine learning model of Gaussian process regression with a gene-specific Gaussian kernel, enabling the detection of SV genes both within and between groups. Through benchmarking against existing methods in extensive simulations and real data analyses, we demonstrated the preferred performance of SPADE in detecting SV genes within and between groups. The SPADE source code and documentation are publicly available at https://github.com/thecailab/SPADE.
Collapse
Affiliation(s)
- Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Xizhi Luo
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA
- Data and Statistical Sciences, AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Qing Lu
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32608, USA
| | - Bo Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA
| | - Feifei Xiao
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32608, USA
| | - Guoshuai Cai
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32608, USA
- Department of Surgery, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA
| |
Collapse
|
5
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
6
|
Chi J, Shu J, Li M, Mudappathi R, Jin Y, Lewis F, Boon A, Qin X, Liu L, Gu H. Artificial Intelligence in Metabolomics: A Current Review. Trends Analyt Chem 2024; 178:117852. [PMID: 39071116 PMCID: PMC11271759 DOI: 10.1016/j.trac.2024.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Metabolomics and artificial intelligence (AI) form a synergistic partnership. Metabolomics generates large datasets comprising hundreds to thousands of metabolites with complex relationships. AI, aiming to mimic human intelligence through computational modeling, possesses extraordinary capabilities for big data analysis. In this review, we provide a recent overview of the methodologies and applications of AI in metabolomics studies in the context of systems biology and human health. We first introduce the AI concept, history, and key algorithms for machine learning and deep learning, summarizing their strengths and weaknesses. We then discuss studies that have successfully used AI across different aspects of metabolomic analysis, including analytical detection, data preprocessing, biomarker discovery, predictive modeling, and multi-omics data integration. Lastly, we discuss the existing challenges and future perspectives in this rapidly evolving field. Despite limitations and challenges, the combination of metabolomics and AI holds great promises for revolutionary advancements in enhancing human health.
Collapse
Affiliation(s)
- Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ming Li
- Phoenix VA Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Rekha Mudappathi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Freeman Lewis
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Xiaoyan Qin
- College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
7
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
8
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
10
|
Paltzer WG, Aballo TJ, Bae J, Flynn CGK, Wanless KN, Hubert KA, Nuttall DJ, Perry C, Nahlawi R, Ge Y, Mahmoud AI. mTORC1 regulates the metabolic switch of postnatal cardiomyocytes during regeneration. J Mol Cell Cardiol 2024; 187:15-25. [PMID: 38141532 PMCID: PMC10922357 DOI: 10.1016/j.yjmcc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined. Here, we use immunoblotting, rapamycin treatment, myocardial infarction, and global proteomics to define the role of mTORC1 in postnatal heart development and regeneration. Our results demonstrate that the activity of mTORC1 is dynamically regulated between the regenerating and the non-regenerating hearts. Acute inhibition of mTORC1 by rapamycin or everolimus reduces cardiomyocyte proliferation and inhibits neonatal heart regeneration following injury. Our quantitative proteomic analysis demonstrates that transient inhibition of mTORC1 during neonatal heart injury did not reduce protein synthesis, but rather shifts the cardiac proteome of the neonatal injured heart from glycolysis towards fatty acid oxidation. This indicates that mTORC1 inhibition following injury accelerates the postnatal metabolic switch, which promotes metabolic maturation and impedes cardiomyocyte proliferation and heart regeneration. Taken together, our results define an important role for mTORC1 in regulating postnatal cardiac metabolism and may represent a novel target to modulate cardiac metabolism and promote heart regeneration.
Collapse
Affiliation(s)
- Wyatt G Paltzer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Timothy J Aballo
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Jiyoung Bae
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, United States
| | - Corey G K Flynn
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Kayla N Wanless
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Katharine A Hubert
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Dakota J Nuttall
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Cassidy Perry
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Raya Nahlawi
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
11
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Aballo TJ, Bae J, Paltzer WG, Chapman EA, Salamon RJ, Mann MM, Ge Y, Mahmoud AI. Integrated Proteomics Identifies Troponin I Isoform Switch as a Regulator of a Sarcomere-Metabolism Axis During Cardiac Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563389. [PMID: 37961158 PMCID: PMC10634731 DOI: 10.1101/2023.10.20.563389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adult mammalian cardiomyocytes have limited proliferative potential, and after myocardial infarction (MI), injured cardiac tissue is replaced with fibrotic scar rather than with functioning myocardium. In contrast, the neonatal mouse heart possesses a regenerative capacity governed by cardiomyocyte proliferation; however, a metabolic switch from glycolysis to fatty acid oxidation during postnatal development results in loss of this regenerative capacity. Interestingly, a sarcomere isoform switch also takes place during postnatal development where slow skeletal troponin I (ssTnI) is replaced with cardiac troponin I (cTnI). In this study, we first employ integrated quantitative bottom-up and top-down proteomics to comprehensively define the proteomic and sarcomeric landscape during postnatal heart maturation. Utilizing a cardiomyocyte-specific ssTnI transgenic mouse model, we found that ssTnI overexpression increased cardiomyocyte proliferation and the cardiac regenerative capacity of the postnatal heart following MI compared to control mice by histological analysis. Our global proteomic analysis of ssTnI transgenic mice following MI reveals that ssTnI overexpression induces a significant shift in the cardiac proteomic landscape. This shift is characterized by an upregulation of key proteins involved in glycolytic metabolism. Collectively, our data suggest that the postnatal TnI isoform switch may play a role in the metabolic shift from glycolysis to fatty acid oxidation during postnatal maturation. This underscores the significance of a sarcomere-metabolism axis during cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Timothy J. Aballo
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoung Bae
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Wyatt G. Paltzer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca J. Salamon
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Morgan M. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Paltzer WG, Aballo TJ, Bae J, Hubert KA, Nuttall DJ, Perry C, Wanless KN, Nahlawi R, Ge Y, Mahmoud AI. mTORC1 Regulates the Metabolic Switch of Postnatal Cardiomyocytes During Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557400. [PMID: 37745413 PMCID: PMC10515815 DOI: 10.1101/2023.09.12.557400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined. Here, we use immunoblotting, rapamycin treatment, myocardial infarction, and global proteomics to define the role of mTORC1 in postnatal heart development and regeneration. Our results demonstrate that the activity of mTORC1 is dynamically regulated between the regenerating and the non-regenerating hearts. Acute inhibition of mTORC1 by rapamycin or everolimus reduces cardiomyocyte proliferation and inhibits neonatal heart regeneration following injury. Our quantitative proteomic analysis demonstrates that transient inhibition of mTORC1 during neonatal heart injury did not reduce protein synthesis, but rather shifts the cardiac proteome of the neonatal injured heart from glycolysis towards fatty acid oxidation. This indicates that mTORC1 inhibition following injury accelerates the postnatal metabolic switch, which promotes metabolic maturation and impedes cardiomyocyte proliferation and heart regeneration. Taken together, our results define an important role for mTORC1 in regulating postnatal cardiac metabolism and may represent a novel target to modulate cardiac metabolism and promote heart regeneration.
Collapse
Affiliation(s)
- Wyatt G. Paltzer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Timothy J. Aballo
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Jiyoung Bae
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, United States
| | - Katharine A. Hubert
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Dakota J. Nuttall
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Cassidy Perry
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Kayla N. Wanless
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Raya Nahlawi
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
15
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
16
|
Yang ZQ, Han YY, Gao F, Tian JY, Bai R, Guo QH, Liu XC. Shengxian decoction protects against chronic heart failure in a rat model via energy regulation mechanisms. BMC Complement Med Ther 2023; 23:200. [PMID: 37330478 PMCID: PMC10276516 DOI: 10.1186/s12906-023-04035-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Chronic heart failure (CHF) is actually a disease caused by an imbalanced energy metabolism between myocardial energy demand and supply, ultimately resulting in abnormal myocardial cell structure and function. Energy metabolism imbalance plays an important role in the pathological process of chronic heart failure (CHF). Improving myocardial energy metabolism is a new strategy for the treatment of CHF. Shengxian decoction (SXT), a well-known traditional Chinese medicine (TCM) formula, has good therapeutic effects on the cardiovascular system. However, the effects of SXT on the energy metabolism of CHF is unclear. In this study, we probed the regulating effects of SXT on energy metabolism in CHF rats using various research methods. METHODS High-performance liquid chromatography (HPLC) analysis was used to perform quality control of SXT preparations. Then, SD rats were randomly assigned into 6 groups: sham, model, positive control (trimetazidine) and high-, middle-, and low-dose SXT groups. Specific reagent kits were used to detect the expression levels of ALT and AST in rats' serum. Echocardiography was used to evaluate cardiac function. H&E, Masson and TUNEL staining were performed to examine myocardial structure and myocardial apoptosis. Colorimetry was used to determine myocardial ATP levels in experimental rats. Transmission electron microscopy was used to observe the ultrastructure of myocardial mitochondria. ELISA was used to estimate CK, cTnI, and NT-proBNP levels, and LA、FFA、MDA、SOD levels. Finally, Western blotting was used to examine the protein expression of CPT-1, GLUT4, AMPK, p-AMPK, PGC-1α, NRF1, mtTFA and ATP5D in the myocardium. RESULTS HPLC showed that our SXT preparation method was feasible. The results of ALT and AST tests indicate that SXT has no side effect on the liver function of rats. Treatment with SXT improved cardiac function and ventricular remodelling and inhibited cardiomyocyte apoptosis and oxidative stress levels induced by CHF. Moreover, CHF caused decrease ATP synthesis, which was accompanied by a reduction in ATP 5D protein levels, damage to mitochondrial structure, abnormal glucose and lipid metabolism, and changes in the expression of PGC-1α related signal pathway proteins, all of which were significantly alleviated by treatment with SXT. CONCLUSION SXT reverses CHF-induced cardiac dysfunction and maintains the integrity of myocardial structure by regulating energy metabolism. The beneficial effect of SXT on energy metabolism may be related to regulating the expression of the PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Ze-Qi Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| | - Yang-Yang Han
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| | - Fan Gao
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| | - Jia-Ye Tian
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| | - Ran Bai
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| | - Qiu-Hong Guo
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| | - Xing-Chao Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Shijiazhuang, 050091 Hebei China
| |
Collapse
|
17
|
Rodrigues EA, Lima ARR, Gomes MJ, Souza LM, Pontes THD, Pagan LU, Murata GM, Damatto FC, Carvalho Depra I, Rego ABGC, Reyes DRA, Zornoff LAM, Okoshi K, Okoshi MP. Influence of Isolated Resistance Exercise on Cardiac Remodeling, Myocardial Oxidative Stress, and Metabolism in Infarcted Rats. Antioxidants (Basel) 2023; 12:896. [PMID: 37107271 PMCID: PMC10135620 DOI: 10.3390/antiox12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Exercise is an important therapeutic strategy for preventing and treating myocardial infarction (MI)-induced cardiac remodeling and heart failure. However, the myocardial effects of resistance exercise on infarcted hearts are not completely established. In this study, we investigated the effects of resistance exercise on structural, functional, and molecular cardiac alterations in infarcted rats. METHODS Three months after MI induction or simulated surgery, Wistar rats were assigned into three groups: Sham (n = 14); MI (n = 9); and exercised MI (MI-Ex, n = 13). Exercised rats performed, 3 times a week for 12 weeks, four climbs on a ladder with progressive loads. Cardiac structure and left ventricle (LV) function were analyzed by echocardiogram. Myocyte diameters were evaluated in hematoxylin- and eosin-stained histological sections as the smallest distance between borders drawn across the nucleus. Myocardial energy metabolism, lipid hydroperoxide, malondialdehyde, protein carbonylation, and antioxidant enzyme activities were evaluated by spectrophotometry. Gene expressions of NADPH oxidase subunits were evaluated by RT-PCR. Statistical analyses were performed using ANOVA and Tukey or Kruskal-Wallis and Dunn's test. RESULTS Mortality did not differ between the MI-Ex and MI groups. MI had dilated left atrium and LV, with LV systolic dysfunction. Exercise increased the maximum load-carrying capacity, with no changes in cardiac structure or LV function. Myocyte diameters were lower in MI than in Sham and MI-Ex. Lactate dehydrogenase and creatine kinase activity were lower in MI than in Sham. Citrate synthase and catalase activity were lower in MI and MI-Ex than in Sham. Lipid hydroperoxide concentration was lower in MI-Ex than in MI. Nox2 and p22phox gene expressions were higher in MI-Ex than in Sham. Gene expression of Nox4 was higher in MI and MI-Ex than in Sham, and p47phox was lower in MI than in Sham. CONCLUSION Late resistance exercise was safe in infarcted rats. Resistance exercise improved maximum load-carrying capacity, reduced myocardial oxidative stress, and preserved myocardial metabolism, with no changes in cardiac structure or left ventricle function in infarcted rats.
Collapse
Affiliation(s)
- Eder Anderson Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Aline Regina Ruiz Lima
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Mariana Janini Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77845, USA
| | - Lidiane Moreira Souza
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Thierres Hernani Dias Pontes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Gilson Masahiro Murata
- LIM29, Division of Nephrology, University of Sao Paulo Medical School, Sao Paulo 01246-903, SP, Brazil
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Igor Carvalho Depra
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | | | - David Rafael Abreu Reyes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Leonardo Antonio Mamede Zornoff
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
18
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Rolland L, Jopling C. The multifaceted nature of endogenous cardiac regeneration. Front Cardiovasc Med 2023; 10:1138485. [PMID: 36998973 PMCID: PMC10043193 DOI: 10.3389/fcvm.2023.1138485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
Since the first evidence of cardiac regeneration was observed, almost 50 years ago, more studies have highlighted the endogenous regenerative abilities of several models following cardiac injury. In particular, analysis of cardiac regeneration in zebrafish and neonatal mice has uncovered numerous mechanisms involved in the regenerative process. It is now apparent that cardiac regeneration is not simply achieved by inducing cardiomyocytes to proliferate but requires a multifaceted response involving numerous different cell types, signaling pathways and mechanisms which must all work in harmony in order for regeneration to occur. In this review we will endeavor to highlight a variety of processes that have been identifed as being essential for cardiac regeneration.
Collapse
|
20
|
Gaar-Humphreys KR, van den Brink A, Wekking M, Asselbergs FW, van Steenbeek FG, Harakalova M, Pei J. Targeting lipid metabolism as a new therapeutic strategy for inherited cardiomyopathies. Front Cardiovasc Med 2023; 10:1114459. [PMID: 36760574 PMCID: PMC9907444 DOI: 10.3389/fcvm.2023.1114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Inherited cardiomyopathies caused by pathological genetic variants include multiple subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques have allowed for the identification of numerous genetic variants as pathological variants. However, the disease penetrance varies among mutated genes. Some can be associated with more than one disease subtype, leading to a complex genotype-phenotype relationship in inherited cardiomyopathies. Previous studies have demonstrated disrupted metabolism in inherited cardiomyopathies and the importance of metabolic adaptations in disease onset and progression. In addition, genotype- and phenotype-specific metabolic alterations, especially in lipid metabolism, have been revealed. In this mini-review, we describe the metabolic changes that are associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which account for the largest proportion of inherited cardiomyopathies. We also summarize the affected expression of genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the potential of PPARA-targeting drugs as FAO modulators in treating patients with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Karen R. Gaar-Humphreys
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alyssa van den Brink
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mark Wekking
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Health Data Research United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom
| | - Frank G. van Steenbeek
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
21
|
Sorbini M, Arab S, Soni T, Frisiras A, Mehta S. How can the adult zebrafish and neonatal mice teach us about stimulating cardiac regeneration in the human heart? Regen Med 2023; 18:85-99. [PMID: 36416596 DOI: 10.2217/rme-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The proliferative capacity of mammalian cardiomyocytes diminishes shortly after birth. In contrast, adult zebrafish and neonatal mice can regenerate cardiac tissues, highlighting new potential therapeutic avenues. Different factors have been found to promote cardiomyocyte proliferation in zebrafish and neonatal mice; these include maintenance of mononuclear and diploid cardiomyocytes and upregulation of the proto-oncogene c-Myc. The growth factor NRG-1 controls cell proliferation and interacts with the Hippo-Yap pathway to modulate regeneration. Key components of the extracellular matrix such as Agrin are also crucial for cardiac regeneration. Novel therapies explored in this review, include intramyocardial injection of Agrin or zebrafish-ECM and NRG-1 administration. These therapies may induce regeneration in patients and should be further explored.
Collapse
Affiliation(s)
- Michela Sorbini
- Barts and the London School of Medicien and Dentistry, Queen Mary University of London, E1 2AD, London, UK.,Imperial College School of Medicine, SW7 2AZ, London, UK
| | - Sammy Arab
- Imperial College School of Medicine, SW7 2AZ, London, UK
| | - Tara Soni
- Imperial College School of Medicine, SW7 2AZ, London, UK
| | | | - Samay Mehta
- Imperial College School of Medicine, SW7 2AZ, London, UK
| |
Collapse
|
22
|
Pianca N, Sacchi F, Umansky KB, Chirivì M, Iommarini L, Da Pra S, Papa V, Bongiovanni C, Miano C, Pontis F, Braga L, Tassinari R, Pantano E, Patnala RS, Mazzeschi M, Cenacchi G, Porcelli AM, Lauriola M, Ventura C, Giacca M, Rizzi R, Tzahor E, D'Uva G. Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. NATURE CARDIOVASCULAR RESEARCH 2022; 1:617-633. [PMID: 39196236 DOI: 10.1038/s44161-022-00090-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2022] [Indexed: 09/01/2023]
Abstract
In mammals, the physiological activation of the glucocorticoid receptor (GR) by glucocorticoids (GCs) promotes the maturation of cardiomyocytes during late gestation, but the effect on postnatal cardiac growth and regenerative plasticity is unclear. Here we demonstrate that the GC-GR axis restrains cardiomyocyte proliferation during postnatal development. Cardiomyocyte-specific GR ablation in conditional knockout (cKO) mice delayed the postnatal cardiomyocyte cell cycle exit, hypertrophic growth and cytoarchitectural maturation. GR-cKO hearts showed increased expression of genes involved in glucose catabolism and reduced expression of genes promoting fatty acid oxidation and mitochondrial respiration. Accordingly, oxygen consumption in GR-cKO cardiomyocytes was less dependent on fatty acid oxidation, and glycolysis inhibition reverted GR-cKO effects on cardiomyocyte proliferation. GR ablation or transient pharmacological inhibition after myocardial infarction in juvenile and/or adult mice facilitated cardiomyocyte survival, cell cycle re-entry and division, leading to cardiac muscle regeneration along with reduced scar formation. Thus, GR restrains heart regeneration and may represent a therapeutic target.
Collapse
Affiliation(s)
- Nicola Pianca
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Francesca Sacchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Kfir Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maila Chirivì
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, Italy
- National Institute of Molecular Genetics (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Valentina Papa
- Department of Biomedical and Neuromotors Sciences, Anatomic Pathology at S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Carmen Miano
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Pontis
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | | | - Elvira Pantano
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | | | - Martina Mazzeschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotors Sciences, Anatomic Pathology at S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Roberto Rizzi
- National Institute of Molecular Genetics (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy.
| |
Collapse
|
23
|
Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism. Dev Cell 2022; 57:424-439. [PMID: 35231426 PMCID: PMC8896288 DOI: 10.1016/j.devcel.2022.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and thus there remains great interest in regenerative approaches to treat heart failure. In the past 20 years, the field of heart regeneration has entered a renaissance period with remarkable progress in the understanding of endogenous heart regeneration, stem cell differentiation for exogenous cell therapy, and cell-delivery methods. In this review, we highlight how this new understanding can lead to viable strategies for human therapy. For the near term, drugs, electrical and mechanical devices, and heart transplantation will remain mainstays of cardiac therapies, but eventually regenerative therapies based on fundamental regenerative biology may offer more permanent solutions for patients with heart failure.
Collapse
Affiliation(s)
- Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA,Corresponding author and lead contact: Richard T. Lee, Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, Phone: 617-496-5394, Fax: 617-496-8351,
| |
Collapse
|
24
|
Santamans AM, Montalvo-Romeral V, Mora A, Lopez JA, González-Romero F, Jimenez-Blasco D, Rodríguez E, Pintor-Chocano A, Casanueva-Benítez C, Acín-Pérez R, Leiva-Vega L, Duran J, Guinovart JJ, Jiménez-Borreguero J, Enríquez JA, Villlalba-Orero M, Bolaños JP, Aspichueta P, Vázquez J, González-Terán B, Sabio G. p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biol 2021; 19:e3001447. [PMID: 34758018 PMCID: PMC8612745 DOI: 10.1371/journal.pbio.3001447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.
Collapse
Affiliation(s)
| | | | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco González-Romero
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - María Villlalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
25
|
Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol 2021; 9:jdb9040040. [PMID: 34698193 PMCID: PMC8544412 DOI: 10.3390/jdb9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Heart disease is the leading cause of death in the United States and worldwide. Understanding the molecular mechanisms of cardiac development and regeneration will improve diagnostic and therapeutic interventions against heart disease. In this direction, zebrafish is an excellent model because several processes of zebrafish heart development are largely conserved in humans, and zebrafish has several advantages as a model organism. Zebrafish transcriptomic profiles undergo alterations during different stages of cardiac development and regeneration which are revealed by RNA-sequencing. ChIP-sequencing has detected genome-wide occupancy of histone post-translational modifications that epigenetically regulate gene expression and identified a locus with enhancer-like characteristics. ATAC-sequencing has identified active enhancers in cardiac progenitor cells during early developmental stages which overlap with occupancy of histone modifications of active transcription as determined by ChIP-sequencing. CRISPR-mediated editing of the zebrafish genome shows how chromatin modifiers and DNA-binding proteins regulate heart development, in association with crucial signaling pathways. Hence, more studies in this direction are essential to improve human health because they answer fundamental questions on cardiac development and regeneration, their differences, and why zebrafish hearts regenerate upon injury, unlike humans. This review focuses on some of the latest studies using state-of-the-art technology enabled by the elegant yet simple zebrafish.
Collapse
|