1
|
Wen K, Zhang YT, Zhao QH, Li Q, Zhao JL, Ding Q, Xiao YF, Guan XH, Jiang MX, Qian YS, Tian XL, Wang LF, Deng KY, Xin HB. Cardiomyocyte specific CD38 deletion protects heart from acute myocardial infarction by activating Sirt3 signaling pathway. Sci Rep 2025; 15:17165. [PMID: 40382427 PMCID: PMC12085564 DOI: 10.1038/s41598-025-02207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Acute myocardial infarction (AMI) is serious disease with high morbidity and mortality worldwide. CD38 is an important metabolic enzyme and plays an important role in a variety of diseases. Our previous studies demonstrated that CD38 deficiency significantly reduced Ang-II-induced ventricular hypertrophy and cardiac ischemia-reperfusion injury. However, the roles of cardiomyocytic CD38 in acute myocardial infarction (AMI) remain unknown. Here, we reported that cardiomyocyte-specific CD38 deficiency (CD38CKO) significantly improved heart functions in AMI. We observed that CD38CKO remarkably reduced the fibrosis at the peri-infarct area, and inhibited the apoptosis of cardiomyocytes in infarcted area by elevating the ratio of mitochondrial Bcl2/Bax expression and increased the expressions of the mitochondrial fusion proteins Mfn1 and Mfn2 in the early stage of AMI. Consistently, knockdown of CD38 protected hypoxia-induced apoptosis in cardiomyocytes by increasing the ratio of Bcl2/Bax expression and decreasing cleaved caspase-3. More importantly, 3-TYP, a Sirt3 inhibitor, significantly increased hypoxia-induced apoptosis in CD38-deficient primary cardiomyocytes. In conclusion, our results demonstrated that CD38CKO suppressed apoptosis of cardiomyocytes in the infracted area of heart via activating NAD+/Sirt3-mediated signaling pathways.
Collapse
Grants
- 82270302, 82470454, 82000354, 82260173, 82200509 National Natural Science Foundation of China
- 82270302, 82470454, 82000354, 82260173, 82200509 National Natural Science Foundation of China
- 82270302, 82470454, 82000354, 82260173, 82200509 National Natural Science Foundation of China
- 20212BAB206087, 20212BCJ23043, 20212BDH81020 Natural Science Foundation of Jiangxi Province
- 2022YFA1104300 the National Key Research and development Program of China
Collapse
Affiliation(s)
- Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ya-Ting Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Jia-Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Qi Ding
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Mei-Xiu Jiang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Yi-Song Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Xiao-Li Tian
- School of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
- School of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
- School of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
2
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
3
|
Ma J, Chen Q, Lin D, Ma S. The Role of Infarct Border Zone Remodelling in Ventricular Arrhythmias: Bridging Basic Research and Clinical Applications. J Cell Mol Med 2025; 29:e70526. [PMID: 40159640 PMCID: PMC11955419 DOI: 10.1111/jcmm.70526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Patients who experience post-myocardial infarction (MI) and present with a left ventricular ejection fraction of less than 35% are classified as being at high risk for sudden cardiac death due to ventricular arrhythmias (VAs). The expansion of scar tissue and the extension of the infarct border zone (IBZ) following MI play critical roles in the progression of heart failure and the onset of VAs. Various aspects of structural remodelling, including cardiac fibrosis, along with electrophysiological changes such as alterations in gap junctions, ion channels, and autonomic nervous system function within the IBZ may contribute to abnormal impulse generation and conduction, thereby increasing susceptibility to arrhythmias. Currently, management strategies for VAs primarily encompass pharmacologic interventions (e.g., β-blockers, amiodarone), device-based approaches (e.g., ICD implantation), or catheter ablation techniques as outlined by ESC Guidelines. In this review, we systematically summarise both structural characteristics inherent in ischaemic myocardial substrates and clinical treatment strategies regarding VAs. We propose that early prevention strategies aimed at mitigating arrhythmogenic substrate formation represent an innovative approach to treating VAs following MI.
Collapse
Affiliation(s)
- Jin Ma
- Guangdong Provincial Hospital of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qiuxiong Chen
- Guangdong Provincial Hospital of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhouChina
| | - Dongqun Lin
- Guangdong Provincial Hospital of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyu Ma
- Guangdong Provincial Hospital of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhouChina
| |
Collapse
|
4
|
Kosanam S, Pasupula R. Effect of Methyl Glycoside on Apoptosis and Oxidative Stress in Hypoxia Induced-Reoxygenated H9C2 Cell Lines. Cell Biochem Biophys 2025; 83:1045-1056. [PMID: 39292425 DOI: 10.1007/s12013-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study focuses on key genes (Caspase-3, JAK2, BCL2L1 and MAPK8) and their modulation in response to hypoxia-induced stress using Methyl Glycoside (MG), a small molecule spectroscopically screened from Aganosma dichotoma. Hypoxia/reoxygenation (H/R) induced H9C2 cells, pre- treated with MG, were subjected to cell viability assay, free radical scavenging activities (catalase, GST, GSH-Px, SOD), caspase activity, mitochondrial membrane potential, and gene expression profiling through standard assays and molecular techniques. Results indicated that MG treatment, has potential protective effects against H/R induced stress in H9C2 cell lines. Cell viability assays showed that MG maintained cellular viability with significant protection (P < 0.05) observed from 10 µM. Free radical scavenging assays revealed that MG, enhanced detoxification mechanisms and exhibited potential antioxidant effect in a significantly (P < 0.05) in a dose dependant manner. MG pre-treatment in H9C2 cells protected cellular damage from caspase activity, cells exhibited high mitochondrial membrane potential, and gene expression profiles, including upregulation of anti-apoptotic BCL2L1 and modulation of stress-responsive genes like CASP3, JAK2 and MAPK8. Hence, MG exhibited concentration-dependent protective effects on viability, oxidative stress, and apoptosis-related pathways, laying the foundation for further exploration and translational applications in cardiovascular interventions.
Collapse
Affiliation(s)
- Sreya Kosanam
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Rajeshwari Pasupula
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India.
| |
Collapse
|
5
|
Zhu L, He J. Morin Ameliorates Myocardial Injury in Diabetic Rats via Modulation of Autophagy, Apoptosis, Inflammation, and Oxidative Stress. Diabetes Metab Syndr Obes 2024; 17:4867-4882. [PMID: 39742288 PMCID: PMC11687097 DOI: 10.2147/dmso.s476867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
Background Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats. Methods Diabetic cardiomyopathy in albino Wistar rats was induced by streptozotocin (STZ). After treatment with a dose of 25, 50, and 100 mg/kg/day orally for the next 60 days, autophagic (p62, LC3, and BECN1), apoptotic (BCL2, CASP-3, and CASP9), inflammatory (IL-1β, IL-6, TNF-α), and oxidative stress (CAT, SOD, and MDA) markers in protein and gene levels as well as cardiac function tests were measured. Results The findings revealed that long-term morin treatment improved weight gain, lipid and glycemic profile, hypertension, and cardiac hypertrophy and fibrosis in diabetic rats compared to controls (p-value<0.001). Moreover, the upregulation of BCL-2, LC3, and BECN1 along with the downregulation of p62, CASP-3, and CASP-9 revealed that morin suppressed apoptosis and promoted autophagy in the cardiac tissue of rats with diabetes (p-value<0.05). Additionally, the reduction in IL-1β, IL-6, TNF-α, and MDA levels and the increment of SOD and CAT activity suggested that morin decreased inflammation and apoptosis in the heart of the rat models of diabetes (p-value<0.01). Conclusion These results may highlight the potential properties of morin as a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Jizhong He
- Department of Cardiology, Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
| |
Collapse
|
6
|
He X, Good A, Kalou W, Ahmad W, Dutta S, Chen S, Lin CN, Chella Krishnan K, Fan Y, Huang W, Liang J, Wang Y. Current Advances and Future Directions of Pluripotent Stem Cells-Derived Engineered Heart Tissue for Treatment of Cardiovascular Diseases. Cells 2024; 13:2098. [PMID: 39768189 PMCID: PMC11674482 DOI: 10.3390/cells13242098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular diseases resulting from myocardial infarction (MI) remain a leading cause of death worldwide, imposing a substantial burden on global health systems. Current MI treatments, primarily pharmacological and surgical, do not regenerate lost myocardium, leaving patients at high risk for heart failure. Engineered heart tissue (EHT) offers a promising solution for MI and related cardiac conditions by replenishing myocardial loss. However, challenges like immune rejection, inadequate vascularization, limited mechanical strength, and incomplete tissue maturation hinder clinical application. The discovery of human-induced pluripotent stem cells (hiPSCs) has transformed the EHT field, enabling new bioengineering innovations. This review explores recent advancements and future directions in hiPSC-derived EHTs, focusing on innovative materials and fabrication methods like bioprinting and decellularization, and assessing their therapeutic potential through preclinical and clinical studies. Achieving functional integration of EHTs in the heart remains challenging due to the need for synchronized contraction, sufficient vascularization, and mechanical compatibility. Solutions such as genome editing, personalized medicine, and AI technologies offer promising strategies to address these translational barriers. Beyond MI, EHTs also show potential in treating ischemic cardiomyopathy, heart valve engineering, and drug screening, underscoring their promise in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Angela Good
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Wael Kalou
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Waqas Ahmad
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sophie Chen
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Charles Noah Lin
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| |
Collapse
|
7
|
Zhou J, Liu M, Park S. Association of Metabolic Diseases and Moderate Fat Intake with Myocardial Infarction Risk. Nutrients 2024; 16:4273. [PMID: 39770895 PMCID: PMC11679910 DOI: 10.3390/nu16244273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) can range from mild to severe cardiovascular events and typically develops through complex interactions between genetic and lifestyle factors. OBJECTIVES We aimed to understand the genetic predisposition associated with MI through genetic correlation, colocalization analysis, and cells' gene expression values to develop more effective prevention and treatment strategies to reduce its burden. METHODS A polygenic risk score (PRS) was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS that affect MI risk in adults over 45 years (n = 58,701). Genetic correlation (rg) between MI and metabolic syndrome-related traits was estimated with linkage disequilibrium score regression. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate cellular heterogeneity in MI-associated genes. RESULTS Ten significant genetic variants associated with MI risk were related to cardiac, immune, and brain functions. A high PRS was associated with a threefold increase in MI risk (OR: 3.074, 95% CI: 2.354-4.014, p < 0.001). This increased the risk of MI plus obesity, hyperglycemia, dyslipidemia, and hypertension by about twofold after adjusting for MI-related covariates (p < 0.001). The PRS interacted with moderate fat intake (>15 energy percent), alcohol consumption (<30 g/day), and non-smoking, reducing MI risk in participants with a high PRS. MI was negatively correlated with the consumption of olive oil, sesame oil, and perilla oil used for cooking (rg = -0.364). MI risk was associated with storkhead box 1 (STOX1) and vacuolar protein sorting-associated protein 26A (VPS26A) in atrial and ventricular cardiomyocytes and fibroblasts. CONCLUSIONS This study identified novel genetic variants and gene expression patterns associated with MI risk, influenced by their interaction with fat and alcohol intake, and smoking status. Our findings provide insights for developing personalized prevention and treatment strategies targeting this complex clinical presentation of MI.
Collapse
Affiliation(s)
- Junyu Zhou
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China;
| | - Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048011, China;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bungil, BaeBang-Yup, Asan 31499, Republic of Korea
| |
Collapse
|
8
|
Kologrivova I, Kercheva M, Panteleev O, Ryabov V. The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review. Biomedicines 2024; 12:2073. [PMID: 39335587 PMCID: PMC11428626 DOI: 10.3390/biomedicines12092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiogenic shock (CS) is one of the most serious complications of myocardial infarction (MI) with a high mortality rate. The timely and effective prevention and early suppression of this adverse event may influence the prognosis and outcome in patients with MI complicated by CS (MI CS). Despite the use of existing pharmaco-invasive options for maintaining an optimal pumping function of the heart in patients with MI CS, its mortality remains high, prompting the search for new approaches to pathogenetic therapy. This review considers the role of the systemic inflammatory response in the pathogenesis of MI CS. The primary processes involved in its initiation are described, including the progression from the onset of MI to the generalization of the inflammatory response and the development of multiple organ dysfunction. The approaches to anti-inflammatory therapy in patients with CS are discussed, and further promising research directions are outlined. In this review, we updated and summarized information on the inflammatory component of MI CS pathogenesis with a particular focus on its foundational aspects. This will facilitate the identification of specific inflammatory phenotypes and endotypes in MI CS and the development of targeted therapeutic strategies for this MI complication.
Collapse
Affiliation(s)
- Irina Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
| | - Maria Kercheva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| | - Oleg Panteleev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| |
Collapse
|
9
|
Zhi F, Pu X, Wei W, Liu L, Liu C, Chen Y, Chang X, Xu H. Modulating mitochondrial dynamics ameliorates left ventricular dysfunction by suppressing diverse cell death pathways after diabetic cardiomyopathy. Int J Med Sci 2024; 21:2324-2333. [PMID: 39310254 PMCID: PMC11413890 DOI: 10.7150/ijms.98065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.
Collapse
Affiliation(s)
- Fumin Zhi
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wei
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunyan Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ye Chen
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hongtao Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
10
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Wu R, Wu T, Wang Q, Shi Y, Dong Q, Rong X, Chen M, He Z, Fu Y, Liu L, Shao S, Guan X, Zhang C. The ischemia-enhanced myocardial infarction protection-related lncRNA protects against acute myocardial infarction. MedComm (Beijing) 2024; 5:e632. [PMID: 38988491 PMCID: PMC11234438 DOI: 10.1002/mco2.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Long non-coding RNA RP11-64B16.4 (myocardial infarction protection-related lncRNA [MIPRL]) is among the most abundant and the most upregulated lncRNAs in ischemic human hearts. However, its role in ischemic heart disease is unknown. We found MIPRL was conserved between human and mouse and its expression was increased in mouse hearts after acute myocardial infarction (AMI) and in cultured human and mouse cardiomyocytes after hypoxia. The infarcted size, cardiac cell apoptosis, cardiac dysfunction, and cardiac fibrosis were aggravated in MIPRL knockout mice after AMI. The above adverse results could be reversed by re-expression of MIPRL via adenovirus expressing MIPRL. Both in vitro and in vivo, we identified that heat shock protein beta-8 (HSPB8) was a target gene of MIPRL, which was involved in MIPRL-mediated anti-apoptotic effects on cardiomyocytes. We further discovered that MIPRL could combine with the messenger RNA (mRNA) of HSPB8 and increase its expression in cardiomyocytes by enhancing the stability of HSPB8 mRNA. In summary, we have found for the first time that the ischemia-enhanced lncRNA MIPRL protects against AMI via its target gene HSPB8. MIPRL might be a novel promising therapeutic target for ischemic heart diseases such as AMI.
Collapse
Affiliation(s)
- Rongzhou Wu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Tingting Wu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Qiaoyu Wang
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Youyang Shi
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Qianqian Dong
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Xing Rong
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Meiting Chen
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zhiyu He
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yu Fu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Lei Liu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Shuai Shao
- Department of CardiologyKey Laboratory of Medical ElectrophysiologyMinistry of EducationInstitute of Cardiovascular ResearchInstitute of Metabolic Diseasesthe Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouChina
| | - Xueqiang Guan
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Chunxiang Zhang
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Department of CardiologyKey Laboratory of Medical ElectrophysiologyMinistry of EducationInstitute of Cardiovascular ResearchInstitute of Metabolic Diseasesthe Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouChina
| |
Collapse
|
12
|
Bajic Z, Sobot T, Amidzic L, Vojinovic N, Jovicic S, Gajic Bojic M, Djuric DM, Stojiljkovic MP, Bolevich S, Skrbic R. Liraglutide Protects Cardiomyocytes against Isoprenaline-Induced Apoptosis in Experimental Takotsubo Syndrome. Biomedicines 2024; 12:1207. [PMID: 38927414 PMCID: PMC11200478 DOI: 10.3390/biomedicines12061207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy, characterized by an increased concentration of catecholamines, free radicals, and inflammatory cytokines, endothelial dysfunction, and increased apoptotic activity. High doses of isoprenaline are used in animal models to induce Takotsubo (TT)-like myocardial injury. The aim of the study was to investigate the antiapoptotic effects of liraglutide in experimental TTS and its role in the NF-κB pathway. Wistar rats were pretreated with liraglutide for 10 days, and on days 9 and 10, TT-like myocardial injury was induced with isoprenaline. After the sacrifice on day 11, hearts were isolated for histopathological and immunohistochemical analysis. Liraglutide reduced isoprenaline-induced cardiomyocyte apoptosis by decreasing cleaved caspase-3 (CC3), BCL-2-associated X protein (BAX), and NF-κB and increasing B-cell lymphoma/leukemia-2 (BCL-2). An increase in NF-κB in isoprenaline-treated rats was in positive correlation with proapoptotic markers (BAX and CC3) and in negative correlation with antiapoptotic marker BCL-2. Liraglutide increased BCL-2 and decreased NF-κB, BAX, and CC3, preserving the same correlations of NF-κB to apoptotic markers. It is concluded that liraglutide protects cardiomyocytes against isoprenaline-induced apoptosis in experimental TT-like myocardial injury through downregulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Zorislava Bajic
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina;
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
| | - Tanja Sobot
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina;
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
| | - Ljiljana Amidzic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
- Department of Biology of Cell and Human Genetics, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| | - Natasa Vojinovic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
- Department of Biology of Cell and Human Genetics, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| | - Sanja Jovicic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
- Department of Histology and Embryology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| | - Milica Gajic Bojic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| | - Dragan M. Djuric
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Milos P. Stojiljkovic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| | - Sergey Bolevich
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov, 119435 Moscow, Russia;
| | - Ranko Skrbic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.); (S.J.); (M.G.B.); (M.P.S.); (R.S.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov, 119435 Moscow, Russia;
| |
Collapse
|
13
|
Barile L, Marbán E. Injury minimization after myocardial infarction: focus on extracellular vesicles. Eur Heart J 2024; 45:1602-1609. [PMID: 38366191 PMCID: PMC11491278 DOI: 10.1093/eurheartj/ehae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Despite improvements in clinical outcomes following acute myocardial infarction, mortality remains high, especially in patients with severely reduced left ventricular ejection fraction (LVEF <30%), emphasizing the need for effective cardioprotective strategies adjunctive to recanalization. Traditional cell therapy has shown equivocal success, shifting the focus to innovative cardioactive biologicals and cell mimetic therapies, particularly extracellular vesicles (EVs). EVs, as carriers of non-coding RNAs and other essential biomolecules, influence neighbouring and remote cell function in a paracrine manner. Compared to cell therapy, EVs possess several clinically advantageous traits, including stability, ease of storage (enabling off-the-shelf clinical readiness), and decreased immunogenicity. Allogeneic EVs from mesenchymal and/or cardiac stromal progenitor cells demonstrate safety and potential efficacy in preclinical settings. This review delves into the translational potential of EV-based therapeutic approaches, specifically highlighting findings from large-animal studies, and offers a synopsis of ongoing early-stage clinical trials in this domain.
Collapse
Affiliation(s)
- Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500, Bellinzona, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana, CH-6900 Lugano, Switzerland
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
14
|
Wang X, Du W, Li Y, Yang HH, Zhang Y, Akbar R, Morgan H, Peng T, Chen J, Sadayappan S, Hu YC, Fan Y, Huang W, Fan GC. Macrophage-enriched Sectm1a promotes efficient efferocytosis to attenuate ischemia/reperfusion-induced cardiac injury. JCI Insight 2024; 9:e173832. [PMID: 38456501 PMCID: PMC10972593 DOI: 10.1172/jci.insight.173832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Efficient clearance and degradation of apoptotic cardiomyocytes by macrophages (collectively termed efferocytosis) is critical for inflammation resolution and restoration of cardiac function after myocardial ischemia/reperfusion (I/R). Here, we define secreted and transmembrane protein 1a (Sectm1a), a cardiac macrophage-enriched gene, as a modulator of macrophage efferocytosis in I/R-injured hearts. Upon myocardial I/R, Sectm1a-KO mice exhibited impaired macrophage efferocytosis, leading to massive accumulation of apoptotic cardiomyocytes, cardiac inflammation, fibrosis, and consequently, exaggerated cardiac dysfunction. By contrast, therapeutic administration of recombinant SECTM1A protein significantly enhanced macrophage efferocytosis and improved cardiac function. Mechanistically, SECTM1A could elicit autocrine effects on the activation of glucocorticoid-induced TNF receptor (GITR) at the surface of macrophages, leading to the upregulation of liver X receptor α (LXRα) and its downstream efferocytosis-related genes and lysosomal enzyme genes. Our study suggests that Sectm1a-mediated activation of the Gitr/LXRα axis could be a promising approach to enhance macrophage efferocytosis for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
| | - Wa Du
- Department of Cancer Biology, and
| | - Yutian Li
- Department of Pharmacology and Systems Physiology
| | - Hui-Hui Yang
- Department of Pharmacology and Systems Physiology
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology
| | - Hannah Morgan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tianqing Peng
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Jing Chen
- Division of Biomedical Informatics and
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Facility, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Wei Huang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
15
|
Stougiannou TM, Christodoulou KC, Dimarakis I, Mikroulis D, Karangelis D. To Repair a Broken Heart: Stem Cells in Ischemic Heart Disease. Curr Issues Mol Biol 2024; 46:2181-2208. [PMID: 38534757 PMCID: PMC10969169 DOI: 10.3390/cimb46030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Despite improvements in contemporary medical and surgical therapies, cardiovascular disease (CVD) remains a significant cause of worldwide morbidity and mortality; more specifically, ischemic heart disease (IHD) may affect individuals as young as 20 years old. Typically managed with guideline-directed medical therapy, interventional or surgical methods, the incurred cardiomyocyte loss is not always completely reversible; however, recent research into various stem cell (SC) populations has highlighted their potential for the treatment and perhaps regeneration of injured cardiac tissue, either directly through cellular replacement or indirectly through local paracrine effects. Different stem cell (SC) types have been employed in studies of infarcted myocardium, both in animal models of myocardial infarction (MI) as well as in clinical studies of MI patients, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), Muse cells, multipotent stem cells such as bone marrow-derived cells, mesenchymal stem cells (MSCs) and cardiac stem and progenitor cells (CSC/CPCs). These have been delivered as is, in the form of cell therapies, or have been used to generate tissue-engineered (TE) constructs with variable results. In this text, we sought to perform a narrative review of experimental and clinical studies employing various stem cells (SC) for the treatment of infarcted myocardium within the last two decades, with an emphasis on therapies administered through thoracic incision or through percutaneous coronary interventions (PCI), to elucidate possible mechanisms of action and therapeutic effects of such cell therapies when employed in a surgical or interventional manner.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (D.M.); (D.K.)
| | - Konstantinos C. Christodoulou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (D.M.); (D.K.)
| | - Ioannis Dimarakis
- Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, WA 98195, USA;
| | - Dimitrios Mikroulis
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (D.M.); (D.K.)
| | - Dimos Karangelis
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (D.M.); (D.K.)
| |
Collapse
|
16
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
17
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate- and immunomagnetic-purified hiPSC-derived cardiomyocytes generate comparable engineered cardiac tissue constructs. JCI Insight 2024; 9:e172168. [PMID: 37988170 PMCID: PMC10906451 DOI: 10.1172/jci.insight.172168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. Global proteomics revealed that lactate-purified hiPSC-CMs displayed a differential phenotype over MACS hiPSC-CMs. hiPSC-CMs were then integrated into 3D hiPSC-ECTs and cultured for 4 weeks. Structurally, there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force and Ca2+ transient measurements revealed similar functional performance between purification methods. High-resolution mass spectrometry-based quantitative proteomics showed no significant difference in protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates that lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable structural, functional, and proteomic features, and it suggests that lactate purification does not result in an irreversible change in a hiPSC-CM phenotype.
Collapse
Affiliation(s)
- Kalina J. Rossler
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | | | | | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Timothy J. Kamp
- Department of Cell and Regenerative Biology
- Department of Medicine
| | | | - Ying Ge
- Department of Cell and Regenerative Biology
- Department of Chemistry, and
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Córdova-Aquino J, Medellín-Castillo HI. Assessment of the elastic stiffness of human cardiac fibres after an apical infarction using finite element simulation. Proc Inst Mech Eng H 2023; 237:1261-1274. [PMID: 37865815 DOI: 10.1177/09544119231204184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Several research works in the literature have focused on understanding the post-infarction ventricular remodelling phenomenon, but few works have considered the evaluation of the elastic behaviour of the cardiac tissue after a myocardial infarction. This paper presents an investigation focused on predicting the elastic performance of the human heart after a left ventricular apical infarction. The aim is to understand the elastic alterations of the cardiac fibres at different periods after an apical infarct. For this purpose, a hybrid method based on pressure and volume measurements of the left ventricle (LV) at different periods of ventricular remodelling, and the Finite Element Method (FEM), is developed. In addition, several performance indexes are defined to evaluate the heart performance during the ventricular remodelling process. The results show that during the first 2 weeks after a heart infarction, the cardiac fibres must support a much higher structural overload than during normal conditions. This structural overload is proportional to the aneurysm size but diminishes with the time, together with a significant reduction of the ventricular pumping capacity.
Collapse
|
19
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Salvatori F, D’Aversa E, Serino ML, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. miRNAs Epigenetic Tuning of Wall Remodeling in the Early Phase after Myocardial Infarction: A Novel Epidrug Approach. Int J Mol Sci 2023; 24:13268. [PMID: 37686073 PMCID: PMC10487654 DOI: 10.3390/ijms241713268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in Western countries. An early diagnosis decreases subsequent severe complications such as wall remodeling or heart failure and improves treatments and interventions. Novel therapeutic targets have been recognized and, together with the development of direct and indirect epidrugs, the role of non-coding RNAs (ncRNAs) yields great expectancy. ncRNAs are a group of RNAs not translated into a product and, among them, microRNAs (miRNAs) are the most investigated subgroup since they are involved in several pathological processes related to MI and post-MI phases such as inflammation, apoptosis, angiogenesis, and fibrosis. These processes and pathways are finely tuned by miRNAs via complex mechanisms. We are at the beginning of the investigation and the main paths are still underexplored. In this review, we provide a comprehensive discussion of the recent findings on epigenetic changes involved in the first phases after MI as well as on the role of the several miRNAs. We focused on miRNAs function and on their relationship with key molecules and cells involved in healing processes after an ischemic accident, while also giving insight into the discrepancy between males and females in the prognosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Maria Luisa Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Giorgio Zauli
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
22
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
23
|
Saemann L, Georgevici AI, Hoorn F, Gharpure N, Veres G, Korkmaz-Icöz S, Karck M, Simm A, Wenzel F, Szabó G. Improving Diastolic and Microvascular Function in Heart Transplantation with Donation after Circulatory Death. Int J Mol Sci 2023; 24:11562. [PMID: 37511318 PMCID: PMC10380662 DOI: 10.3390/ijms241411562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The impact of the machine perfusion of donation after circulatory death (DCD) hearts with the novel Custodiol-N solution on diastolic and coronary microvascular dysfunction is unknown. Porcine DCD-hearts were maintained four hours by perfusion with normothermic blood (DCD-B), hypothermic Custodiol (DCD-C), or Custodiol-N (DCD-CN), followed by one hour of reperfusion with fresh blood, including microvascular and contractile evaluation. In another group (DCD group), one hour of reperfusion, including microvascular and contractile evaluation, was performed without a previous maintenance period (all groups N = 5). We measured diastolic function with a balloon catheter and microvascular perfusion by Laser-Doppler-Technology, resulting in Laser-Doppler-Perfusion (LDP). We performed immunohistochemical staining and gene expression analysis. The developed pressure was improved in DCD-C and DCD-CN. The diastolic pressure decrement (DCD-C: -1093 ± 97 mmHg/s; DCD-CN: -1703 ± 329 mmHg/s; DCD-B: -690 ± 97 mmHg/s; p < 0.05) and relative LDP (DCD-CN: 1.42 ± 0.12; DCD-C: 1.11 ± 0.13; DCD-B: 1.22 ± 0.27) were improved only in DCD-CN. In DCD-CN, the expression of eNOS increased, and ICAM and VCAM decreased. Only in DCD-B compared to DCD, the pathways involved in complement and coagulation cascades, focal adhesion, fluid shear stress, and the IL-6 and IL-17 pathways were upregulated. In conclusion, machine perfusion with Custodiol-N improves diastolic and microvascular function and preserves the microvascular endothelium of porcine DCD-hearts.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Adrian-Iustin Georgevici
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Department of Anaesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Fabio Hoorn
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Faculty Medical and Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Nitin Gharpure
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
| | - Gábor Veres
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
| | - Folker Wenzel
- Faculty Medical and Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Dokuchaev A, Chumarnaya T, Bazhutina A, Khamzin S, Lebedeva V, Lyubimtseva T, Zubarev S, Lebedev D, Solovyova O. Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy. Front Physiol 2023; 14:1162520. [PMID: 37497440 PMCID: PMC10367108 DOI: 10.3389/fphys.2023.1162520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: The 30-50% non-response rate to cardiac resynchronization therapy (CRT) calls for improved patient selection and optimized pacing lead placement. The study aimed to develop a novel technique using patient-specific cardiac models and machine learning (ML) to predict an optimal left ventricular (LV) pacing site (ML-PS) that maximizes the likelihood of LV ejection fraction (LVEF) improvement in a given CRT candidate. To validate the approach, we evaluated whether the distance DPS between the clinical LV pacing site (ref-PS) and ML-PS is associated with improved response rate and magnitude. Materials and methods: We reviewed retrospective data for 57 CRT recipients. A positive response was defined as a more than 10% LVEF improvement. Personalized models of ventricular activation and ECG were created from MRI and CT images. The characteristics of ventricular activation during intrinsic rhythm and biventricular (BiV) pacing with ref-PS were derived from the models and used in combination with clinical data to train supervised ML classifiers. The best logistic regression model classified CRT responders with a high accuracy of 0.77 (ROC AUC = 0.84). The LR classifier, model simulations and Bayesian optimization with Gaussian process regression were combined to identify an optimal ML-PS that maximizes the ML-score of CRT response over the LV surface in each patient. Results: The optimal ML-PS improved the ML-score by 17 ± 14% over the ref-PS. Twenty percent of the non-responders were reclassified as positive at ML-PS. Selection of positive patients with a max ML-score >0.5 demonstrated an improved clinical response rate. The distance DPS was shorter in the responders. The max ML-score and DPS were found to be strong predictors of CRT response (ROC AUC = 0.85). In the group with max ML-score > 0.5 and DPS< 30 mm, the response rate was 83% compared to 14% in the rest of the cohort. LVEF improvement in this group was higher than in the other patients (16 ± 8% vs. 7 ± 8%). Conclusion: A new technique combining clinical data, personalized heart modelling and supervised ML demonstrates the potential for use in clinical practice to assist in optimizing patient selection and predicting optimal LV pacing lead position in HF candidates for CRT.
Collapse
Affiliation(s)
- Arsenii Dokuchaev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Tatiana Chumarnaya
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Anastasia Bazhutina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Svyatoslav Khamzin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | | | - Tamara Lyubimtseva
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Stepan Zubarev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitry Lebedev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Solovyova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
25
|
Haider KH, Alshoabi SA, Alharbi IA, Gameraddin M, Abdulaal OM, Gareeballah A, Alsharif WM, Alhazmi FH, Qurashi AA, Aloufi KM, Sayed AI. Clinical presentation and angiographic findings of acute myocardial infarction in young adults in Jazan region. BMC Cardiovasc Disord 2023; 23:302. [PMID: 37328747 PMCID: PMC10273592 DOI: 10.1186/s12872-023-03335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND There is a paucity of information about the clinical features and angiographic findings in young patients with acute myocardial infarction (MI), especially in the Arab Peninsula countries. OBJECTIVE The aim of this study was to assess the proposed risk factors, clinical presentation, and angiographic findings of acute myocardial infarction in young adults. METHODS This prospective study included young (range, 18 to 45 years) patients who presented with acute MI based on clinical evaluation, laboratory investigation, and electrocardiogram, and they underwent a coronary angiography procedure. KEY FINDINGS Data of 109 patients with a diagnosis of acute MI were collected. Patients' mean age was 39.98 ± 7.52 years (range, 31 to 45 years), and 92.7% (101) were male. Smoking was the highest risk factor in 67% of patients, obesity and overweight in 66%, sedentary lifestyle in 64%, dyslipidaemia in 33%, and hypertension in 28%. Smoking was the most common risk factor for acute MI in males (p = 0.009), whereas sedentary lifestyle was the most common risk factor in females (p = 0.028). Chest pain typical of acute MI was the most common presenting symptom in 96% of patients (p < 0.001). On admission, 96% of patients were conscious, and 95% were oriented. On angiography, the left anterior descending artery (LAD) was affected in 57%, the right coronary artery (RCA) was affected in 42%, and the left circumflex artery (LCX) was affected in 32% of patients. The LAD was severely affected in 44%, the RCA was severely affected in 25.7%, and the LCX was severely affected in 19.26% of patients (p < 0.001). CONCLUSION Smoking, obesity, sedentary lifestyle, dyslipidaemia, and hypertension were the most common risk factors for acute MI. Smoking was the most common risk factor in males and sedentary lifestyle in females. The LAD was the most commonly affected coronary artery, followed by the RCA and LCX arteries, with the same order for severity of stenosis.
Collapse
Affiliation(s)
- Kamel H Haider
- Cardiology Department, Cardiac Center, Prince Mohammed Bin Nasser Hospital, Jazan, Kingdom of Saudi Arabia
| | - Sultan Abdulwadoud Alshoabi
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Ibrahim A Alharbi
- Cardiology Department, Cardiac Center, Prince Mohammed Bin Nasser Hospital, Jazan, Kingdom of Saudi Arabia
| | - Moawia Gameraddin
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia.
| | - Osamah M Abdulaal
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Awadia Gareeballah
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Walaa M Alsharif
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Fahad H Alhazmi
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Abdualziz A Qurashi
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Khalid M Aloufi
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Ahmed I Sayed
- Internal Medicine Department, University of Jazan, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
27
|
Alshoubaki YK, Lu YZ, Legrand JMD, Karami R, Fossat M, Salimova E, Julier Z, Martino MM. A superior extracellular matrix binding motif to enhance the regenerative activity and safety of therapeutic proteins. NPJ Regen Med 2023; 8:25. [PMID: 37217533 DOI: 10.1038/s41536-023-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Among therapeutic proteins, cytokines and growth factors have great potential for regenerative medicine applications. However, these molecules have encountered limited clinical success due to low effectiveness and major safety concerns, highlighting the need to develop better approaches that increase efficacy and safety. Promising approaches leverage how the extracellular matrix (ECM) controls the activity of these molecules during tissue healing. Using a protein motif screening strategy, we discovered that amphiregulin possesses an exceptionally strong binding motif for ECM components. We used this motif to confer the pro-regenerative therapeutics platelet-derived growth factor-BB (PDGF-BB) and interleukin-1 receptor antagonist (IL-1Ra) a very high affinity to the ECM. In mouse models, the approach considerably extended tissue retention of the engineered therapeutics and reduced leakage in the circulation. Prolonged retention and minimal systemic diffusion of engineered PDGF-BB abolished the tumour growth-promoting adverse effect that was observed with wild-type PDGF-BB. Moreover, engineered PDGF-BB was substantially more effective at promoting diabetic wound healing and regeneration after volumetric muscle loss, compared to wild-type PDGF-BB. Finally, while local or systemic delivery of wild-type IL-1Ra showed minor effects, intramyocardial delivery of engineered IL-1Ra enhanced cardiac repair after myocardial infarction by limiting cardiomyocyte death and fibrosis. This engineering strategy highlights the key importance of exploiting interactions between ECM and therapeutic proteins for developing effective and safer regenerative therapies.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Rezvan Karami
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Mathilde Fossat
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Victorian Heart Institute, Monash University, Clayton, VIC, 3800, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate and Immunomagnetic-purified iPSC-derived Cardiomyocytes Generate Comparable Engineered Cardiac Tissue Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539642. [PMID: 37205556 PMCID: PMC10187273 DOI: 10.1101/2023.05.05.539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. After purification, hiPSC-CMs were combined with hiPSC-cardiac fibroblasts to create 3D hiPSC-ECT constructs maintained in culture for four weeks. There were no structural differences observed, and there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force, Ca 2+ transients, and β-adrenergic response revealed similar functional performance between purification methods. High-resolution mass spectrometry (MS)-based quantitative proteomics showed no significant difference in any protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable molecular and functional properties, and suggests lactate purification does not result in an irreversible change in hiPSC-CM phenotype.
Collapse
|
29
|
Sridharan D, Pracha N, Rana SJ, Ahmed S, Dewani AJ, Alvi SB, Mergaye M, Ahmed U, Khan M. Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of hiPSC-Derived Cardiomyocytes. Cells 2023; 12:cells12071090. [PMID: 37048163 PMCID: PMC10093073 DOI: 10.3390/cells12071090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses, or transplants are beneficial but with many limitations, and may decrease the overall life expectancy due to related complications. In recent years, with the advent of human induced pluripotent stem cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising candidates, their translatability for clinical applications has been hindered due to poor preclinical reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates, have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive literature review was essential to elucidate the factors affecting the reproducibility and translatability of large animal models. In this review article, we have discussed different animal models available for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly translatable porcine MI model.
Collapse
Affiliation(s)
- Divya Sridharan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nooruddin Pracha
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Schaza Javed Rana
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA 30501, USA
| | - Salmman Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA 16509, USA
| | - Anam J Dewani
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Syed Baseeruddin Alvi
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Uzair Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Wang IC, Lin JH, Lee WS, Liu CH, Lin TY, Yang KT. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol 2023; 375:74-86. [PMID: 36513286 DOI: 10.1016/j.ijcard.2022.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) is associated with severe cellular damage and death. Ferroptosis, a new form of regulated cell death caused by the accumulation of iron-mediated lipid peroxidation, has been found in several diseases including I/R injury, which was reported to be suppressed by flavonoids. Baicalein (BAI) and luteolin (Lut) are flavonoids and were shown to reduce the myocardial I/R injury. BAI was found to suppress ferroptosis in cancer cells via reducing reactive oxygen species (ROS) generation. However, the anti-ferroptosis effect of Lut on ferroptosis has not been reported. This study aimed to investigate whether ferroptosis reduction contributes to the BAI- and Lut-protected cardiomyocytes. METHODS This research used erastin, RSL3, and Fe-SP to induce ferroptosis. Cell viability was examined using MTT assay. Annexin V-FITC, CM-H2DCFDA, and Phen Green SK diacetate (PGSK) fluorescent intensity were detected to analyze apoptotsis, ROS levels, and Fe2+ concentrations, respectively. qPCR and Western blot analysis were conducted to detect the levels of mRNA and protein, respectively. RESULTS Our data show that BAI and Lut protected cardiomyocytes against ferroptosis caused by ferroptosis inducers and I/R. Moreover, both BAI and Lut decreased ROS and malondialdehyde (MDA) generation and the protein levels of ferroptosis markers, and restored Glutathione peroxidase 4 (GPX4) protein levels in cardiomyocytes reduced by ferroptosis inducers. BAI and Lut reduced the I/R-induced myocardium infarction and decreased the levels of Acsl4 and Ptgs2 mRNA. CONCLUSIONS BAI and Lut could protect the cardiomyocytes against the I/R-induced ferroptosis via suppressing accumulation of ROS and MDA.
Collapse
Affiliation(s)
- I-Chieh Wang
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| | - Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, Taiwan.
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei 110301, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| | - Chin-Hung Liu
- Department of Pharmacology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| | - Ting-Yuan Lin
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Renai Branch, No. 10, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei 10341, Taiwan.
| | - Kun-Ta Yang
- Department of Physiology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| |
Collapse
|
31
|
Garlapati V, Molitor M, Michna T, Harms GS, Finger S, Jung R, Lagrange J, Efentakis P, Wild J, Knorr M, Karbach S, Wild S, Vujacic-Mirski K, Münzel T, Daiber A, Brandt M, Gori T, Milting H, Tenzer S, Ruf W, Wenzel P. Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1-driven fibrotic remodeling in ischemic heart failure. J Clin Invest 2023; 133:156436. [PMID: 36548062 PMCID: PMC9927945 DOI: 10.1172/jci156436] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Despite major advances in acute interventions for myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis after MI causing ischemic heart failure (IHF) remain a leading cause of death worldwide. Here we identify a profibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phosphoproteomics of cardiac tissue revealed an upregulated mitogen-activated protein kinase (MAPK) pathway in human IHF. Intervention in this pathway with trametinib improves myocardial function and prevents fibrotic remodeling in a murine model of non-reperfused MI. MAPK activation in MI requires myeloid cell signaling of protease-activated receptor 2 linked to the cytoplasmic domain of the coagulation initiator tissue factor (TF). They act upstream of pro-oxidant NOX2 NADPH oxidase, ERK1/2 phosphorylation, and activation of profibrotic TGF-β1. Specific targeting with the TF inhibitor nematode anticoagulant protein c2 (NAPc2) starting 1 day after established experimental MI averts IHF. Increased TF cytoplasmic domain phosphorylation in circulating monocytes from patients with subacute MI identifies a potential thromboinflammatory biomarker reflective of increased risk for IHF and suitable for patient selection to receive targeted TF inhibition therapy.
Collapse
Affiliation(s)
- Venkata Garlapati
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Michael Molitor
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Michna
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Gregory S Harms
- Cell Biology Unit, University Medical Center Mainz, Mainz, Germany and.,Departments of Biology and Physics, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,Institute for Molecular Medicine, University Medical Center Mainz, Mainz, Germany
| | | | | | - Johannes Wild
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Maike Knorr
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Susanne Karbach
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sabine Wild
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Moritz Brandt
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Tommaso Gori
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Hendrik Milting
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Germany and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
32
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
33
|
Yao M, Wang J, Zhang J, Guo Y, Ni Z, Jia X, Feng H. Asiaticoside attenuates oxygen-glucose deprivation/reoxygenation-caused injury of cardiomyocytes by inhibiting autophagy. J Appl Toxicol 2022; 43:789-798. [PMID: 36523111 DOI: 10.1002/jat.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Asiaticoside is a natural triterpene compound derived from Centella asiatica, possessing confirmed cardioprotective property. However, the roles of asiaticoside in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-caused cardiomyocyte dysfunction remain largely obscure. Human cardiomyocyte AC16 cells were stimulated with OGD/R to mimic myocardial ischemia/reperfusion injury and treated with asiaticoside. Cytotoxicity was investigated by CCK-8 assay and lactate dehydrogenase (LDH) release analysis. Autophagy- and Wnt/β-catenin signaling-related protein levels were measured via western blotting. Asiaticoside (0-20 μM) did not induce cardiomyocyte cytotoxicity. Asiaticoside (20 μM) mitigated OGD/R-induced autophagy, cytotoxicity, oxidative stress, and myocardial injury. Rapamycin, an autophagy inductor, reversed the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury, whereas 3-methyadanine, an autophagy inhibitor, played an opposite effect. Asiaticoside (20 μM) attenuated OGD/R-induced Wnt/β-catenin signaling inactivation, which was reversed after transfection with si-β-catenin. Transfection with si-β-catenin attenuated the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury. In conclusion, asiaticoside protected against OGD/R-induced cardiomyocyte cytotoxicity, oxidative stress, and myocardial injury via blunting autophagy through activating the Wnt/β-catenin signaling, indicating the therapeutic potential of asiaticoside in myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Mingyan Yao
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China.,Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jie Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yifang Guo
- Cardiology Division in Geriatric Institute, Hebei Provincial People's Hospital, Shijiazhuang, China
| | - Zhiyu Ni
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xinwei Jia
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Huiping Feng
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
34
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
35
|
Zhao X, Zhao X, Jin F, Wang L, Zhang L. Prognostic Value of
Cardiac‐MRI
Scar Heterogeneity Combined With Left Ventricular Strain in Patients With Myocardial Infarction. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiaoying Zhao
- Department of Radiology The Second Affiliated Hospital of Kunming Medical University Kunming China
| | - Xinxiang Zhao
- Department of Radiology The Second Affiliated Hospital of Kunming Medical University Kunming China
| | - Fuwei Jin
- Department of Radiology The Second Affiliated Hospital of Kunming Medical University Kunming China
| | - Lujing Wang
- Department of Radiology The Second Affiliated Hospital of Kunming Medical University Kunming China
| | - Li Zhang
- Department of Radiology The Second Affiliated Hospital of Kunming Medical University Kunming China
| |
Collapse
|
36
|
Meng T, Wang P, Ding J, Du R, Gao J, Li A, Yu S, Liu J, Lu X, He Q. Global Research Trends on Ventricular Remodeling: A Bibliometric Analysis From 2012 to 2022. Curr Probl Cardiol 2022; 47:101332. [PMID: 35870550 DOI: 10.1016/j.cpcardiol.2022.101332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Ventricular remodeling is the progressive pathologic change of the original substance and morphology of the ventricle caused by various injuries and has attracted increasing attention in the past decade. This study aims to conduct a bibliometric analysis of articles on ventricular remodeling published in the Web of Science Core Collection database from 2012 to 2022 to understand the current research state in the field of ventricular remodeling and provide insights for clinicians and researchers. As a result, a total of 1710 articles on ventricular remodeling were included. Annual publications have been gradually increasing and have remained at a high level over the past 10 years. The United States of America contributed the most publications, followed by China. Circulation was the most mainstream and authoritative journal focusing on ventricular remodeling. Research hotspot analysis suggested that myocardial infarction was the primary risk factor for ventricular remodeling, and emerging risk factor studies have focused on pulmonary hypertension, aortic stenosis, and diabetes. The mechanisms in the pathogenesis of ventricular remodeling were mainly closely associated with inflammation, apoptosis, oxidative stress, and myocardial fibrosis. Intensive investigation of the interactions between different mechanisms might be a future research direction. In terms of treatment, cardiac resynchronization therapy was a hot topic of research. These findings can help researchers grasp the research status of ventricular remodeling and determine future research directions.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Wang
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruolin Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anqi Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Yu
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jin Liu
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinyu Lu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
37
|
Cellular senescence in ischemia/reperfusion injury. Cell Death Dis 2022; 8:420. [PMID: 36253355 PMCID: PMC9576687 DOI: 10.1038/s41420-022-01205-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
Ischemia/reperfusion (IR) injury, a main reason of mortality and morbidity worldwide, occurs in many organs and tissues. As a result of IR injury, senescent cells can accumulate in multiple organs. Increasing evidence shows that cellular senescence is the underlying mechanism that transforms an acute organ injury into a chronic one. Several recent studies suggest senescent cells can be targeted for the prevention or elimination of acute and chronic organ injury induced by IR. In this review, we concisely introduce the underlying mechanism and the pivotal role of premature senescence in the transition from acute to chronic IR injuries. Special focus is laid on recent advances in the mechanisms as well as on the basic and clinical research, targeting cellular senescence in multi-organ IR injuries. Besides, the potential directions in this field are discussed in the end. Together, the recent advances reviewed here will act as a comprehensive overview of the roles of cellular senescence in IR injury, which could be of great significance for the design of related studies, or as a guide for potential therapeutic target.
Collapse
|
38
|
Simvastatin-loaded nano-niosomes efficiently downregulates the MAPK-NF-κB pathway during the acute phase of myocardial ischemia-reperfusion injury. Mol Biol Rep 2022; 49:10377-10385. [PMID: 36097124 DOI: 10.1007/s11033-022-07891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Simvastatin can potentially mitigate acute inflammatory phase of myocardial ischemia-reperfusion injury. However, these effects negatively influenced by its poor bioavailability, low water solubility and high metabolism. Here, we investigated the effects of SIM-loaded nano-niosomes on a rat model of MI/R injury to find a drug delivery method to tackle the barriers. METHODS Nano-niosomes' characteristics were identified using dynamic light scattering and transmission electron microscopy. Fifty male Wistar rats were divided into five groups: Sham; MI/R; MI/R + nano-niosome; MI/R + SIM; MI/R + SIM-loaded nano-niosomes. Left anterior descending artery was ligated for 45 min, and 3 mg/kg SIM, nano-niosomes, or SIM-loaded nano-niosomes was intramyocardially injected ten min before the onset of reperfusion. ELISA assay was used to assess cardiac injury markers (cTnI, CK-MB) and inflammatory cytokines (TNF-α, IL-6, TGF-β, MPC-1). Expression level of MAPK-NF-κB and histopathological changes were evaluated by western blot and hematoxylin & eosin staining, respectively. RESULTS the size of nano-niosome was 137 nm, reached to 163 nm when simvastatin was loaded. To achieve optimized niosomes span 80, a drug/cholesterol ratio of 0.4 and seven min of sonication time was applied. Optimized entrapment efficiency of SIM-loaded nano-niosomes was 98.21%. Inflammatory cytokines and the expression level of MAPK and NF-κB were reduced in rats receiving SIM-loaded nano-niosomes compared to MI/R + SIM and MI/R + SIM-loaded nano-niosomes. CONCLUSION Our results showed that SIM-loaded nano-niosomes could act more efficiently than SIM in alleviating the acute inflammatory response of reperfusion injury via downregulating the activation of MAPK-NF-κB.
Collapse
|
39
|
Lazzarini E, Lodrini AM, Arici M, Bolis S, Vagni S, Panella S, Rendon-Angel A, Saibene M, Metallo A, Torre T, Vassalli G, Ameri P, Altomare C, Rocchetti M, Barile L. Stress-induced premature senescence is associated with a prolonged QT interval and recapitulates features of cardiac aging. Theranostics 2022; 12:5237-5257. [PMID: 35836799 PMCID: PMC9274748 DOI: 10.7150/thno.70884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Aging in the heart is a gradual process, involving continuous changes in cardiovascular cells, including cardiomyocytes (CMs), namely cellular senescence. These changes finally lead to adverse organ remodeling and resulting in heart failure. This study exploits CMs from human induced pluripotent stem cells (iCMs) as a tool to model and characterize mechanisms involved in aging. Methods and Results: Human somatic cells were reprogrammed into human induced pluripotent stem cells and subsequently differentiated in iCMs. A senescent-like phenotype (SenCMs) was induced by short exposure (3 hours) to doxorubicin (Dox) at the sub-lethal concentration of 0.2 µM. Dox treatment induced expression of cyclin-dependent kinase inhibitors p21 and p16, and increased positivity to senescence-associated beta-galactosidase when compared to untreated iCMs. SenCMs showed increased oxidative stress, alteration in mitochondrial morphology and depolarized mitochondrial membrane potential, which resulted in decreased ATP production. Functionally, when compared to iCMs, SenCMs showed, prolonged multicellular QTc and single cell APD, with increased APD variability and delayed afterdepolarizations (DADs) incidence, two well-known arrhythmogenic indexes. These effects were largely ascribable to augmented late sodium current (INaL) and reduced delayed rectifier potassium current (Ikr). Moreover sarcoplasmic reticulum (SR) Ca2+ content was reduced because of downregulated SERCA2 and increased RyR2-mediated Ca2+ leak. Electrical and intracellular Ca2+ alterations were mostly justified by increased CaMKII activity in SenCMs. Finally, SenCMs phenotype was furtherly confirmed by analyzing physiological aging in CMs isolated from old mice in comparison to young ones. Conclusions: Overall, we showed that SenCMs recapitulate the phenotype of aged primary CMs in terms of senescence markers, electrical and Ca2+ handling properties and metabolic features. Thus, Dox-induced SenCMs can be considered a novel in vitro platform to study aging mechanisms and to envision cardiac specific anti-aging approach in humans.
Collapse
Affiliation(s)
- Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sara Vagni
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Azucena Rendon-Angel
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessia Metallo
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Tiziano Torre
- Department of Cardiac Surgery Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico, Genova, Italy.,Department of Internal Medicine, University of Genova, Genova, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| |
Collapse
|
40
|
Xu C, Jia Z, Cao X, Wang S, Wang J, an L. Hsa_circ_0007059 promotes apoptosis and inflammation in cardiomyocytes during ischemia by targeting microRNA-378 and microRNA-383. Cell Cycle 2022; 21:1003-1019. [PMID: 35192424 PMCID: PMC9037457 DOI: 10.1080/15384101.2022.2040122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are associated with not only normal physiological functions but also various diseases, including cardiac diseases such as myocardial infarction (MI). The present study explored the potential role of circRNA_0007059 (circ_0007059) during MI pathogenesis using in vitro studies. Microarray and quantitative PCR analyses demonstrated elevated circ_0007059 expression and downregulated miR-378 and miR-383 expression in H2O2-treated mice cardiomyocytes and infarcted hearts of MI mouse model as compared those in relevant controls. Moreover, circ_0007059 knockdown improved cardiomyocyte viability after H2O2 treatment as revealed by the CCK-8 and colony formation assays. Flow cytometry and caspase activity assays demonstrated that circ_0007059 suppressed H2O2-induced cardiomyocyte apoptosis. Enzyme-linked immunosorbent assays and Western blotting revealed that inflammatory cytokine (interleukin-1β, interleukin-18 and C-C motif chemokine ligand 5) expression was induced by H2O2 treatment and that circ_0007059 repressed H2O2-induced inflammation. Bioinformatics analyses and dual-luciferase reporter assays showed that circ_0000759 acts as a miR-378 and miR-383 sponge. Furthermore, the upregulation or suppression of miR-378 and miR-383 expression in H2O2-treated cardiomyocytes had similar effects on the apoptosis and inflammation of cardiomyocytes as that of circ_0007059 knockdown or overexpression, respectively. Additionally, lentiviral shRNA-circ_0007059 administration to mice with MI considerably reduced the size of infarcted regions and promoted cardiac activity. Collectively, our findings suggest that circ_0007059 expression is upregulated in mice cardiomyocytes in response to oxidative stress and cardiac tissues of MI mouse model, suggesting its involvement in the pathogenesis of MI by targeting miR-378 and miR-383.
Collapse
Affiliation(s)
- Chaorui Xu
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zhuowen Jia
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Xuefei Cao
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Sha Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jipeng Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Liping an
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China,CONTACT Liping An Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, No. 82 Zhongshan Road, Xiangfang District, Harbin, Heilongjiang150036, China
| |
Collapse
|
41
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
42
|
Tolomeo AM, Fabozzo A, Malvicini R, De Lazzari G, Bisaccia P, Gaburro G, Arcidiacono D, Notarangelo D, Caicci F, Zanella F, Marchesan M, Yannarelli G, Santovito G, Muraca M, Gerosa G. Temperature-Related Effects of Myocardial Protection Strategies in Swine Hearts after Prolonged Warm Ischemia. Antioxidants (Basel) 2022; 11:antiox11030476. [PMID: 35326125 PMCID: PMC8944743 DOI: 10.3390/antiox11030476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Insufficient supply of cardiac grafts represents a severe obstacle in heart transplantation. Donation after circulatory death (DCD), in addition to conventional donation after brain death, is one promising option to overcome the organ shortage. However, DCD organs undergo an inevitably longer period of unprotected warm ischemia between circulatory arrest and graft procurement. In this scenario, we aim to improve heart preservation after a warm ischemic period of 20 min by testing different settings of myocardial protective strategies. Pig hearts were collected from a slaughterhouse and assigned to one of the five experimental groups: baseline (BL), cold cardioplegia (CC), cold cardioplegia + adenosine (CC-ADN), normothermic cardioplegia (NtC + CC) or normothermic cardioplegia + cold cardioplegia + adenosine (NtC-ADN + CC). After treatment, tissue biopsies were taken to assess mitochondrial morphology, antioxidant enzyme activity, lipid peroxidation and cytokine and chemokine expressions. NtC + CC treatment significantly prevented mitochondria swelling and mitochondrial cristae loss. Moreover, the antioxidant enzyme activity was lower in this group, as was lipid peroxidation, and the pro-inflammatory chemokine GM-CSF was diminished. Finally, we demonstrated that normothermic cardioplegia preserved mitochondria morphology, thus preventing oxidative stress and the subsequent inflammatory response. Therefore, normothermic cardioplegia is a better approach to preserve the heart after a warm ischemia period, with respect to cold cardioplegia, before transplantation.
Collapse
Affiliation(s)
- Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128 Padua, Italy; (A.M.T.); (D.N.); (G.G.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy; (R.M.); (G.D.L.); (M.M.)
| | - Assunta Fabozzo
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy; (R.M.); (G.D.L.); (M.M.)
- Cardiac Surgery Unit, Hospital University of Padova, 35128 Padua, Italy;
- Correspondence: ; Tel.: +39-049-8212413
| | - Ricardo Malvicini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy; (R.M.); (G.D.L.); (M.M.)
- Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy;
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB) CONICET—Universidad Favaloro), Buenos Aires 1078, Argentina;
| | - Giada De Lazzari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy; (R.M.); (G.D.L.); (M.M.)
- Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy;
| | - Paola Bisaccia
- Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy;
| | - Gianluca Gaburro
- Department of Biology, University of Padova, 35128 Padua, Italy; (G.G.); (F.C.); (G.S.)
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Denni Notarangelo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128 Padua, Italy; (A.M.T.); (D.N.); (G.G.)
| | - Federico Caicci
- Department of Biology, University of Padova, 35128 Padua, Italy; (G.G.); (F.C.); (G.S.)
| | - Fabio Zanella
- Cardiac Surgery Unit, Hospital University of Padova, 35128 Padua, Italy;
| | | | - Gustavo Yannarelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB) CONICET—Universidad Favaloro), Buenos Aires 1078, Argentina;
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35128 Padua, Italy; (G.G.); (F.C.); (G.S.)
| | - Maurizio Muraca
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy; (R.M.); (G.D.L.); (M.M.)
- Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy;
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128 Padua, Italy; (A.M.T.); (D.N.); (G.G.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy; (R.M.); (G.D.L.); (M.M.)
- Cardiac Surgery Unit, Hospital University of Padova, 35128 Padua, Italy;
| |
Collapse
|
43
|
Huang W, Huo M, Cheng N, Wang R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front Cardiovasc Med 2022; 8:801077. [PMID: 35127862 PMCID: PMC8814313 DOI: 10.3389/fcvm.2021.801077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.
Collapse
Affiliation(s)
- Weimin Huang
- Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mengen Huo
- Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Nan Cheng
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|