1
|
Ramírez D, Anaya-Romero M, Rodríguez ME, Arias-Pérez A, Mukiibi R, D’Cotta H, Robledo D, Rebordinos L. Insights into Solea senegalensis Reproduction Through Gonadal Tissue Methylation Analysis and Transcriptomic Integration. Biomolecules 2025; 15:54. [PMID: 39858448 PMCID: PMC11764300 DOI: 10.3390/biom15010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In S. senegalensis aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages. RRBS (Reduced Representation Bisulfite Sequencing) was employed to detect notable methylation variations across groups, while RNA was extracted and sequenced for differential expression analysis. Our findings suggest that DNA methylation significantly regulates gene expression, acting as a mechanism that can both repress and enhance gene expression depending on the genomic context. The complexity of this epigenetic mechanism is evident from the varying levels of methylation and correlation rates observed in different CpGs neighboring specific genes linked to reproduction. Differential methylation comparisons revealed the highest number of differently methylated CpGs between maturation stages, followed by rearing conditions, and lastly between sexes. These findings underscore the crucial role of methylation in regulating gene expression and its potential role in sex differentiation, highlighting the complex interplay between epigenetic modifications and gene expression.
Collapse
Affiliation(s)
- Daniel Ramírez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Marco Anaya-Romero
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Alberto Arias-Pérez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH259RG, UK
| | - Helena D’Cotta
- UMR-Institut des Sciences de l’Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche, Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, 34295 Montpellier, France
| | - Diego Robledo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH259RG, UK
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| |
Collapse
|
2
|
Martínez-Moreno CG, Calderón-Vallejo D, Díaz-Galindo C, Hernández-Jasso I, Olivares-Hernández JD, Ávila-Mendoza J, Epardo D, Balderas-Márquez JE, Urban-Sosa VA, Baltazar-Lara R, Carranza M, Luna M, Arámburo C, Quintanar JL. Neurotrophic and synaptic effects of GnRH and/or GH upon motor function after spinal cord injury in rats. Sci Rep 2024; 14:26420. [PMID: 39488642 PMCID: PMC11531546 DOI: 10.1038/s41598-024-78073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Thoracic spinal cord injury (SCI) profoundly impairs motor and sensory functions, significantly reducing life quality without currently available effective treatments for neuroprotection or full functional regeneration. This study investigated the neurotrophic and synaptic recovery potential of gonadotropin-releasing hormone (GnRH) and growth hormone (GH) treatments in ovariectomized rats subjected to thoracic SCI. Employing a multidisciplinary approach, we evaluated the effects of these hormones upon gene expression of classical neurotrophins (NGF, BDNF, and NT3) as well as indicative markers of synaptic function (Nlgn1, Nxn1, SNAP25, SYP, and syntaxin-1), together with morphological assessments of myelin sheath integrity (Klüver-Barrera staining and MBP immunoreactivity) and synaptogenic proteins (PSD95, SYP) by immunohystochemistry (IHC) , and also on the neuromotor functional recovery of hindlimbs in the lesioned animals. Results demonstrated that chronic administration of GnRH and GH induced notable upregulation in the expression of several neurotrophic and synaptogenic activity genes. Additionally, the treatment showed a significant impact on the restoration of functional synaptic markers and myelin integrity. Intriguingly, while individual GnRH application induced certain recovery benefits, the combined treatment with GH appeared to inhibit neuromotor recovery, suggesting a complex interplay in hormonal regulation post-SCI. GnRH and GH are bioactive and participate in modulating neurotrophic responses and synaptic restoration under neural damage conditions, offering insights into novel therapeutic approaches for SCI. However, the intricate effects of combined hormonal treatment accentuate the necessity for further investigation that conduce to optimal and novel therapeutic strategies for patients with spinal cord lesions.
Collapse
Affiliation(s)
- C G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - C Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - I Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J D Olivares-Hernández
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - V A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - C Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
| | - J L Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
3
|
Guzmán A, Rosales-Torres AM, Medina-Moctezuma ZB, González-Aretia D, Hernández-Coronado CG. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen Comp Endocrinol 2024; 357:114593. [PMID: 39047797 DOI: 10.1016/j.ygcen.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.
Collapse
Affiliation(s)
- A Guzmán
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Z B Medina-Moctezuma
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - D González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Wang Q, Deng J, Jiang Y, Wang Z, Xia B, Chen T. A medaka gonad-specific lncRNA may act as pri-miR-202 to regulate testicular endocrine homeostasis and spermatogenesis. Theriogenology 2024; 214:273-285. [PMID: 37948817 DOI: 10.1016/j.theriogenology.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
A large number of long non-coding RNAs (lncRNAs) are expressed in animal gonads, but their functions are poorly understood. In this study, a gonad-specific lncRNA, termed lnc4, was identified and characterized in the model fish medaka (Oryzias latipes). The expression pattern and in vitro functional analyses indicated that lnc4 was likely to be a primary transcript of miR-202 (pri-miR-202). Results of single-molecule fluorescence in situ hybridization demonstrated that the precursor miR-202 (pre-miR-202) was highly expressed in the nuclei of testicular somatic cells, including Leydig and Sertoli cells, whereas only a small amount of lnc4 molecules could be detected co-expressed with pre-miR-202 in Sertoli cells due to its low expression level. Deletion of the lnc4 locus led to a significant reduction in testis size and a dramatic decrease in the number of male germ cells, as well as a reduction in sperm viability. Moreover, lnc4 knockout resulted in enhanced synthesis and secretion of testicular somatic cells and accelerated differentiation of immature male germ cells. Taken together, functional studies of lnc4 and its mature transcript miR-202 will contribute to the understanding of the important role of non-coding RNAs in animal or human reproductive disorders.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, 434024, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiajie Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yuewen Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhi Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bilin Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tiansheng Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, 361021, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Barton BE, Erickson JA, Allred SI, Jeffries JM, Stephens KK, Hunter MI, Woodall KA, Winuthayanon W. Reversible female contraceptives: historical, current, and future perspectives†. Biol Reprod 2024; 110:14-32. [PMID: 37941453 PMCID: PMC10790348 DOI: 10.1093/biolre/ioad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
Contraception is a practice with extensive and complicated social and scientific histories. From cycle tracking, to the very first prescription contraceptive pill, to now having over-the-counter contraceptives on demand, family planning is an aspect of healthcare that has undergone and will continue to undergo several transformations through time. This review provides a comprehensive overview of current reversible hormonal and non-hormonal birth control methods as well as their mechanism of action, safety, and effectiveness specifically for individuals who can become pregnant. Additionally, we discuss the latest Food and Drug Administration (FDA)-approved hormonal method containing estetrol and drospirenone that has not yet been used worldwide as well as the first FDA-approved hormonal over-the-counter progestin-only pills. We also review available data on novel hormonal delivery through microchip, microneedle, and the latest FDA-approved non-hormonal methods such as vaginal pH regulators. Finally, this review will assist in advancing female contraceptive method development by underlining constructive directions for future pursuits. Information was gathered from the NCBI and Google Scholars databases using English and included publications from 1900 to present. Search terms included contraceptive names as well as efficacy, safety, and mechanism of action. In summary, we suggest that investigators consider the side effects and acceptability together with the efficacy of contraceptive candidate towards their development.
Collapse
Affiliation(s)
- Brooke E Barton
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeffery A Erickson
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Stephanie I Allred
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jenna M Jeffries
- College of Art & Science, Washington State University, Pullman, WA, USA
| | - Kalli K Stephens
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mark I Hunter
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kirby A Woodall
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Axiak CJ, Pleven A, Attard R, Borg Carbott F, Ebejer JP, Brincat I, Cassar K, Gruppetta M, Vassallo J, Bezzina Wettinger S, Farrugia R. High Population Frequency of GNRHR p.Q106R in Malta: An Evaluation of Fertility and Hormone Profiles in Heterozygotes. J Endocr Soc 2024; 8:bvad172. [PMID: 38196663 PMCID: PMC10775685 DOI: 10.1210/jendso/bvad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/11/2024] Open
Abstract
Context The gonadotropin-releasing hormone receptor variant GNRHR p.Q106R (rs104893836) in homozygosity, compound heterozygosity, or single heterozygosity is often reported as the causative variant in idiopathic hypogonadotropic hypogonadism (IHH) patients with GnRH deficiency. Genotyping of a Maltese newborn cord-blood collection yielded a minor allele frequency (MAF) 10 times higher (MAF = 0.029; n = 493) than that of the global population (MAF = 0.003). Objective To determine whether GNRHR p.Q106R in heterozygosity influences profiles of endogenous hormones belonging to the hypothalamic-pituitary axis and the onset of puberty and fertility in adult men (n = 739) and women (n = 239). Design Setting and Participants Analysis of questionnaire data relating to puberty and fertility, genotyping of the GNRHR p.Q106R variant, and hormone profiling of a highly phenotyped Maltese adult cohort from the Maltese Acute Myocardial Infarction Study. Main Outcome and Results Out of 978 adults, 43 GNRHR p.Q106R heterozygotes (26 men and 17 women) were identified. Hormone levels and fertility for all heterozygotes are within normal parameters except for TSH, which was lower in men 50 years or older. Conclusion Hormone data and baseline fertility characteristics of GNRHR p.Q106R heterozygotes are comparable to those of homozygous wild-type individuals who have no reproductive problems. The heterozygous genotype alone does not impair the levels of investigated gonadotropins and sex steroid hormones or affect fertility. GNRHR p.Q106R heterozygotes who exhibit IHH characteristics must have at least another variant, probably in a different IHH gene, that drives pathogenicity. We also conclude that GNRHR p.Q106R is likely a founder variant due to its overrepresentation and prevalence in the island population of Malta.
Collapse
Affiliation(s)
- Clayton John Axiak
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
| | - Adrian Pleven
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
- Clinical Chemistry Section, Department of Pathology, Mater Dei Hospital, Msida, MSD 2080, Malta
| | - Ritienne Attard
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
| | - Francesca Borg Carbott
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
| | - Jean-Paul Ebejer
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| | - Ian Brincat
- Clinical Chemistry Section, Department of Pathology, Mater Dei Hospital, Msida, MSD 2080, Malta
| | - Karen Cassar
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Mark Gruppetta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta
- Division of Endocrinology and Diabetes, Department of Medicine, Mater Dei Hospital, Msida, MSD 2080, Malta
| | - Josanne Vassallo
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta
- Division of Endocrinology and Diabetes, Department of Medicine, Mater Dei Hospital, Msida, MSD 2080, Malta
| | - Stephanie Bezzina Wettinger
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| |
Collapse
|
7
|
Transcriptomic Profiling Revealed Signaling Pathways Associated with the Spawning of Female Zebrafish under Cold Stress. Int J Mol Sci 2022; 23:ijms23147494. [PMID: 35886843 PMCID: PMC9320639 DOI: 10.3390/ijms23147494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
As one of the critical abiotic factors, temperature controls fish development and reproduction. However, the effects of low temperature on the transcriptional regulation of zebrafish reproduction remain largely unclear. In this study, the fecundity of zebrafish was examined after exposure to cold temperatures at 19.5 °C, 19 °C, 18.5 °C, or 18 °C. The temperature at 19 °C showed no significant influence on the fecundity of zebrafish, but temperature at 18.5 °C or 18 °C significantly blocked the spawning of females, suggesting the existence of a low temperature critical point for the spawning of zebrafish females. Based on these observations, the brains of anesthetized fish under cold stress at different cold temperatures were collected for high-throughput RNA-seq assays. Key genes, hub pathways and important biological processes responding to cold temperatures during the spawning of zebrafish were identified through bioinformatic analysis. The number of down-regulated and up-regulated genes during the temperature reduction from egg-spawning temperatures at 19.5 °C and 19 °C to non-spawning temperatures at 18.5 °C and 18 °C were 2588 and 2527 (fold change ≥ 1.5 and p-value ≤ 0.01), respectively. Venn analysis was performed to identify up- and down-regulated key genes. KEGG enrichment analysis indicated that the hub pathways overrepresented among down-regulated key genes included the GnRH signaling pathway, vascular smooth muscle contraction, C-type lectin receptor signaling pathway, phosphatidylinositol signaling system and insulin signaling pathway. GO enrichment analysis of down-regulated key genes revealed the most important biological processes inhibited under non-spawning temperatures at 18.5 °C and 18 °C were photoreceptor cell outer segment organization, circadian regulation of gene expression and photoreceptor cell maintenance. Furthermore, 99 hormone-related genes were found in the brain tissues of non-spawning and spawning groups, and GnRH signaling pathway and insulin signaling pathway were enriched from down-regulated genes related to hormones at 18.5 °C and 18 °C. Thus, these findings uncovered crucial hormone-related genes and signaling pathways controlling the spawning of female zebrafish under cold stress.
Collapse
|
8
|
Garrel G, Rouch C, L’Hôte D, Tazi S, Kassis N, Giton F, Dairou J, Dournaud P, Gressens P, Magnan C, Cruciani-Guglielmacci C, Cohen-Tannoudji J. Disruption of Pituitary Gonadotrope Activity in Male Rats After Short- or Long-Term High-Fat Diets Is Not Associated With Pituitary Inflammation. Front Endocrinol (Lausanne) 2022; 13:877999. [PMID: 35498414 PMCID: PMC9043610 DOI: 10.3389/fendo.2022.877999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Overnutrition is associated with the activation of inflammatory pathways in metabolically linked organs and an early hypothalamic inflammation is now known to disrupt the central control of metabolic function. Because we demonstrated that fatty acids (FA) target the pituitary and affect gonadotropin synthesis, we asked whether overnutrition induces pituitary inflammation that may contribute to obesity-associated disorders in the control of reproduction. We analyzed pituitary inflammation and hypothalamic-pituitary-testicular axis in male rats fed a short- (4 weeks) or long-term (20 weeks) high-fat diet. The effect of diet enrichment with the ω3 polyunsaturated FA, DHA, was also analyzed. After only 4 weeks and before weight gain of rats, high-fat diet caused a significant decrease in pituitary gonadotropin and hypothalamic GnRH transcript levels despite unchanged testosterone and inhibin B levels. Contrasting with the hypothalamus, there was no concomitant increases in gene expression of pituitary inflammatory mediators and even a reduction of prototypical cytokines such as interleukin-1β and TNF-α. No inflammation was still detected in the pituitary after 20 weeks although gonadotropin transcripts and circulating levels were still altered. Gonadotropins were the only pituitary hormones remaining affected at this stage of the regimen, underlying a differential susceptibility of pituitary lineages to metabolic disorders. DHA enrichment of the diet did not prevent alterations of gonadotrope activity due to either a long- or a short-term high-fat diet although it blocked early hypothalamic inflammation and attenuated several metabolic effects. Taken together, our findings suggest that high-fat diet-induced defects in gonadotrope activity in male rats occurred despite a lack of pituitary inflammation.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claude Rouch
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L’Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Salma Tazi
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, Inserm IMRB U955, Créteil, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | | | | | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
- *Correspondence: Joëlle Cohen-Tannoudji,
| |
Collapse
|
9
|
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J, Fortes MRS. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 2021; 12:768. [PMID: 34069992 PMCID: PMC8157873 DOI: 10.3390/genes12050768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD 4072, Australia;
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Olasege B. Shittu
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Kimberley Wockner
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Hugo R. Smith
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Gabriela C. Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Jagish Kour
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| |
Collapse
|
10
|
Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals (Basel) 2021; 11:ani11041134. [PMID: 33921032 PMCID: PMC8071398 DOI: 10.3390/ani11041134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The reproduction of mammals is regulated by the hypothalamic-pituitary-gonadal axis. Follicle stimulating hormone, as one of the gonadotropins secreted by the pituitary gland, plays an immeasurable role. This article mainly reviews the molecular basis and classical signaling pathways that regulate the synthesis and secretion of follicle stimulating hormone, and summarizes its internal molecular mechanism, which provides a certain theoretical basis for the research of mammalian reproduction regulation and the application of follicle stimulating hormone in production practice. Abstract Mammalian reproduction is mainly driven and regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, is a key regulator that ultimately affects animal fertility. As a dimeric glycoprotein hormone, the biological specificity of FSH is mainly determined by the β subunit. As research techniques are being continuously innovated, studies are exploring the underlying molecular mechanism regulating the secretion of mammalian FSH. This article will review the current knowledge on the molecular mechanisms and signaling pathways systematically regulating FSH synthesis and will present the latest hypothesis about the nuclear cross-talk among the various endocrine-induced pathways for transcriptional regulation of the FSH β subunit. This article will provide novel ideas and potential targets for the improved use of FSH in livestock breeding and therapeutic development.
Collapse
|
11
|
Santiago-Andres Y, Golan M, Fiordelisio T. Functional Pituitary Networks in Vertebrates. Front Endocrinol (Lausanne) 2021; 11:619352. [PMID: 33584547 PMCID: PMC7873642 DOI: 10.3389/fendo.2020.619352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master endocrine gland that developed early in vertebrate evolution and therefore exists in all modern vertebrate classes. The last decade has transformed our view of this key organ. Traditionally, the pituitary has been viewed as a randomly organized collection of cells that respond to hypothalamic stimuli by secreting their content. However, recent studies have established that pituitary cells are organized in tightly wired large-scale networks that communicate with each other in both homo and heterotypic manners, allowing the gland to quickly adapt to changing physiological demands. These networks functionally decode and integrate the hypothalamic and systemic stimuli and serve to optimize the pituitary output into the generation of physiologically meaningful hormone pulses. The development of 3D imaging methods and transgenic models have allowed us to expand the research of functional pituitary networks into several vertebrate classes. Here we review the establishment of pituitary cell networks throughout vertebrate evolution and highlight the main perspectives and future directions needed to decipher the way by which pituitary networks serve to generate hormone pulses in vertebrates.
Collapse
Affiliation(s)
- Yorgui Santiago-Andres
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
12
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
13
|
Santos HO, Teixeira FJ. Use of medicinal doses of zinc as a safe and efficient coadjutant in the treatment of male hypogonadism. Aging Male 2020; 23:669-678. [PMID: 30767598 DOI: 10.1080/13685538.2019.1573220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hypogonadism affects an extensive part of the male population, especially among the elderly. The quest for treatment regarding low levels of serum testosterone and male infertility has, therefore, worldwide relevance. Zinc has important biological actions insofar as the male reproductive physiology and endocrine system. In general, a common and safe recommendation for zinc in the treatment of male hypogonadism is 220 mg of zinc sulfate (equivalent to 50 mg of elemental zinc) twice a day, over one to four months. Additionally, it may be further required to extend, both the treatment, dose and daily fractionation of this mineral. Albeit medicinal doses of zinc may increase total testosterone and improve sperm count, the current body of evidence does not suggest broad recommendations regarding the use of zinc for all types of hypogonadism. In many cases, the use of zinc supplements is insufficient, with the use of surgery and drugs being required for an effective treatment.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Brazil
| | - Filipe J Teixeira
- Laboratory of Physiology and Biochemistry of Exercise Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, Portugal
| |
Collapse
|
14
|
Clément F, Crépieux P, Yvinec R, Monniaux D. Mathematical modeling approaches of cellular endocrinology within the hypothalamo-pituitary-gonadal axis. Mol Cell Endocrinol 2020; 518:110877. [PMID: 32569857 DOI: 10.1016/j.mce.2020.110877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/26/2023]
Abstract
The reproductive neuroendocrine axis, or hypothalamo-pituitary-gonadal (HPG) axis, is a paragon of complex biological system involving numerous cell types, spread over several anatomical levels communicating through entangled endocrine feedback loops. The HPG axis exhibits remarkable dynamic behaviors on multiple time and space scales, which are an inexhaustible source of studies for mathematical and computational biology. In this review, we will describe a variety of modeling approaches of the HPG axis from a cellular endocrinology viewpoint. We will in particular investigate the questions raised by some of the most striking features of the HPG axis: (i) the pulsatile secretion of hypothalamic and pituitary hormones, and its counterpart, the cell signaling induced by frequency-encoded hormonal signals, and (ii) the dual, gametogenic and glandular function of the gonads, which relies on the tight control of the somatic cell populations ensuring the proper maturation and timely release of the germ cells.
Collapse
Affiliation(s)
- Frédérique Clément
- Inria, Centre de Recherche Inria Saclay-Île-de-France, Palaiseau, France.
| | - Pascale Crépieux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Romain Yvinec
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Danielle Monniaux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| |
Collapse
|
15
|
Panknin O, Wagenfeld A, Bone W, Bender E, Nowak-Reppel K, Fernández-Montalván AE, Nubbemeyer R, Bäurle S, Ring S, Schmees N, Prien O, Schäfer M, Friedrich C, Zollner TM, Steinmeyer A, Mueller T, Langer G. Discovery and Characterization of BAY 1214784, an Orally Available Spiroindoline Derivative Acting as a Potent and Selective Antagonist of the Human Gonadotropin-Releasing Hormone Receptor as Proven in a First-In-Human Study in Postmenopausal Women. J Med Chem 2020; 63:11854-11881. [PMID: 32960053 DOI: 10.1021/acs.jmedchem.0c01076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The growth of uterine fibroids is sex hormone-dependent and commonly associated with highly incapacitating symptoms. Most treatment options consist of the control of these hormonal effects, ultimately blocking proliferative estrogen signaling (i.e., oral contraceptives/antagonization of human gonadotropin-releasing hormone receptor [hGnRH-R] activity). Full hGnRH-R blockade, however, results in menopausal symptoms and affects bone mineralization, thus limiting treatment duration or demanding estrogen add-back approaches. To overcome such issues, we aimed to identify novel, small-molecule hGnRH-R antagonists. This led to the discovery of compound BAY 1214784, an orally available, potent, and selective hGnRH-R antagonist. Altering the geminal dimethylindoline core of the initial hit compound to a spiroindoline system significantly improved GnRH-R antagonist potencies across several species, mandatory for a successful compound optimization in vivo. In a first-in-human study in postmenopausal women, once daily treatment with BAY 1214784 effectively lowered plasma luteinizing hormone levels by up to 49%, at the same time being associated with low pharmacokinetic variability and good tolerability.
Collapse
Affiliation(s)
- Olaf Panknin
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Andrea Wagenfeld
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Wilhelm Bone
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Eckhard Bender
- Research & Development, Pharmaceuticals, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Katrin Nowak-Reppel
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | | | - Reinhard Nubbemeyer
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Stefan Bäurle
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Sven Ring
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Norbert Schmees
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Olaf Prien
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Martina Schäfer
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Christian Friedrich
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Thomas M Zollner
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Andreas Steinmeyer
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| | - Thomas Mueller
- Research & Development, Pharmaceuticals, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Gernot Langer
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstrasse 170, 13342 Berlin, Germany
| |
Collapse
|
16
|
Zou K, Asiamah CA, Lu LL, Liu Y, Pan Y, Chen T, Zhao Z, Su Y. Ovarian transcriptomic analysis and follicular development of Leizhou black duck. Poult Sci 2020; 99:6173-6187. [PMID: 33142535 PMCID: PMC7647846 DOI: 10.1016/j.psj.2020.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022] Open
Abstract
This study investigated the factors that caused the differences in egg production during the development of ovarian follicles in Leizhou black ducks. Leizhou black ducks population was divided into 2 groups as high-yield group (HG) and low-yield group (LG). The number of eggs (NE), age at first egg (AFE), weight at first egg, and egg weight (EW) of both groups were recorded, and differences were analyzed using the t test. The logistic model was used to simulate the egg production curves to analyze the production rules. The ovarian follicles of both duck groups were collected to count the number of different grades sized follicles, weigh the ovaries, and observe follicular sections to analyze the developmental differences. Ovarian transcriptomic sequencing was performed to investigate differentially expressed genes and signal pathways in both duck groups. The results revealed a significant difference (P < 0.01) in the NE laid, AFE, and EW between both groups. Comparatively, HG had significantly more (P < 0.01) large yellow follicles (LYF) than LG. The density of medullary layer cells of the follicle section was greater in HG than LG ducks. Transcriptome sequencing revealed a total of 1,027 differentially expressed genes between the HG and LG ducks of which 495 genes were upregulated, and 532 genes were downregulated. Fifty genes were related to reproduction and reproductive processes. Kyoto Encyclopedia of Genes and Genomes–enriched signaling pathways revealed 274 signal pathways enriched in these differentially expressed genes of which the steroid biosynthesis pathway was significantly enriched. Analysis (Q < 0.05) showed that HSD3β → gonadotropin-releasing hormone (GnRH) and estrogen receptor (ESR) → LHβ/ERK1/2 were enriched in the steroid biosynthesis signal pathway. Follicle-stimulating hormone signal pathway mediated by HSD3β → GnRH and ESR → LHβ/ERK1/2 may be involved in ovarian follicle development to regulate LYF reserve process and affect its ovulation cycle, which in turn influence the egg production of Leizhou black ducks.
Collapse
Affiliation(s)
- Kun Zou
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | | | - Li-Li Lu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Yuanbo Liu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Yiting Pan
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Tongxin Chen
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Zhihui Zhao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China.
| | - Ying Su
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China.
| |
Collapse
|
17
|
Alshafie W, Francis V, Bednarz K, Pan YE, Stroh T, McPherson PS. Regulated resurfacing of a somatostatin receptor storage compartment fine-tunes pituitary secretion. J Cell Biol 2020; 219:132745. [PMID: 31825461 PMCID: PMC7039187 DOI: 10.1083/jcb.201904054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
In pituitary cells, internalized somatostatin receptor is held in a GLUT4-like storage compartment. The receptor rapidly resurfaces in response to selective signaling pathways in a process that fine-tunes pituitary hormone release. The surfacing of the glucose transporter GLUT4 driven by insulin receptor activation provides the prototypic example of a homeostasis response dependent on mobilization of an intracellular storage compartment. Here, we generalize this concept to a G protein–coupled receptor, somatostatin receptor subtype 2 (SSTR2), in pituitary cells. Following internalization in corticotropes, SSTR2 moves to a juxtanuclear syntaxin-6–positive compartment, where it remains until the corticotropes are stimulated with corticotropin releasing factor (CRF), whereupon SSTR2 exits the compartment on syntaxin-6–positive vesicular/tubular carriers that depend on Rab10 for their fusion with the plasma membrane. As SSTR2 activation antagonizes CRF-mediated hormone release, this storage/resurfacing mechanism may allow for a physiological homeostatic feedback system. In fact, we find that SSTR2 moves from an intracellular compartment to the cell surface in pituitary gland somatotropes, concomitant with increasing levels of serum growth hormone (GH) during natural GH cycles. Our data thus provide a mechanism by which signaling-mediated plasma membrane resurfacing of SSTR2 can fine-tune pituitary hormone release.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Klaudia Bednarz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yingzhou Edward Pan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
19
|
Kotarba G, Zielinska-Gorska M, Biernacka K, Gajewska A. Gonadotropin-releasing hormone-Cu complex (Cu-GnRH) transcriptional activity in vivo in the female rat anterior pituitary gland. Brain Res Bull 2020; 156:67-75. [PMID: 31931118 DOI: 10.1016/j.brainresbull.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/01/2022]
Abstract
Unlike gonadotropin-releasing hormone (GnRH) analogues characterized by amino acid replacement in decapeptide primary structure, Cu-GnRH molecule preserves the native sequence but contains a Cu2+ ion stably bound to the nitrogen atoms including that of the imidazole ring of His2. Cu-GnRH can operate via cAMP/PKA signalling in anterior pituitary cells, suggesting that it may affect selected gonadotropic network gene transcription in vivo. We analysed pituitary mRNA expression of Egr-1, Nr5a1, and Lhb based on their role in luteinizing hormone (LH) synthesis; and Nos1, Adcyap1, and Prkaca due to their dependence on cAMP/PKA activity. In two independent experiments, ovariectomized rats received intracerebroventricular pulsatile (one pulse/h or two pulses/h over 5 h) microinjections of 2 nM Cu-GnRH; 2 nM antide (GnRH antagonist) + 2 nM Cu-GnRH; 100 nM PACAP6-38 (PACAP receptor antagonist) + 2 nM Cu-GnRH. Relative expression of selected mRNAs was determined by qRT-PCR. LH serum concentration was examined according to RIA. All examined genes responded to Cu-GnRH stimulation with increased transcriptional activity in a manner dependent on pulse frequency pattern. Increased expression of Nr5a1, Lhb, Nos1, Adcyap1, and Prkaca mRNA was observed solely in rats receiving the complex with frequency of two pulses/h over 5 h. Egr-1 transcription was up-regulated for both applied Cu-GnRH pulsatile patterns. The stimulatory effect of Cu-GnRH on gene transcription was dependent on both GnRH receptor and PAC-1 activation. In conclusion, obtained results indicate that Cu-GnRH complex is a GnRH analogue able to induce both IP3/PKC and cAMP/PKA-dependent gonadotrope network gene transcription in vivo.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| | - Marlena Zielinska-Gorska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| | - Katarzyna Biernacka
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland
| | - Alina Gajewska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| |
Collapse
|
20
|
Rojo-Ruiz J, Navas-Navarro P, Nuñez L, García-Sancho J, Alonso MT. Imaging of Endoplasmic Reticulum Ca 2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca 2+ Indicator. Front Endocrinol (Lausanne) 2020; 11:615777. [PMID: 33664709 PMCID: PMC7921146 DOI: 10.3389/fendo.2020.615777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
Collapse
|
21
|
Hodne K, Fontaine R, Ager-Wick E, Weltzien FA. Gnrh1-Induced Responses Are Indirect in Female Medaka Fsh Cells, Generated Through Cellular Networks. Endocrinology 2019; 160:3018-3032. [PMID: 31621882 DOI: 10.1210/en.2019-00595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
Abstract
Reproductive function in vertebrates is stimulated by GnRH that controls the synthesis and release of the two pituitary gonadotropins, FSH and LH. FSH and LH, which regulate different stages of gonadal development, are produced by two different cell types in the fish pituitary. This is in contrast to the situation in mammals and birds, and it enables investigation of their differential regulation. In the present study, we used fluorescence in situ hybridization to show that Lh cells in adult female medaka express Gnrh receptors, whereas Fsh cells do not. This result was confirmed by patch-clamp recordings and by cytosolic Ca2+ measurements on dispersed pituitary cells, where Lh cells, but not Fsh cells, responded to Gnrh1 by biphasic alteration in action-potential frequencies and cytosolic Ca2+ levels. In contrast, both Fsh and Lh cells are able to respond to Gnrh1 in brain-pituitary tissue slices both electrically and by elevating the cytosolic Ca2+ levels. Using Ca2+ uncaging in combination with patch-clamp recordings and cytosolic Ca2+ measurements, we show that Fsh and Lh cells form homotypic and heterotypic networks in the pituitary. Taken together, these results show that the effects of Gnrh1 on Fsh release in adult female medaka are indirect and probably mediated via Lh cells.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
22
|
GnRH Antagonists Produce Differential Modulation of the Signaling Pathways Mediated by GnRH Receptors. Int J Mol Sci 2019; 20:ijms20225548. [PMID: 31703269 PMCID: PMC6888270 DOI: 10.3390/ijms20225548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Commercial gonadotropin-releasing hormone (GnRH) antagonists differ by 1-2 amino acids and are used to inhibit gonadotropin production during assisted reproduction technologies (ART). In this study, potencies of three GnRH antagonists, Cetrorelix, Ganirelix and Teverelix, in inhibiting GnRH-mediated intracellular signaling, were compared in vitro. GnRH receptor (GnRHR)-transfected HEK293 and neuroblastoma-derived SH-SY5Y cell lines, as well as mouse pituitary LβT2 cells endogenously expressing the murine GnRHR, were treated with GnRH in the presence or absence of the antagonist. We evaluated intracellular calcium (Ca2+) and cAMP increases, cAMP-responsive element binding-protein (CREB) and extracellular-regulated kinase 1 and 2 (ERK1/2) phosphorylation, β-catenin activation and mouse luteinizing-hormone β-encoding gene (Lhb) transcription by bioluminescence resonance energy transfer (BRET), Western blotting, immunostaining and real-time PCR as appropriate. The kinetics of GnRH-induced Ca2+ rapid increase revealed dose-response accumulation with potency (EC50) of 23 nM in transfected HEK293 cells, transfected SH-SY5Y and LβT2 cells. Cetrorelix inhibited the 3 × EC50 GnRH-activated calcium signaling at concentrations of 1 nM-1 µM, demonstrating higher potency than Ganirelix and Teverelix, whose inhibitory doses fell within the 100 nM-1 µM range in both transfected HEK293 and SH-SY5Y cells in vitro. In transfected SH-SY5Y, Cetrorelix was also significantly more potent than other antagonists in reducing GnRH-mediated cAMP accumulation. All antagonists inhibited pERK1/2 and pCREB activation at similar doses, in LβT2 and transfected HEK293 cells treated with 100 nM GnRH. Although immunostainings suggested that Teverelix could be less effective than Cetrorelix and Ganirelix in inhibiting 1 µM GnRH-induced β-catenin activation, Lhb gene expression increase occurring upon LβT2 cell treatment by 1 µM GnRH was similarly inhibited by all antagonists. To conclude, this study has demonstrated Cetrorelix-, Ganirelix- and Teverelix-specific biased effects at the intracellular level, not affecting the efficacy of antagonists in inhibiting Lhb gene transcription.
Collapse
|
23
|
Kojima R, Horiguchi K, Mochimaru Y, Musha S, Murakami S, Deai M, Mogi C, Sato K, Okajima F, Tomura H. Characterization of molecular mechanisms of extracellular acidification-induced intracellular Ca 2+ increase in LβT2 cells. Biochem Biophys Res Commun 2019; 517:636-641. [PMID: 31400852 DOI: 10.1016/j.bbrc.2019.07.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
Abstract
Extracellular acidification regulates endocrine cell functions. Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor and is activated by extracellular acidification, resulting in the activation of multiple intracellular signaling pathways. In the present study, we found that OGR1 was expressed in some gonadotropic cells in rat anterior pituitary and in LβΤ2 cells, which are used as a model of gonadotropic cells. When we reduced extracellular pH, a transient intracellular Ca2+ increase was detected in LβT2 cells. The Ca2+ increase was inhibited by a Gq/11 inhibitor and Cu2+, which is known as an OGR1 antagonist. We also found that extracellular acidification enhanced GnRH-induced Gaussia luciferase secretion from LβT2 cells. These results suggest that OGR1 may play a role in the regulation of gonadotropic cell function such as its hormone secretion.
Collapse
Affiliation(s)
- Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, 192-8503, Japan
| | - Yuta Mochimaru
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Masahito Deai
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Chihiro Mogi
- Laboratory of Integrated Signaling Systems, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Koichi Sato
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Fumikazu Okajima
- Laboratory of Pathophysiology, Faculty of Pharmacy, Aomori University, Aomori, 030-0943, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan; Institute of Endocrinology, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
24
|
Abstract
The hypothalamic decapeptide, GnRH, is the gatekeeper of mammalian reproductive development and function. Activation of specific, high-affinity cell surface receptors (GnRH receptors) on gonadotropes by GnRH triggers signal transduction cascades to stimulate the coordinated synthesis and secretion of the pituitary gonadotropins FSH and LH. These hormones direct gonadal steroidogenesis and gametogenesis, making their tightly regulated production and secretion essential for normal sexual maturation and reproductive health. FSH and LH are glycoprotein heterodimers comprised of a common α-subunit and a unique β-subunit (FSHβ and LHβ, respectively), which determines the biological specificity of the gonadotropins. The unique β-subunit is the rate-limiting step for the production of the mature gonadotropins. Therefore, FSH synthesis is regulated at the transcriptional level by Fshb gene expression. The overarching goal of this review is to expand our understanding of the mechanisms and pathways underlying the carefully orchestrated control of FSH synthesis and secretion by GnRH, focusing on the transcriptional regulation of the Fshb gene. Identification of these regulatory mechanisms is not only fundamental to our understanding of normal reproductive function but will also provide a context for the elucidation of the pathophysiology of reproductive disorders and infertility to lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Yale New Haven Health, Bridgeport Hospital, Bridgeport, Connecticut
- School of Medicine, University of Crete, Heraklion, Greece
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Wojtulewicz K, Tomaszewska-Zaremba D, Krawczyńska A, Tomczyk M, Przemysław Herman A. The effect of inflammation on the synthesis of luteinizing hormone and gonadotropin-releasing hormone receptor expression in the pars tuberalis of ewe during different photoperiodic conditions. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was designed to determine the effect of endotoxin-induced inflammation on luteinizing hormone (LH) synthesis and gonadotropin-releasing hormone (GnRH) receptor expression in the pars tuberalis (PT) of ewes during anestrous season and follicular phase taking into account the time of the day. Moreover, the effect of inflammation on the release of melatonin and its type I receptor gene expression in the PT was also determined. Lipopolysaccharide administration reduced nocturnal release of melatonin only during anestrous season, but it did not influence the gene expression of melatonin type I receptor in the PT. Inflammation inhibited nocturnal increase in the gene and protein expression of LH in the PT during the follicular phase. Since in day-active species nocturnal accumulation of LH protein in the pituitary precedes the LH surge, this lowering of LH content may delay or disturb the surge occurrence. Suppression of LH secretion could have resulted from the decreased sensitivity of the PT on the action of GnRH because inflammation reduced GnRH receptor expression. The study suggests that the ability of endotoxin to suppress LH synthesis in the PT may be another mechanism by which inflammation disturbs reproductive neuroendocrine axis in seasonal breeders.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| |
Collapse
|
26
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol 2018; 463:131-141. [PMID: 29102564 PMCID: PMC5812824 DOI: 10.1016/j.mce.2017.10.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
The precise orchestration of hormonal regulation at all levels of the hypothalamic-pituitary-gonadal axis is essential for normal reproductive function and fertility. The pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by pituitary gonadotropes. GnRH acts by binding to its high affinity seven-transmembrane receptor (GnRHR) on the cell surface of anterior pituitary gonadotropes. Different signaling cascades and transcriptional mechanisms are activated, depending on the variation in GnRH pulse frequency, to stimulate the synthesis and release of FSH and LH. While changes in GnRH pulse frequency may explain some of the differential regulation of FSH and LH, other factors, such as activin, inhibin and sex steroids, also contribute to gonadotropin production. In this review, we focus on the transcriptional regulation of the gonadotropin subunit genes and the signaling pathways activated by pulsatile GnRH.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
28
|
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. [PMID: 28859530 PMCID: PMC5815295 DOI: 10.1080/10253890.2017.1369523] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Collapse
Affiliation(s)
- Mario G Oyola
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert J Handa
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
29
|
A novel non genomic glucocorticoid signaling mediated by a membrane palmitoylated glucocorticoid receptor cross talks with GnRH in gonadotrope cells. Sci Rep 2017; 7:1537. [PMID: 28484221 PMCID: PMC5431531 DOI: 10.1038/s41598-017-01777-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoid hormones (GC) are the main stress mediators associated with reproductive disorders. GC exert their effects through activation of the glucocorticoid receptor (GR) principally acting as a transcription factor. Beside well-established GR-mediated genomic actions, several lines of evidence suggest a role for rapid membrane-initiated GC signaling in gonadotrope cells triggered by a membrane-associated GR. Herein, we demonstrate the existence of a specific membrane-initiated GC signaling in LβT2 gonadotrope cells involving two related phosphoproteins: Ca2+/Calmodulin-dependent protein kinase II (CaMKII) and synapsin-I. Within 5 min, LβT2 cells treated with stress range of 10−7 M Corticosterone or a membrane impermeable-GC, BSA-conjugated corticosterone, exhibited a 2-fold increase in levels of phospho-CaMKII and phospho-synapsin-I. Biochemical approaches revealed that this rapid signaling is promoted by a palmitoylated GR. Importantly, GC significantly alter GnRH-induced CaMKII phosphorylation, consistent with a novel cross-talk between the GnRH receptor and GC. This negative effect of GC on GnRH signaling was further observed on LH release by mouse pituitary explants. Altogether, our work provides new findings in GC field by bringing novel understanding on how GR integrates plasma membrane, allowing GC membrane-initiated signaling that differs in presence of GnRH to disrupt GnRH-dependent signaling and LH secretion.
Collapse
|
30
|
Constantin S, Wray S. Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons. Endocrinology 2016; 157:3197-212. [PMID: 27359210 PMCID: PMC4967115 DOI: 10.1210/en.2016-1064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| |
Collapse
|
31
|
|
32
|
Moenter SM. Leap of Faith: Does Serum Luteinizing Hormone Always Accurately Reflect Central Reproductive Neuroendocrine Activity? Neuroendocrinology 2015; 102:256-266. [PMID: 26278916 PMCID: PMC4675678 DOI: 10.1159/000438790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022]
Abstract
The function of the central aspects of the hypothalamic-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of the hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated gonadotropin-releasing hormone neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for the interpretation of gonadotropin data are discussed.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Department of Molecular and Integrative Physiology, Internal Medicine, and Obstetrics and Gynecology, University of Michigan, Ann Arbor, Mich., USA
| |
Collapse
|
33
|
Vazquez-Martinez R, Gasman S. The regulated secretory pathway in neuroendocrine cells. Front Endocrinol (Lausanne) 2014; 5:48. [PMID: 24782828 PMCID: PMC3986512 DOI: 10.3389/fendo.2014.00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Rafael Vazquez-Martinez
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigaciones Biomédicas de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- *Correspondence: ;
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique (CNRS UPR 3212), Institut des Neurosciences Cellulaires et Intégratives (INCI), Université de Strasbourg, Strasbourg, France
- *Correspondence: ;
| |
Collapse
|