1
|
Semple EA, Harberson MT, Xu B, Rashleigh R, Cartwright TL, Braun JJ, Custer AC, Liu C, Hill JW. Melanocortin 4 receptor signaling in Sim1 neurons permits sexual receptivity in female mice. Front Endocrinol (Lausanne) 2023; 14:983670. [PMID: 37033219 PMCID: PMC10080118 DOI: 10.3389/fendo.2023.983670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for hypoactive sexual desire disorder (HSDD), but the neuronal pathways involved are unclear. Methods In this study, the sexual behavior of female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) was examined. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice) to examine the effect on sexual responsiveness. Results MC4R knockout mice were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. These changes were independent of body weight. Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. Discussion These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits.
Collapse
Affiliation(s)
- Erin A. Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Mitchell T. Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Baijie Xu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Tori L. Cartwright
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Jessica J. Braun
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Amy C. Custer
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Chen Liu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
2
|
Luo R, Chen L, Song X, Zhang X, Xu W, Han D, Zuo J, Hu W, Shi Y, Cao Y, Ma R, Liu C, Xu C, Li Z, Li X. Possible Role of GnIH as a Novel Link between Hyperphagia-Induced Obesity-Related Metabolic Derangements and Hypogonadism in Male Mice. Int J Mol Sci 2022; 23:ijms23158066. [PMID: 35897643 PMCID: PMC9332143 DOI: 10.3390/ijms23158066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xun Li
- Correspondence: ; Tel.: +86-0771-3235635
| |
Collapse
|
3
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
4
|
Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds. Sci Rep 2021; 11:12823. [PMID: 34140553 PMCID: PMC8211672 DOI: 10.1038/s41598-021-91951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated time course of photoperiodically driven transcriptional responses in physiologically contrasting seasonal life-history states in migratory blackheaded buntings. Birds exhibiting unstimulated winter phenotype (photosensitive state; responsive to photostimulation) under 6-h short days, and regressed summer phenotype (photorefractory state; unresponsiveness to photostimulation) under 16-h long days, were released into an extended light period up to 22 h of the day. Increased tshβ and dio2, and decreased dio3 mRNA levels in hypothalamus, and low prdx4 and high il1β mRNA levels in blood confirmed photoperiodic induction by hour 18 in photosensitive birds. Further, at hours 10, 14, 18 and 22 of light exposure, the comparison of hypothalamus RNA-Seq results revealed transcriptional differences within and between states. Particularly, we found reduced expression at hour 14 of transthyretin and proopiomelanocortin receptor, and increased expression at hour 18 of apolipoprotein A1 and carbon metabolism related genes in the photosensitive state. Similarly, valine, leucine and isoleucine degradation pathway genes and superoxide dismutase 1 were upregulated, and cocaine- and amphetamine-regulated transcript and gastrin-releasing peptide were downregulated in the photosensitive state. These results show life-history-dependent activation of hypothalamic molecular pathways involved in initiation and maintenance of key biological processes as early as on the first long day.
Collapse
|
5
|
Paolucci M, Coccia E, Imperatore R, Varricchio E. A cross-talk between leptin and 17β-estradiol in vitellogenin synthesis in rainbow trout Oncorhynchus mykiss liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:331-344. [PMID: 31713703 DOI: 10.1007/s10695-019-00720-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The existence of nutritional and energy reserves is fundamental for fish female fertility, so that the existence of a correlation between metabolic reserves and reproductive capacity is suggested. Leptin regulates body weight and energy homeostasis. Estradiol induces the synthesis of vitellogenin, a phospholipoglycoprotein produced by the liver and taken up by the growing oocytes. The objective of this study was to investigate the possible existence of a crosstalk between 17β-estradiol (E2) and leptin in the modulation of E2-induced vtg in the rainbow trout Oncorhynchus mykiss. Liver slices were incubated with recombinant trout leptin (rt-lep) at three different concentrations (1-10-100 ng/ml). rt-lep brought about the decrease of E2-induced vtg secretion in the medium and the down-regulation of vtg mRNA expression. Moreover, rt-lep stimulated the lipase activity and diminished the liver fatty acid content. The combined employment of signal transduction inhibitors and the analysis of signal transduction phosphorylated factors revealed that rt-lep effect on E2-induced vtg occurred through the activation of phosphodiesterase, protein kinase C, MAP kinases, and protein kinase A. In conclusion, our study suggests that leptin influences E2-induced vtg synthesis in the rainbow trout Oncorhynchus mykiss by modifying both the protein and the lipid components.
Collapse
Affiliation(s)
- Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy.
| | - Elena Coccia
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| |
Collapse
|
6
|
Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes (Basel) 2019; 10:genes10110938. [PMID: 31744198 PMCID: PMC6895971 DOI: 10.3390/genes10110938] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2, TMEM200C, SF1, ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.
Collapse
|
7
|
Minabe S, Sato M, Inoue N, Watanabe Y, Magata F, Matsuda F, Uenoyama Y, Ozawa H, Tsukamura H. Neonatal Estrogen Causes Irreversible Male Infertility via Specific Suppressive Action on Hypothalamic Kiss1 Neurons. Endocrinology 2019; 160:1223-1233. [PMID: 30920587 DOI: 10.1210/en.2018-00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Aberrant exposure to estrogen-like compounds during the critical developmental period may cause improper hypothalamic programming, thus resulting in reproductive dysfunction in adulthood in male mammals. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to govern tonic GnRH/gonadotropin release to control reproduction in male mammals. In this study, we report that chronic exposure to supraphysiological levels of estrogen during the neonatal period caused an irreversible suppression of KNDy genes in the ARC, resulting in reproductive dysfunction in male rats. Daily estradiol benzoate (EB) administration from days 0 to 10 postpartum caused smaller seminiferous tubules, abnormal spermatogenesis, and a decrease in plasma testosterone in adult male rats. The neonatal EB treatment profoundly suppressed LH pulse and ARC KNDy gene expression at adulthood, but it failed to affect the number of GnRH gene-expressing cells in male rats. The EB treatment failed to affect gene expression of other neuropeptides, such as GHRH, proopiomelanocortin, and agouti-related protein in the ARC, suggesting that ARC KNDy neurons would be a specific target of neonatal estrogen to cause male reproductive dysfunction. Because LH secretory responses to kisspeptin challenge and GnRH expression were spared in male rats with the EB treatment, LH pulse suppression is most probably due to ARC KNDy deficiency. Taken together, the current study indicates that chronic exposure to estrogenic chemicals in the developing brain causes a defect of ARC KNDy neurons, resulting in an inhibition of pulsatile GnRH/LH release and the failure of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Youki Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Fumie Magata
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Saedi S, Khoradmehr A, Mohammad Reza JS, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat 2018; 92:71-82. [PMID: 30008384 DOI: 10.1016/j.jchemneu.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
9
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
10
|
Marraudino M, Bonaldo B, Farinetti A, Panzica G, Ponti G, Gotti S. Metabolism Disrupting Chemicals and Alteration of Neuroendocrine Circuits Controlling Food Intake and Energy Metabolism. Front Endocrinol (Lausanne) 2018; 9:766. [PMID: 30687229 PMCID: PMC6333703 DOI: 10.3389/fendo.2018.00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the category of endocrine disrupting chemicals, EDCs) that can cause important diseases as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act on fat tissue and liver, may regulate gut functions (influencing absorption), but they may also alter the hypothalamic peptidergic circuits that control food intake and energy metabolism. These circuits are normally regulated by several factors, including estrogens, therefore those EDCs that are able to bind estrogen receptors may promote metabolic changes through their action on the same hypothalamic circuits. Here, we discuss data showing how the exposure to some MDCs can alter the expression of neuropeptides within the hypothalamic circuits involved in food intake and energy metabolism. In particular, in this review we have described the effects at hypothalamic level of three known EDCs: Genistein, an isoflavone (phytoestrogen) abundant in soy-based food (a possible new not-synthetic MDC), Bisphenol A (compound involved in the manufacturing of many consumer plastic products), and Tributyltin chloride (one of the most dangerous and toxic endocrine disruptor, used in antifouling paint for boats).
Collapse
Affiliation(s)
- Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Alice Farinetti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
- *Correspondence: GianCarlo Panzica
| | - Giovanna Ponti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Xu P, Zhu L, Saito K, Yang Y, Wang C, He Y, Yan X, Hyseni I, Tong Q, Xu Y. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction. Metabolism 2017; 70:152-159. [PMID: 28403939 PMCID: PMC5407306 DOI: 10.1016/j.metabol.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain estrogen receptor-α (ERα) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERα expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic-pituitary-gonadal axis (HPG axis) and fertility. RESULTS AND CONCLUSIONS We report here that global deletion of a key downstream receptor for POMC peptide, the melanocortin 4 receptor (MC4R), did not affect normal negative feedback regulation of estrogen on the HPG axis, estrous cyclicity and female fertility. Furthermore, loss of the MC4R did not influence estrogenic regulation on food intake and body weight. These results indicate that the MC4R is not required for estrogen's effects on metabolic and reproductive functions.
Collapse
Affiliation(s)
- Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.
| | - Liangru Zhu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Xiaofeng Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.
| |
Collapse
|
12
|
Liver ERα regulates AgRP neuronal activity in the arcuate nucleus of female mice. Sci Rep 2017; 7:1194. [PMID: 28446774 PMCID: PMC5430776 DOI: 10.1038/s41598-017-01393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.
Collapse
|
13
|
Manfredi-Lozano M, Roa J, Ruiz-Pino F, Piet R, Garcia-Galiano D, Pineda R, Zamora A, Leon S, Sanchez-Garrido MA, Romero-Ruiz A, Dieguez C, Vazquez MJ, Herbison AE, Pinilla L, Tena-Sempere M. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 2016; 5:844-857. [PMID: 27688998 PMCID: PMC5034608 DOI: 10.1016/j.molmet.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022] Open
Abstract
Objective Puberty is a key developmental phenomenon highly sensitive to metabolic modulation. Worrying trends of changes in the timing of puberty have been reported in humans. These might be linked to the escalating prevalence of childhood obesity and could have deleterious impacts on later (cardio-metabolic) health, but their underlying mechanisms remain unsolved. The neuropeptide α-MSH, made by POMC neurons, plays a key role in energy homeostasis by mediating the actions of leptin and likely participates in the control of reproduction. However, its role in the metabolic regulation of puberty and interplay with kisspeptin, an essential puberty-regulating neuropeptide encoded by Kiss1, remain largely unknown. We aim here to unveil the potential contribution of central α-MSH signaling in the metabolic control of puberty by addressing its role in mediating the pubertal effects of leptin and its potential interaction with kisspeptin. Methods Using wild type and genetically modified rodent models, we implemented pharmacological studies, expression analyses, electrophysiological recordings, and virogenetic approaches involving DREADD technology to selectively inhibit Kiss1 neurons, in order to interrogate the physiological role of a putative leptin→α-MSH→kisspeptin pathway in the metabolic control of puberty. Results Stimulation of central α-MSH signaling robustly activated the reproductive axis in pubertal rats, whereas chronic inhibition of melanocortin receptors MC3/4R, delayed puberty, and prevented the permissive effect of leptin on puberty onset. Central blockade of MC3/4R or genetic elimination of kisspeptin receptors from POMC neurons did not affect kisspeptin effects. Conversely, congenital ablation of kisspeptin receptors or inducible, DREADD-mediated inhibition of arcuate nucleus (ARC) Kiss1 neurons resulted in markedly attenuated gonadotropic responses to MC3/4R activation. Furthermore, close appositions were observed between POMC fibers and ARC Kiss1 neurons while blockade of α-MSH signaling suppressed Kiss1 expression in the ARC of pubertal rats. Conclusions Our physiological, virogenetic, and functional genomic studies document a novel α-MSH→kisspeptin→GnRH neuronal signaling pathway involved in transmitting the permissive effects of leptin on pubertal maturation, which is relevant for the metabolic (and, eventually, pharmacological) regulation of puberty onset. Puberty is highly sensitive to metabolic modulation and disturbed by child obesity. Altered puberty is linked to adverse metabolic health outcomes via unclear mechanisms. The POMC product, α-MSH, transmit leptin-mediated metabolic regulation of puberty. A novel α-MSH→kisspeptin→GnRH signaling pathway is involved in the control of puberty This pathway is important for the metabolic (and pharmacologic) control of puberty.
Collapse
Affiliation(s)
- Maria Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | - David Garcia-Galiano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Rafael Pineda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Aurora Zamora
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Silvia Leon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Miguel A Sanchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Antonio Romero-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
14
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Kaczmarek MM, Mendoza T, Kozak LP. Lactation undernutrition leads to multigenerational molecular programming of hypothalamic gene networks controlling reproduction. BMC Genomics 2016; 17:333. [PMID: 27146259 PMCID: PMC4857247 DOI: 10.1186/s12864-016-2615-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background Reproductive success is dependent on development of hypothalamic circuits involving many hormonal systems working in concert to regulate gonadal function and sexual behavior. The timing of pubertal initiation and progression in mammals is likely influenced by the nutritional and metabolic state, leading us to the hypothesis that transient malnutrition experienced at critical times during development may perturb pubertal progression through successive generations. To test this hypothesis we have utilized a mouse model of undernutrition during suckling by exposing lactating mothers to undernutrition. Results Using a combination of transcriptomic and biological approaches, we demonstrate that molecular programming of hypothalamus may perturb gender specific phenotypes across generations that are dependent on the nutritional environment of the lactation period. Lactation undernutrition in first (F1) generation offspring affected body composition, reproductive performance parameters and influenced the expression of genes responsible for hypothalamic neural circuits controlling reproductive function of both sexes. Strikingly, F2 offspring showed phenotypes similar to F1 progeny; however, they were sex and parental nutritional history specific. Here, we showed that deregulated expression of genes involved in kisspeptin signaling within the hypothalamus is strongly associated with a delay in the attainment of puberty in F1 and F2 male and female offspring. Conclusion The early developmental plasticity of hypothalamus when challenged with undernutrition during postnatal development not only leads to altered expression of genes controlling hypothalamic neural circuits, altered body composition, delayed puberty and disturbed reproductive performance in F1 progeny, but also affects F2 offspring, depending on parental malnutrition history and in sexually dimorphic manner. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2615-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika M Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
16
|
Cardoso RC, Alves BRC, Sharpton SM, Williams GL, Amstalden M. Nutritional Programming of Accelerated Puberty in Heifers: Involvement of Pro-Opiomelanocortin Neurones in the Arcuate Nucleus. J Neuroendocrinol 2015; 27:647-57. [PMID: 25944025 DOI: 10.1111/jne.12291] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/27/2022]
Abstract
The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro-opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic-sensing pathway controlling the reproductive neuroendocrine axis. α-Melanocyte-stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin-releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4-8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P < 0.05) in the ARC in heifers that gained 1 kg/day of body weight (high-gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low-gain, LG; n = 5). The number of KISS1-expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double-immunofluorescence showed limited αMSH-positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin-immunoreactive cells in the ARC were observed in close proximity to αMSH-containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC-kisspeptin pathway may be important in mediating the nutritional acceleration of puberty in heifers.
Collapse
Affiliation(s)
- R C Cardoso
- Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - B R C Alves
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - S M Sharpton
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - G L Williams
- Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Amstalden
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Ibrahim BA, Briski KP. Deferred feeding and body weight responses to short-term interruption of fuel acquisition: impact of estradiol. Horm Metab Res 2015; 47:611-21. [PMID: 25230326 PMCID: PMC6755678 DOI: 10.1055/s-0034-1387792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Short-term abstinence from food intake, planned or unplanned, is unavoidable in modern life, but negatively correlated with appetite control and obesity. This study investigated the role of estradiol in feeding and body weight (BW) reactions to short-span cessation of feeding. During acute 1-6-h re-feeding, 12-h food-deprived (FD), estradiol benzoate (EB)-implanted ovariectomized rats ate less food and gained less weight than FD animals implanted with oil (O). Full fed (FF)- and FD-EB consumed equal amounts of food over 24 h, but weight gain was greater in the latter; 24-h food intake and BW gain in FD-O exceeded FD-EB. Caudal fourth ventricular administration of the AMPK activator AICAR increased dorsal vagal complex AMPK activity in FD-EB and FD-O, but elicited dissimilar adjustments in hypothalamic metabolic neuropeptide transmitter expression, while respectively enhancing or reducing acute re-feeding in these animals and reversing FD-O weight gain. Drug-treated FD-EB and FD-O exhibited respective feeding and weight gain increases between 6-24 h. AICAR enhanced 24-h consumption in FD-EB vs. FF-EB, but cumulative intake and BW gain were greater in AICAR-treated FD-O vs. FD-EB. Results show that estradiol limits acute re-feeding after short-term feeding suspension, but augments acute re-feeding when energy depletion coincides with suspended feeding. This compound metabolic stress exerts steroid-dependent effects during later resumption of circadian-induced feeding, for example, increased consumption vs. weight gain in the presence vs. absence of estradiol. These studies provide novel evidence that estrogen mitigates acute and post-acute adverse effects of disrupted fuel acquisition on energy balance.
Collapse
Affiliation(s)
- B A Ibrahim
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, USA
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, USA
| |
Collapse
|
18
|
Abstract
Hypothalamic neuronal populations are central regulators of energy homeostasis and reproductive function. However, the ontogeny of these critical hypothalamic neuronal populations is largely unknown. We developed a novel approach to examine the developmental pathways that link specific subtypes of neurons by combining embryonic and adult ribosome-tagging strategies in mice. This new method shows that Pomc-expressing precursors not only differentiate into discrete neuronal populations that mediate energy balance (POMC and AgRP neurons), but also into neurons critical for puberty onset and the regulation of reproductive function (Kiss1 neurons). These results demonstrate a developmental link between nutrient-sensing and reproductive neuropeptide synthesizing neuronal populations and suggest a potential pathway that could link maternal nutrition to reproductive development in the offspring.
Collapse
|
19
|
Vázquez MJ, Romero-Ruiz A, Tena-Sempere M. Roles of leptin in reproduction, pregnancy and polycystic ovary syndrome: consensus knowledge and recent developments. Metabolism 2015; 64:79-91. [PMID: 25467843 DOI: 10.1016/j.metabol.2014.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
As an essential function for perpetuation of species, reproduction, including puberty onset, is sensitive to the size of body energy stores and the metabolic state of the organism. Accordingly, impaired energy homeostasis, ranging from extreme leanness, such as in anorexia or cachexia, to morbid obesity has an impact on the timing of puberty and is often associated to fertility problems. The neuroendocrine basis for such phenomenon is the close connection between numerous metabolic hormones and nutritional cues with the various elements of the so-called hypothalamic-pituitary-gonadal (HPG) axis. Yet, despite previous fragmentary knowledge, it was only the discovery of the adipose-hormone, leptin, in 1994 what revolutionized our understanding on how metabolic and reproductive systems closely interplay and allowed the definition of the neurohormonal causes of perturbations of puberty and fertility in conditions of impaired body energy homeostasis. In this article, we aim to provide a synoptic view of the mechanisms whereby leptin engages in the regulation of different elements of the HPG axis, with special attention to its effects and mechanisms of action on the different elements of the reproductive brain and its proven direct effects in the gonads. In addition, we will summarize the state-of-the-art regarding the putative roles of leptin during gestation, including its potential function as placental hormone. Finally, comments will be made on the eventual leptin alterations in reproductive disorders, with special attention to the polycystic ovary syndrome (PCOS), a disease in which reproductive, metabolic and neuroendocrine alterations are commonly observed. All in all, we intend to provide an updated account of our knowledge on the physiological roles of leptin in the metabolic regulation of the reproductive axis and its eventual pathophysiological implications in prevalent reproductive disorders, such as PCOS.
Collapse
Affiliation(s)
- María Jesús Vázquez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Antonio Romero-Ruiz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain.
| |
Collapse
|
20
|
Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397:4-14. [PMID: 25289807 DOI: 10.1016/j.mce.2014.09.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022]
Abstract
It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain.
| |
Collapse
|
21
|
Hill JW, Alreja M, Elias CF. From precocious puberty to infertility: metabolic control of the reproductive function. Front Endocrinol (Lausanne) 2013; 4:43. [PMID: 23565110 PMCID: PMC3613725 DOI: 10.3389/fendo.2013.00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jennifer W. Hill
- Department of Physiology and Pharmacology, University of ToledoToledo, OH, USA
- Department of Obstetrics and Gynecology, University of ToledoToledo, OH, USA
| | | | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of MichiganAnn Arbor, MI, USA
- *Correspondence:
| |
Collapse
|