1
|
Akiyama M. Expression of Elastin, F-Box and WD-40 Domain-Containing Protein 2, Fibrillin-1, and Alpha-Smooth Muscle Actin in Utilized Blood Vessels for explant culture-A New 3D in Vitro Vascular Model from Bovine Legs. Cell Biochem Biophys 2025; 83:2365-2378. [PMID: 39731648 PMCID: PMC12089167 DOI: 10.1007/s12013-024-01647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum. Here, it is hypothesized that FBXW2 has different roles in periosteum and blood vessels. Furthermore, if FBXW2 would be a component of elastic fiber of blood vessels, FBXW2 would be expressed where the well-known components elastin and fibrillin-1 are expressed. For this purpose, explant culture of blood vessels from bovine legs were performed for 5 weeks. It was found that elastin and FBXW2 were expressed within the elastic laminae, whereas fibrillin-1 was expressed around them. After explant culture, elastin and FBXW2 sustained the shape of the elastic fibers in the elastic lamina, whereas the fibrillin-1-rich layer became wide range and encompass toward intima and adventitia layers. Hematoxylin Eosin staining and immunohistochemistry of alpha-smooth muscle actin (α-SMA) revealed weakened media layer after 5 weeks culture. Although fibrillin-1 is a well-known component of elastic fibers and elastin, this study revealed that the location of fibrillin-1 is different from that of elastin, whereas FBXW2 is present in the same region as elastin from day 0 to week 5. In blood vessels, fibrillin-1 fibers around the elastic lamina may be oxytalan fibers. Thus, the proposed 3D in vitro model in this study is useful for identifying the mechanisms of vascular degradation.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
| |
Collapse
|
2
|
Wang Q, Pan L, Chen S, Zhang Y, Liu G, Wu Y, Qin X, Zhang P, Zhang W, Zhang J, Kong D. BBB proteomic analysis reveals that complex febrile seizures in infancy enhance susceptibility to epilepsy in adulthood through dysregulation of ECM-receptor interaction signaling pathway. Fluids Barriers CNS 2025; 22:49. [PMID: 40361173 PMCID: PMC12070522 DOI: 10.1186/s12987-025-00660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Complex febrile seizures (CFS) have been associated with an increased risk of epilepsy in adulthood. However, the specific link between blood-brain barrier (BBB) and the predisposition to epilepsy in adults who experienced CFS during infancy remains unclear. The objective of this study was to investigate the alteration of BBB in adult mice who had experienced CFS during infancy, and to explore the mechanisms of increased susceptibility to epilepsy after CFS. METHODS The CFS pup model was induced using hot air, and the seizure susceptibility was examined using low-dose pentylenetetrazole (PTZ) after 8 W. The brain microvessels representing BBB function were isolated and their protein expression changes were analyzed using data-independent acquisition (DIA) proteomic techniques. Subsequently, the bioinformatic analyses were performed using ClusterProfiler, STRING, Gene Set Enrichment Analysis (GSEA), etc. The enriched pathways, changes in the expression of BBB-related proteins, and alterations in metabolites including certain neurotransmitters were subsequently validated by Western Blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and mass spectrometric imaging (MSI). In addition, we selected the MMP inhibitor Incyclinide to verify that dysregulation of the ECM-receptor interaction signaling pathway increases epilepsy susceptibility in adult mice. RESULTS Mice that experienced CFS in infancy show increased susceptibility to epilepsy in adulthood, and BBB proteomic profile was significantly altered in the CFS mice. The network analysis suggests that dysregulation of the extracellular matrix (ECM)-receptor interaction pathway is a key mechanism. Moreover, MSI analysis uncovered notable changes in differential metabolites, including amino acids and nucleotide-derived neurotransmitters associated with the function of BBB maintaining neuronal homeostasis. Subsequent validation experiments showed that dysregulation of the ECM-receptor interaction signaling pathway exacerbated epilepsy susceptibility in adult mice. CONCLUSION Our research represents the pioneering demonstration of the modified BBB proteomics associated with epilepsy susceptibility in adult mice previously exposed to CFS in infancy. Notably, the increased susceptibility is attributed to the dysregulation of the ECM-receptor interaction pathway. These findings may help to elucidate the role of BBB alterations in the progression of epilepsy susceptibility, and provide new orientations for subsequent prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Liangyu Pan
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Siruan Chen
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Yuyu Zhang
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Guangyuan Liu
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Yiying Wu
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Xia Qin
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Panpan Zhang
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China
| | - Wei Zhang
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China.
- Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Shijiazhuang, China.
| | - Jianghua Zhang
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China.
| | - Dezhi Kong
- Institute of Integrative Medicine, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
- Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, Shijiazhuang, 050017, China.
- Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Shijiazhuang, China.
| |
Collapse
|
3
|
Wang Z, Liang W, Ao R, An Y. Adipose Decellularized Matrix: A Promising Skeletal Muscle Tissue Engineering Material for Volume Muscle Loss. Biomater Res 2025; 29:0174. [PMID: 40248249 PMCID: PMC12003953 DOI: 10.34133/bmr.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Volume muscle loss is a severe injury often caused by trauma, fracture, tumor resection, or degenerative disease, leading to long-term dysfunction or disability. The current gold-standard treatment is autologous muscle tissue transplantation, with limitations due to donor site restrictions, complications, and low regeneration efficiency. Tissue engineering shows potential to overcome these challenges and achieve optimal muscle regeneration, vascularization, nerve repair, and immunomodulation. In the field of muscle tissue engineering, skeletal muscle decellularized matrices are regarded as an ideal material due to their similarity to the defect site environment, yet they suffer from difficulties in preparation, severe fibrosis, and inconsistent experimental findings. Adipose decellularized matrices (AdECMs) have demonstrated consistent efficacy in promoting muscle regeneration, and their ease of preparation and abundant availability make them even more attractive. The full potential of AdECMs for muscle regeneration remains to be explored. The aim of this review is to summarize the relevant studies on using AdECMs to promote muscle regeneration, to summarize the preparation methods of various applied forms, and to analyze their advantages and shortcomings, as well as to further explore their mechanisms and to propose possible improvements, so as to provide new ideas for the clinical solution of the problem of volume muscle loss.
Collapse
Affiliation(s)
| | - Wei Liang
- Address correspondence to: (W.L.); (Y.A.)
| | - Rigele Ao
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
Papastamos C, Antonopoulos AS, Simantiris S, Koumallos N, Theofilis P, Sagris M, Tsioufis K, Androulakis E, Tousoulis D. Stem Cell-based Therapies in Cardiovascular Diseases: From Pathophysiology to Clinical Outcomes. Curr Pharm Des 2023; 29:2795-2801. [PMID: 37641986 DOI: 10.2174/1381612829666230828102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Over 20 years of intensified research in the field of stem cells brought about unprecedented possibilities in treating heart diseases. The investigators were initially fascinated by the idea of regenerating the lost myocardium and replacing it with new functional cardiomyocytes, but this was extremely challenging. However, the multifactorial effects of stem cell-based therapies beyond mere cardiomyocyte generation, caused by paracrine signaling, would open up new possibilities in treating cardiovascular diseases. To date, there is a strong body of evidence that the anti-inflammatory, anti-apoptotic, and immunomodulatory effects of stem cell therapy may alleviate atherosclerosis progression. In the present review, our objective is to provide a brief overview of the stem cell-based therapeutic options. We aim to delineate the pathophysiological mechanisms of their beneficial effects in cardiovascular diseases especially in coronary artery disease and to highlight some conclusions from important clinical studies in the field of regenerative medicine in cardiovascular diseases and how we could further move onwards.
Collapse
Affiliation(s)
- Charalampos Papastamos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Simantiris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Koumallos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|