1
|
Yan J, Feng C, Zhang H, Luo T, Chen H, Chen H. Dapagliflozin ameliorates intestinal stem cell aging by regulating the MAPK signaling pathway in Drosophila. Front Cell Dev Biol 2025; 13:1576258. [PMID: 40337552 PMCID: PMC12055793 DOI: 10.3389/fcell.2025.1576258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction Intestinal stem cells (ISCs) possess the ability to self-renew and differentiate, which is essential for maintaining intestinal tissue homeostasis. However, their functionality significantly declines with age, leading to diminished tissue regeneration and an increased risk of age-associated diseases. Methods This study investigates the effects of Dapagliflozin (DAPA), a novel insulin sensitizer and SGLT2 inhibitor, on aging ISCs using the Drosophila melanogaster model. Our findings demonstrate that DAPA can inhibit the MAPK signaling pathway, as confirmed by network pharmacology analysis and molecular docking experiments. Results DAPA ameliorates ISC aging, improves intestinal function (including enhanced fecal excretion, restored intestinal barrier integrity and acid-base balance), and enhances healthspan. These results highlight the potential of DAPA as an anti-aging therapeutic agent. Discussion This study provides new evidence for the application of DAPA as an anti-aging treatment.
Collapse
Affiliation(s)
- Jinhua Yan
- Center of Gerontology and Geriatrics and Laboratory of Metabolism and Aging Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chenxi Feng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hanmei Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Metabolism and Aging Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Metabolism and Aging Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haiou Chen
- Center of Gerontology and Geriatrics and Laboratory of Metabolism and Aging Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Pérez-Flores I, López-Pastor AR, Gómez-Pinedo U, Gómez-Infantes A, Espino-Paisán L, Calvo Romero N, Moreno de la Higuera MA, Rodríguez-Cubillo B, Gómez-Delgado I, Sánchez-Fructuoso AI, Urcelay E. Mitochondrial Changes Induced by SGLT2i in Lymphocytes from Diabetic Kidney Transplant Recipients: A Pilot Study. Int J Mol Sci 2025; 26:3351. [PMID: 40244220 PMCID: PMC11989945 DOI: 10.3390/ijms26073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) preserve cardiac and renal function by mechanisms that are not completely elucidated. Among other things, SGLT2i promote nutrient-deprivation signalling, which might affect the immune function. As the fate of immune cells is controlled by their metabolism, we aimed to study the mitochondrial integrity of lymphocytes isolated from renal transplant recipients with type 2 diabetes (T2D) upon SGLT2i therapy instauration and six-month follow up. In this real-world pilot study, the mitochondrial respiration of isolated peripheral blood mononuclear cells was monitored in a Seahorse XFp extracellular-flux analyzer and cells were photographed with a confocal microscope. Mitochondrial mass, membrane potential, and superoxide content of lymphocyte subpopulations were measured by flow cytometry (MitoTrackerTM Green, TMRM, and MitoSOXTM Red probes). Leveraging in vivo conditions of immune cells, we evaluated their metabolic profiles associated with immune activation. Herein, we identified changes in redox homeostasis with sustained membrane polarization, and an increased mitochondrial biogenesis upon PHA stimulation that significantly correlated with changes in body weight and LDL-cholesterol levels, and a resultant compensatory mitochondrial function of lymphocytes. Our data suggest novel mechanisms induced by SGLT2i to modulate immune cells, which probably underlie the observed beneficial effects in kidney transplant recipients. Nonetheless, further mechanistic studies are required to extend these exploratory findings and encourage the use of this therapeutic strategy.
Collapse
Affiliation(s)
- Isabel Pérez-Flores
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology and Advanced Therapy, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Andrea Gómez-Infantes
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
| | - Laura Espino-Paisán
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
| | - Natividad Calvo Romero
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - M. Angeles Moreno de la Higuera
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Beatriz Rodríguez-Cubillo
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Ana I. Sánchez-Fructuoso
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| |
Collapse
|
3
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2678-2691. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
4
|
Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, Duque-Ossman JJ, Abreu-Lomba A. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs 2024; 24:707-718. [PMID: 39179723 DOI: 10.1007/s40256-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group's mechanism of action.
Collapse
Affiliation(s)
- David Aristizábal-Colorado
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico
| | - Martín Ocampo-Posada
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Faculty of Health, Pontificia Universidad Javeriana, Cali, Colombia
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Universidad Javeriana, Cali, Colombia
| | - Wilfredo Antonio Rivera-Martínez
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Department of Endocrinology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - David Corredor-Rengifo
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
| | - Jorge Rico-Fontalvo
- Department of Nephrology. Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
- Latin American Society of Nephrology and Arterial Hypertension (SLANH), Panama City, Panamá
| | - Juan Esteban Gómez-Mesa
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico.
- Cardiology Department, Fundación Valle del Lili, Cali, Colombia.
- Department of Health Sciences, Universidad Icesi, Cali, Colombia.
| | - John Jairo Duque-Ossman
- Universidad Del Quindío, Armenia, Colombia
- Latin American Federation of Endocrinology (FELAEN), Armenia, Colombia
| | - Alin Abreu-Lomba
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Endocrinology Department, Clínica Imbanaco, Cali, Colombia
| |
Collapse
|
5
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J, Mao Y. Hypoglycemic Activity of Rice Resistant-Starch Metabolites: A Mechanistic Network Pharmacology and In Vitro Approach. Metabolites 2024; 14:224. [PMID: 38668351 PMCID: PMC11052319 DOI: 10.3390/metabo14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand-receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yangchen Mao
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
6
|
Kırça M, Yeşilkaya A. Angiotensin II reduces glyoxalase 1 activity and expression in vascular smooth muscle cells: Implications for diabetic vascular complications. Cell Biochem Funct 2023; 41:1430-1441. [PMID: 37915258 DOI: 10.1002/cbf.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Angiotensin II (Ang II), a key mediator of vascular diseases, is linked to methylglyoxal (MGO) formation, a by-product of glucose metabolism implicated in vascular complications. The glyoxalase system, consisting of glyoxalase 1 (Glo1) and reduced glutathione (GSH), is responsible for detoxifying MGO. This study investigated the effect of Ang II on Glo1 activity and expression in vascular smooth muscle cells (VSMCs). Primary VSMCs were isolated from rat aortas and exposed to Ang II under standard or high glucose conditions. We examined Glo1 activity, expression, intracellular GSH, and methylglyoxal-derived hydroimidazolone 1 (MG-H1) levels. We also analyzed the expressions of nuclear factor-κB (NF-κB) p65 and nuclear factor erythroid 2-related factor 2 (Nrf2) as potential regulators of Glo1 expression. The results demonstrated that Ang II reduced Glo1 activity, expression, and GSH levels while increasing MG-H1 levels in VSMCs. Telmisartan and irbesartan, AT1R blockers, restored Glo1 activity, expression, and GSH levels and alleviated MG-H1 levels. Treatment with AT1R blockers or inhibitors targeting signaling pathways involved in Ang II-induced responses mitigated these effects. High glucose exacerbated the reduction in Glo1 activity and expression. In conclusion, this study provides evidence that Ang II reduces Glo1 activity and expression in VSMCs, which may contribute to developing vascular complications in diabetes. AT1R blockers and inhibitors targeting specific signaling pathways show potential in restoring Glo1 function and mitigating MGO-associated damage. These findings highlight the complex interactions between RAS, MGO, and vascular diseases, highlighting potential therapeutic targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Mustafa Kırça
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Akın Yeşilkaya
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
Aziz F, Tripolt NJ, Pferschy PN, Kolesnik E, Mangge H, Curcic P, Hermann M, Meinitzer A, von Lewinski D, Sourij H. Alterations in trimethylamine-N-oxide in response to Empagliflozin therapy: a secondary analysis of the EMMY trial. Cardiovasc Diabetol 2023; 22:184. [PMID: 37475009 PMCID: PMC10357596 DOI: 10.1186/s12933-023-01920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION The relationship between sodium glucose co-transporter 2 inhibitors (SGLT2i) and trimethylamine N-oxide (TMAO) following acute myocardial infarction (AMI) is not yet explored. METHODS In this secondary analysis of the EMMY trial (ClinicalTrials.gov registration: NCT03087773), changes in serum TMAO levels were investigated in response to 26-week Empagliflozin treatment following an AMI compared to the standard post-MI treatment. Additionally, the association of TMAO changes with clinical risk factors and cardiorenal biomarkers was assessed. RESULTS The mean age of patients (N = 367) was 57 ± 9 years, 82% were males, and 14% had type 2 diabetes. In the Empagliflozin group, the median TMAO value was 2.62 µmol/L (IQR: 1.81) at baseline, 3.74 µmol/L (2.81) at 6 weeks, and 4.20 µmol/L (3.14) at 26 weeks. In the placebo group, the median TMAO value was 2.90 µmol/L (2.17) at baseline, 3.23 µmol/L (1.90) at 6 weeks, and 3.35 µmol/L (2.50) at 26 weeks. The serum TMAO levels increased significantly from baseline to week 6 (coefficient: 0.233; 95% confidence interval 0.149-0.317, p < 0.001) and week 26 (0.320, 0.236-0.405, p < 0.001). The average increase in TMAO levels over time (pinteraction = 0.007) was significantly higher in the Empagliflozin compared to the Placebo group. Age was positively associated with TMAO, whereas eGFR and LVEF were negatively associated with TMAO. CONCLUSIONS Our results are contrary to existing experimental studies that showed the positive impact of SGLT2i on TMAO precursors and cardiovascular events. Therefore, we recommend further research investigating the impact of SGLT2i therapy on acute and long-term changes in TMAO in cardiovascular cohorts.
Collapse
Affiliation(s)
- Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Pero Curcic
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Hermann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria.
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Lin CY, Sung HY, Chen YJ, Yeh HI, Hou CJY, Tsai CT, Hung CL. Personalized Management for Heart Failure with Preserved Ejection Fraction. J Pers Med 2023; 13:jpm13050746. [PMID: 37240916 DOI: 10.3390/jpm13050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome with multiple underlying mechanisms and comorbidities that leads to a variety of clinical phenotypes. The identification and characterization of these phenotypes are essential for better understanding the precise pathophysiology of HFpEF, identifying appropriate treatment strategies, and improving patient outcomes. Despite accumulating data showing the potentiality of artificial intelligence (AI)-based phenotyping using clinical, biomarker, and imaging information from multiple dimensions in HFpEF management, contemporary guidelines and consensus do not incorporate these in daily practice. In the future, further studies are required to authenticate and substantiate these findings in order to establish a more standardized approach for clinical implementation.
Collapse
Affiliation(s)
- Chang-Yi Lin
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei 10449, Taiwan
| | - Heng-You Sung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei 10449, Taiwan
| | - Ying-Ju Chen
- Telemedicine Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Hung-I Yeh
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei 10449, Taiwan
- Departments of Internal Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Charles Jia-Yin Hou
- Departments of Internal Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Cheng-Ting Tsai
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei 10449, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 25245, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei 10449, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
9
|
Gallo G, Lanza O, Savoia C. New Insight in Cardiorenal Syndrome: From Biomarkers to Therapy. Int J Mol Sci 2023; 24:5089. [PMID: 36982164 PMCID: PMC10049666 DOI: 10.3390/ijms24065089] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Cardiorenal syndrome consists in the coexistence of acute or chronic dysfunction of heart and kidneys resulting in a cascade of feedback mechanisms and causing damage to both organs associated with high morbidity and mortality. In the last few years, different biomarkers have been investigated with the aim to achieve an early and accurate diagnosis of cardiorenal syndrome, to provide a prognostic role and to guide the development of targeted pharmacological and non-pharmacological therapies. In such a context, sodium-glucose cotransporter 2 (SGLT2) inhibitors, recommended as the first-line choice in the management of heart failure, might represent a promising strategy in the management of cardiorenal syndrome due to their efficacy in reducing both cardiac and renal outcomes. In this review, we will discuss the current knowledge on the pathophysiology of cardiorenal syndrome in adults, as well as the utility of biomarkers in cardiac and kidney dysfunction and potential insights into novel therapeutics.
Collapse
Affiliation(s)
| | | | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|