1
|
Gruslova AB, Katta N, Nolen D, Jenney S, Vela D, Buja M, Cilingiroglu M, Seddighi Y, Han HC, Milner TE, Feldman MD. Intravascular laser lithotripsy for calcium fracture in human coronary arteries. EUROINTERVENTION 2023; 19:e913-e922. [PMID: 38060282 PMCID: PMC10722992 DOI: 10.4244/eij-d-23-00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/11/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Electrical intravascular lithotripsy (E-IVL) uses shock waves to fracture calcified plaque. AIMS We aimed to demonstrate the ability of laser IVL (L-IVL) to fracture calcified plaques in ex vivo human coronary arteries and to identify and evaluate the mechanisms for increased vessel compliance. METHODS Shock waves were generated by a Ho:YAG (Holmium: yttrium-aluminium-garnet) laser (2 J, 5 Hz) and recorded by a high-speed camera and pressure sensor. Tests were conducted on phantoms and 19 fresh human coronary arteries. Before and after L-IVL, arterial compliance and optical coherence tomography (OCT) pullbacks were recorded, followed by histology. Additionally, microcomputed tomography (micro-CT) and scanning electron microscopy (SEM) were performed. Finite element models (FEM) were utilised to examine the mechanism of L-IVL. RESULTS Phantom cracks were obtained using 230 μm and 400 μm fibres with shock-wave pressures of 84±5.0 atm and 62±0.4 atm, respectively. Post-lithotripsy, calcium plaque modifications, including fractures and debonding, were identified by OCT in 78% of the ex vivo calcified arteries (n=19). Histological analysis revealed calcium microfractures (38.7±10.4 μm width) in 57% of the arteries which were not visible by OCT. Calcium microfractures were verified by micro-CT and SEM. The lumen area increased from 2.9±0.4 to 4.3±0.8 mm2 (p<0.01). Arterial compliance increased by 2.3±0.6 atm/ml (p<0.05). FEM simulations suggest that debonding and intimal tears are additional mechanisms for increased arterial compliance. CONCLUSIONS L-IVL has the capability to increase calcified coronary artery compliance by multiple mechanisms.
Collapse
Affiliation(s)
| | - Nitesh Katta
- Beckman Laser Institute and Medical Clinic, University of California at Irvine, Irvine, CA, USA
| | - Drew Nolen
- Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Scott Jenney
- Beckman Laser Institute and Medical Clinic, University of California at Irvine, Irvine, CA, USA
| | | | | | | | - Yasamin Seddighi
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hai Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Thomas E Milner
- Beckman Laser Institute and Medical Clinic, University of California at Irvine, Irvine, CA, USA
| | - Marc D Feldman
- Department of Medicine, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
2
|
Kostyunin A, Glushkova T, Velikanova E, Mukhamadiyarov R, Bogdanov L, Akentyeva T, Ovcharenko E, Evtushenko A, Shishkova D, Markova Y, Kutikhin A. Embedding and Backscattered Scanning Electron Microscopy (EM-BSEM) Is Preferential over Immunophenotyping in Relation to Bioprosthetic Heart Valves. Int J Mol Sci 2023; 24:13602. [PMID: 37686408 PMCID: PMC10487790 DOI: 10.3390/ijms241713602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Hitherto, calcified aortic valves (AVs) and failing bioprosthetic heart valves (BHVs) have been investigated by similar approaches, mostly limited to various immunostaining techniques. Having employed multiple immunostaining combinations, we demonstrated that AVs retain a well-defined cellular hierarchy even at severe stenosis, whilst BHVs were notable for the stochastic degradation of the extracellular matrix (ECM) and aggressive infiltration by ECM-digesting macrophages. Leukocytes (CD45+) comprised ≤10% cells in the AVs but were the predominant cell lineage in BHVs (≥80% cells). Albeit cells with uncertain immunophenotype were rarely encountered in the AVs (≤5% cells), they were commonly found in BHVs (≥80% cells). Whilst cell conversions in the AVs were limited to the endothelial-to-mesenchymal transition (represented by CD31+α-SMA+ cells) and the formation of endothelial-like (CD31+CD68+) cells at the AV surface, BHVs harboured numerous macrophages with a transitional phenotype, mostly CD45+CD31+, CD45+α-SMA+, and CD68+α-SMA+. In contrast to immunostaining, which was unable to predict cell function in the BHVs, our whole-specimen, nondestructive electron microscopy approach (EM-BSEM) was able to distinguish between quiescent and matrix-degrading macrophages, foam cells, and multinucleated giant cells to conduct the ultrastructural analysis of organelles and the ECM, and to preserve tissue integrity. Hence, we suggest EM-BSEM as a technique of choice for studying the cellular landscape of BHVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.K.); (T.G.); (E.V.); (R.M.); (L.B.); (T.A.); (E.O.); (A.E.); (D.S.); (Y.M.)
| |
Collapse
|
3
|
Kostyunin AE, Glushkova TV, Lobov AA, Ovcharenko EA, Zainullina BR, Bogdanov LA, Shishkova DK, Markova VE, Asanov MA, Mukhamadiyarov RA, Velikanova EA, Akentyeva TN, Rezvova MA, Stasev AN, Evtushenko A, Barbarash LS, Kutikhin AG. Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure. J Am Heart Assoc 2022; 12:e028215. [PMID: 36565196 PMCID: PMC9973599 DOI: 10.1161/jaha.122.028215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde-treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next-generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether-treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether-treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered. Then, BHVs and AVs were interrogated for immune cell infiltration, microbial contamination, distribution of matrix-degrading enzymes and their tissue inhibitors, lipid deposition, and calcification. In contrast with dysfunctional AVs, failing BHVs suffered from complement-driven neutrophil invasion, excessive proteolysis, unwanted coagulation, and lipid deposition. Neutrophil infiltration was triggered by an asymptomatic bacterial colonization of the prosthetic tissue. Neutrophil elastase, myeloblastin/proteinase 3, cathepsin G, and matrix metalloproteinases (MMPs; neutrophil-derived MMP-8 and plasma-derived MMP-9), were significantly overexpressed, while tissue inhibitors of metalloproteinases 1/2 were downregulated in the BHVs as compared with AVs, together indicative of unbalanced proteolysis in the failing BHVs. As opposed to other proteases, MMP-9 was mostly expressed in the disorganized prosthetic extracellular matrix, suggesting plasma-derived proteases as the primary culprit of SVD in ethylene glycol diglycidyl ether-treated BHVs. Hence, hemodynamic stress and progressive accumulation of proteases led to the extracellular matrix degeneration and dystrophic calcification, ultimately resulting in SVD. Conclusions Neutrophil- and plasma-derived proteases are responsible for the loss of BHV mechanical competence and need to be thwarted to prevent SVD.
Collapse
Affiliation(s)
- Alexander E. Kostyunin
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Tatiana V. Glushkova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Arseniy A. Lobov
- Department of Regenerative BiomedicineResearch Institute of CytologySt. PetersburgRussian Federation
| | - Evgeny A. Ovcharenko
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Bozhana R. Zainullina
- Centre for Molecular and Cell TechnologiesSt. Petersburg State University Research ParkSt. Petersburg State University, Universitetskaya EmbankmentSt. PetersburgRussian Federation
| | - Leo A. Bogdanov
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Daria K. Shishkova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Victoria E. Markova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Maksim A. Asanov
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Rinat A. Mukhamadiyarov
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Elena A. Velikanova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Tatiana N. Akentyeva
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Maria A. Rezvova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Alexander N. Stasev
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Alexey V. Evtushenko
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Leonid S. Barbarash
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Anton G. Kutikhin
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| |
Collapse
|
4
|
Antonova L, Kutikhin A, Sevostianova V, Lobov A, Repkin E, Krivkina E, Velikanova E, Mironov A, Mukhamadiyarov R, Senokosova E, Khanova M, Shishkova D, Markova V, Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel) 2022; 14:polym14235149. [PMID: 36501545 PMCID: PMC9736446 DOI: 10.3390/polym14235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Implementation of small-diameter tissue-engineered vascular grafts (TEVGs) into clinical practice is still delayed due to the frequent complications, including thrombosis, aneurysms, neointimal hyperplasia, calcification, atherosclerosis, and infection. Here, we conjugated a vasodilator/platelet inhibitor, iloprost, and an antimicrobial cationic amphiphilic drug, 1,5-bis-(4-tetradecyl-1,4-diazoniabicyclo [2.2.2]octan-1-yl) pentane tetrabromide, to the luminal surface of electrospun poly(ε-caprolactone) (PCL) TEVGs for preventing thrombosis and infection, additionally enveloped such TEVGs into the PCL sheath to preclude aneurysms, and implanted PCLIlo/CAD TEVGs into the ovine carotid artery (n = 12) for 6 months. The primary patency was 50% (6/12 animals). TEVGs were completely replaced with the vascular tissue, free from aneurysms, calcification, atherosclerosis and infection, completely endothelialised, and had clearly distinguishable medial and adventitial layers. Comparative proteomic profiling of TEVGs and contralateral carotid arteries found that TEVGs lacked contractile vascular smooth muscle cell markers, basement membrane components, and proteins mediating antioxidant defense, concurrently showing the protein signatures of upregulated protein synthesis, folding and assembly, enhanced energy metabolism, and macrophage-driven inflammation. Collectively, these results suggested a synchronised replacement of PCL with a newly formed vascular tissue but insufficient compliance of PCLIlo/CAD TEVGs, demanding their testing in the muscular artery position or stimulation of vascular smooth muscle cell specification after the implantation.
Collapse
Affiliation(s)
- Larisa Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
- Correspondence: ; Tel.: +7-9609077067
| | - Viktoriia Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, Saint Petersburg 194064, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, Saint Petersburg 199034, Russia
| | - Evgenia Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Rinat Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|
5
|
Bogdanov L, Shishkova D, Mukhamadiyarov R, Velikanova E, Tsepokina A, Terekhov A, Koshelev V, Kanonykina A, Shabaev A, Frolov A, Zagorodnikov N, Kutikhin A. Excessive Adventitial and Perivascular Vascularisation Correlates with Vascular Inflammation and Intimal Hyperplasia. Int J Mol Sci 2022; 23:ijms232012156. [PMID: 36293013 PMCID: PMC9603343 DOI: 10.3390/ijms232012156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Albeit multiple studies demonstrated that vasa vasorum (VV) have a crucial importance in vascular pathology, the informative markers and metrics of vascular inflammation defining the development of intimal hyperplasia (IH) have been vaguely studied. Here, we employed two rat models (balloon injury of the abdominal aorta and the same intervention optionally complemented with intravenous injections of calciprotein particles) and a clinical scenario (arterial and venous conduits for coronary artery bypass graft (CABG) surgery) to investigate the pathophysiological interconnections among VV, myeloperoxidase-positive (MPO+) clusters, and IH. We found that the amounts of VV and MPO+ clusters were strongly correlated; further, MPO+ clusters density was significantly associated with balloon-induced IH and increased at calciprotein particle-provoked endothelial dysfunction. Likewise, number and density of VV correlated with IH in bypass grafts for CABG surgery at the pre-intervention stage and were higher in venous conduits which more frequently suffered from IH as compared with arterial grafts. Collectively, our results underline the pathophysiological importance of excessive VV upon the vascular injury or at the exposure to cardiovascular risk factors, highlight MPO+ clusters as an informative marker of adventitial and perivascular inflammation, and propose another mechanistic explanation of a higher long-term patency of arterial grafts upon the CABG surgery.
Collapse
|
6
|
Kostyunin A, Glushkova T, Stasev A, Mukhamadiyarov R, Velikanova E, Bogdanov L, Sinitskaya A, Asanov M, Ovcharenko E, Barbarash L, Kutikhin A. Early Postoperative Immunothrombosis of Bioprosthetic Mitral Valve and Left Atrium: A Case Report. Int J Mol Sci 2022; 23:ijms23126736. [PMID: 35743174 PMCID: PMC9224391 DOI: 10.3390/ijms23126736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
A 72-year-old female patient with mixed rheumatic mitral valve disease and persistent atrial fibrillation underwent mitral valve replacement and suffered from a combined thrombosis of the bioprosthetic valve and the left atrium as soon as 2 days post operation. The patient immediately underwent repeated valve replacement and left atrial thrombectomy. Yet, four days later the patient died due to the recurrent prosthetic valve and left atrial thrombosis which both resulted in an extremely low cardiac output. In this patient's case, the thrombosis was notable for the resistance to anticoagulant therapy as well as for aggressive neutrophil infiltration and release of neutrophil extracellular traps (NETs) within the clot, as demonstrated by immunostaining. The reasons behind these phenomena remained unclear, as no signs of sepsis or contamination of the BHV were documented, although the patient was diagnosed with inherited thrombophilia that could impede the fibrinolysis. The described case highlights the hazard of immunothrombosis upon valve replacement and elucidates its mechanisms in this surgical setting.
Collapse
|
7
|
Mukhamadiyarov RA, Koshelev VA, Frolov AV, Mironov AV, Shabaev AR, Evtushenko AV, Lyapin AA, Kutikhin AG. [Ultrastructure of neointima of native and artificial elements of the blood circulatory system]. Arkh Patol 2022; 84:14-23. [PMID: 35639839 DOI: 10.17116/patol20228403114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To compare the neointima structure in conduits for coronary bypass grafting, bioprosthetic heart valves, tissue-engineered vascular grafts, and metal stents. MATERIAL AND METHODS The objects of the study were the fragments of the human internal thoracic artery, experimental biodegradable vascular prostheses, leaflets of xenopericardial bioprostheses of heart valves, and fragments of stented vessels. Tissue samples were fixed in formalin and post-fixed in osmium tetroxide. After dehydration and epoxy resin embedding, the samples were ground and polished. Samples were counterstained with uranyl acetate and lead citrate and visualized by means of backscattered scanning electron microscopy. RESULTS Neointimal pattern in all samples was similar. Neointima was comprised of endothelial cells, smooth muscle cells, fibroblasts, and the extracellular matrix. Endothelial cells showed significant diversity both between different elements of the circulatory system and within the same tissue, having either elongated or polygonal shape. Adhesion of leukocytes testified to the endothelial cell activation. In the absence of inflammation in the superficial layer of the neointima, the arrangement of smooth muscle cells and extracellular matrix fibers was parallel to the endothelium. Clusters of foam cells were frequently detected around the neointimal layers with solid inclusions (metal stents or calcium deposits). Thickening of the neointima was accompanied by the presence of capillaries and capillary-like structures. CONCLUSION Neointima formation is a typical response to the damage inflicted to the elements of the circulatory system. Neointima underwent a constant remodeling characterized by an altered cellular composition, macrophage invasion, neovascularization, and calcification.
Collapse
Affiliation(s)
- R A Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - V A Koshelev
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A V Frolov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A V Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A R Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A V Evtushenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A A Lyapin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A G Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|