1
|
Önder T, Ateş Ö, Öner İ, Karaçin C. Triglyceride-Glucose Index: A Candidate Prognostic Marker in HR-Positive/HER2-Negative Metastatic Breast Cancer Patients Treated With CDK4/6 Inhibitors. Clin Breast Cancer 2024; 24:519-526. [PMID: 38879437 DOI: 10.1016/j.clbc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024]
Abstract
AIMS AND OBJECTIVES Although cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i) are a vital part of the treatment of hormone receptor (HR)-positive/HER-2-negative metastatic breast cancer (BC), individuals have different sensitivities to CDK4/6i, indicating the need for biomarkers. The fasting triglyceride glucose (TyG) index is an easily accessible surrogate marker of insulin resistance (IR). Herein, we investigated the prognostic significance of the fasting triglyceride glucose (TyG) index in HR+/HER2- metastatic BC patients treated with CDK4/6i plus endocrine therapy (ET). METHODS About 333 patients with HR+/HER2-metastatic BC treated with CDK4/6i plus ET were analyzed retrospectively. The TyG index was calculated within 3 months before the initiation of CDK4/6i plus ET. The median value of 8.43 was taken as the cutoff for the TyG index. RESULTS The median overall survival (OS) was 73.6 months (95% CI, 66.0-81.1) in the whole cohort. The progression-free survival (PFS) was significantly longer in the low-TyG subgroup than in the high-TyG subgroup (30.1 vs. 21.3 months, multivariate adjusted [HR] = 0.666, 95% CI, 0.450-0.987, P = .043). While the median OS was not reached in the low TyG subgroup, it was 69.0 months in the high TyG subgroup (multivariate-adjusted HR = 0.513, 95% CI, 0.281-0.936, P = .030). Although the ORR and DCR were numerically greater in the low-TyG subgroup, no significant differences were observed between the low-TyG subgroup and high-TyG subgroup (28.1% vs. 24.7%, P = .476; 83.2% vs. 80.1%, P = .463, respectively). CONCLUSIONS These data imply that the TyG index could be a predictive biomarker for the therapeutic efficacy of CDK4/6is. Extensive prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Tuğba Önder
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey.
| | - Öztürk Ateş
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey
| | - İrem Öner
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey
| | - Cengiz Karaçin
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey
| |
Collapse
|
2
|
Alshaakh Mohd Mari A, Sidhu A, Matos M, Kinaan M. A Rare Case of Insulin-Like Growth Factor (IGF-2) Induced Hypoglycemia Associated With Metastatic Colon Cancer. Cureus 2024; 16:e60211. [PMID: 38868260 PMCID: PMC11168588 DOI: 10.7759/cureus.60211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
The occurrence of hypoglycemia in patients without diabetes is rare, and non-islet cell tumor hypoglycemia (NICTH) accounts for a small portion of these instances. One of the infrequent causes is associated with tumor cell production of Insulin-like growth factor (IGF)-2. Here is a case of a 66-year-old man with stage IV colon cancer who presented to the emergency department with breathlessness during chemotherapy (Bevacizumab plus FOLFOX4 regimen). He had undergone partial colectomy and chemotherapy three years prior but was recently diagnosed with metastatic liver disease. A CT scan revealed a 15 cm hepatic mass occupying the entire right hepatic lobe. Despite receiving dextrose infusions, he experienced persistent hypoglycemia after meals and during fasting. Given that he had no history of diabetes and denied using any oral hypoglycemic agents, the Endocrinology service was consulted for further evaluation. Plasma blood glucose (BG) was measured at 74 mg/dL (reference range 74-106) during dextrose administration. An 8 AM cortisol test yielded a result of 8.08 mcg/dL (4.30-22.40), ruling out adrenal insufficiency. A 72-hour fast was initiated but terminated at eight hours due to symptomatic hypoglycemia with a plasma BG of 48 mg/dL. C-peptide and Insulin levels were both low, measuring <0.05 ng/mL (0.48-5.05) and <1.0 mU/L (3.0-25), respectively, while beta-hydroxybutyrate (BHB) levels were normal at 1.1 mg/dL (0.2-2.8). Administration of 1 mg glucagon during the fast increased BG to 112 mg/dL within 2 hours. IGF-1 levels were undetectable (<1.9 nmol/L), while IGF-2 levels were at 23 nmol/L (44-129 nmol/L), resulting in an IGF2:IGF1 ratio of 12 (>10), confirming IGF-2 mediated NICTH. Treatment with dexamethasone 10 mg daily was initiated, maintaining blood glucose levels above 70 mg/dL without dextrose infusion. In approximately 50% of cases of NICTH, the tumor is detected before the onset of hypoglycemia, yet up to half the patients may remain asymptomatic despite having very low BG. Despite having a known hepatic lesion, our patient exhibited minimal symptoms despite severely low BG levels. The mechanisms underlying NICTH may involve tumor secretion of insulin, replacement of hepatic tissue, increased glucose utilization by the tumor, or, most commonly, secretion of IGF-2. In cases of IGF-2-mediated hypoglycemia, insulin, proinsulin, C-peptide, and β-hydroxybutyrate levels are typically low. IGF-2 stimulates the insulin receptors resulting in increased glucose uptake by skeletal muscles and suppression of gluconeogenesis, glycogenolysis, and ketogenesis by the liver. Insulin secretion from pancreatic β-cells is suppressed. IGF-1 levels are usually low, while IGF-2 levels may be high or normal, as many IGF-2omas produce IGF-2 precursors (pro-IGF-2). An elevated IGF-2:IGF-1 ratio (>10) confirms the diagnosis which may be helpful when IGF-2 levels are normal. The primary treatment is through surgical removal or debulking of the tumor. Neoadjuvant therapies such as radiation and chemotherapy may reduce occurrences of hypoglycemia, but only temporarily. Glucocorticoids may be used when the underlying malignancy cannot be treated.
Collapse
Affiliation(s)
| | - Ashlee Sidhu
- Internal Medicine, HCA University of Central Florida (UCF), Florida, USA
| | - Moises Matos
- Endocrinology, Diabetes, and Metabolism, University of Central Florida/HCA Healthcare/Orlando VA Medical Center, Orlando, USA
| | - Mustafa Kinaan
- Endocrinology, HCA Florida Osceola Hospital, Kissimmee, USA
| |
Collapse
|
3
|
Jouffre B, Acramel A, Jacquot Y, Daulhac L, Mallet C. GPER involvement in inflammatory pain. Steroids 2023; 200:109311. [PMID: 37734514 DOI: 10.1016/j.steroids.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a worldwide refractory health disease that causes major financial and emotional burdens and that is devastating for individuals and society. One primary source of pain is inflammation. Current treatments for inflammatory pain are weakly effective, although they usually replace analgesics, such as opioids and non-steroidal anti-inflammatory drugs, which display serious side effects. Emerging evidence indicates that the membrane G protein-coupled estrogen receptor (GPER) may play an important role in the regulation of inflammation and pain. Herein, we focus on the consequences of pharmacological and genetic GPER modulation in different animal models of inflammatory pain. We also provide a brief overview of the putative mechanisms including the direct action of GPER on pain transmission and inflammation.
Collapse
Affiliation(s)
- Baptiste Jouffre
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Alexandre Acramel
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France; Department of Pharmacy, Institut Curie, 75248 Paris Cedex 06, France
| | - Yves Jacquot
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France
| | - Laurence Daulhac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Christophe Mallet
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
4
|
Gopinath P, Oviya RP, Gopisetty G. Oestrogen receptor-independent actions of oestrogen in cancer. Mol Biol Rep 2023; 50:9497-9509. [PMID: 37731028 DOI: 10.1007/s11033-023-08793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Oestrogen, the primary female sex hormone, plays a significant role in tumourigenesis. The major pathway for oestrogen is via binding to its receptor [oestrogen receptor (ERα or β)], followed by nuclear translocation and transcriptional regulation of target genes. Almost 70% of breast tumours are ER + , and endocrine therapies with selective ER modulators (tamoxifen) have been successfully applied. As many as 25% of tamoxifen-treated patients experience disease relapse within 5 years upon completion of chemotherapy. In such cases, the ER-independent oestrogen actions provide a plausible explanation for the resistance, as well as expands the existing horizon of available drug targets. ER-independent oestrogen signalling occurs via one of the following pathways: signalling through membrane receptors, oxidative catabolism giving rise to genotoxic metabolites, effects on mitochondria and redox balance, and induction of inflammatory cytokines. The current review focuses on the non-classical oestrogen signalling, its role in cancer, and its clinical significance.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020, India
| | - Revathi Paramasivam Oviya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020, India.
| |
Collapse
|
5
|
Stella S, Massimino M, Manzella L, Parrinello NL, Vitale SR, Martorana F, Vigneri P. Glucose-dependent effect of insulin receptor isoforms on tamoxifen antitumor activity in estrogen receptor-positive breast cancer cells. Front Endocrinol (Lausanne) 2023; 14:1081831. [PMID: 37361518 PMCID: PMC10289407 DOI: 10.3389/fendo.2023.1081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Breast cancer is the most common malignancy in women, and it is linked to several risk factors including genetic alterations, obesity, estrogen signaling, insulin levels, and glucose metabolism deregulation. Insulin and Insulin-like growth factor signaling exert a mitogenic and pro-survival effect. Indeed, epidemiological and pre-clinical studies have shown its involvement in the development, progression, and therapy resistance of several cancer types including breast cancer. Insulin/Insulin-like growth factor signaling is triggered by two insulin receptor isoforms identified as IRA and IRB and by Insulin-like growth factor receptor I. Both classes of receptors show high homology and can initiate the intracellular signaling cascade alone or by hybrids formation. While the role of Insulin-like growth factor receptor I in breast cancer progression and therapy resistance is well established, the effects of insulin receptors in this context are complex and not completely elucidated. Methods We used estrogen-dependent insulin-like growth factor receptor I deleted gene (MCF7IGFIRKO) breast cancer cell models, lentivirally transduced to over-express empty-vector (MCF7IGFIRKO/EV), IRA (MCF7IGFIRKO/IRA) or IRB (MCF7IGFIRKO/IRB), to investigate the role of insulin receptors on the antiproliferative activity of tamoxifen in presence of low and high glucose concentrations. The tamoxifen-dependent cytotoxic effects on cell proliferation were determined by MTT assay and clonogenic potential measurement. Cell cycle and apoptosis were assessed by FACS, while immunoblot was used for protein analysis. Gene expression profiling was investigated by a PCR array concerning genes involved in apoptotic process by RT-qPCR. Results We found that glucose levels played a crucial role in tamoxifen response mediated by IRA and IRB. High glucose increased the IC50 value of tamoxifen for both insulin receptors and IRA-promoted cell cycle progression more than IRB, independently of glucose levels and insulin stimulation. IRB, in turn, showed anti-apoptotic properties, preserving cells' survival after prolonged tamoxifen exposure, and negatively modulated pro-apoptotic genes when compared to IRA. Discussion Our findings suggest that glucose levels modify insulin receptors signaling and that this event can interfere with the tamoxifen therapeutic activity. The investigation of glucose metabolism and insulin receptor expression could have clinical implications in Estrogen Receptor positive breast cancer patients receiving endocrine treatments.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Nunziatina Laura Parrinello
- Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
6
|
Scordamaglia D, Cirillo F, Talia M, Santolla MF, Rigiracciolo DC, Muglia L, Zicarelli A, De Rosis S, Giordano F, Miglietta AM, De Francesco EM, Vella V, Belfiore A, Lappano R, Maggiolini M. Metformin counteracts stimulatory effects induced by insulin in primary breast cancer cells. J Transl Med 2022; 20:263. [PMID: 35672854 PMCID: PMC9172136 DOI: 10.1186/s12967-022-03463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. Methods Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. Results We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. Conclusions Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03463-y.
Collapse
|
7
|
Godina C, Khazaei S, Tryggvadottir H, Visse E, Nodin B, Jirström K, Borgquist S, Bosch A, Isaksson K, Jernström H. Prognostic impact of tumor-specific insulin-like growth factor binding protein 7 (IGFBP7) levels in breast cancer: a prospective cohort study. Carcinogenesis 2021; 42:1314-1325. [PMID: 34606580 PMCID: PMC8598394 DOI: 10.1093/carcin/bgab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
The prognostic impact of insulin-like growth factor binding protein 7 (IGFBP7) in breast cancer is unclear. Host factors, including lifestyle, anthropometry and metabolic profile, might influence tumor-specific IGFBP7. This study aimed to investigate whether IGFBP7 levels and messenger ribonucleic acid (mRNA) expression are associated with the patient and tumor characteristics and prognosis in breast cancer. Patients with primary breast cancer in Lund, Sweden, were included preoperatively in the study between 2002 and 2012 (n = 1018). Tumor-specific IGFBP7 protein levels were evaluated with immunohistochemistry using tissue microarrays in tumors from 878 patients. IGFBP7 mRNA expression and its corresponding clinical data were obtained from The Cancer Genome Atlas and analyzed for 809 patients. Tumor-specific IGFBP7 protein levels were categorized based on Histo 300 scores into IGFBP7low (6.2%), IGFBP7intermediate (75.7%) and IGFBP7high (18.1%). Both low IGFBP7 protein levels and mRNA expression were associated with less aggressive tumor characteristics. Overall, IGFBP7low conferred low recurrence risk. The prognostic impact of IGFBP7high varied according to any alcohol consumption and tamoxifen treatment. IGFBP7high was associated with low recurrence risk in alcohol consumers but high recurrence risk in alcohol abstainers (Pinteraction= 0.039). Moreover, the combination of IGFBP7high and estrogen receptor-positive tumors was associated with low recurrence risk only in tamoxifen-treated patients (Pinteraction= 0.029). To conclude, IGFBP7low might be a good, independent prognosticator in breast cancer. The prognostic impact of IGFBP7high depends on host factors and treatment. IGFBP7 merits further investigation to confirm whether it could be a suitable biomarker for treatment selection.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden
| | - Somayeh Khazaei
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Edward Visse
- Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,Kristianstad Hospital, Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden
| |
Collapse
|
8
|
Vella V, Giuliano M, La Ferlita A, Pellegrino M, Gaudenzi G, Alaimo S, Massimino M, Pulvirenti A, Dicitore A, Vigneri P, Vitale G, Malaguarnera R, Morrione A, Sims AH, Ferro A, Maggiolini M, Lappano R, De Francesco EM, Belfiore A. Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells. Cells 2021; 10:3145. [PMID: 34831367 PMCID: PMC8621444 DOI: 10.3390/cells10113145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Marika Giuliano
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Alessandro La Ferlita
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Michele Massimino
- Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.M.); (P.V.)
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Alessandra Dicitore
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
| | - Paolo Vigneri
- Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.M.); (P.V.)
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | | | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland EH4 2XR, UK;
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| |
Collapse
|
9
|
Cirillo F, Pellegrino M, Talia M, Perrotta ID, Rigiracciolo DC, Spinelli A, Scordamaglia D, Muglia L, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. Estrogen receptor variant ERα46 and insulin receptor drive in primary breast cancer cells growth effects and interleukin 11 induction prompting the motility of cancer-associated fibroblasts. Clin Transl Med 2021; 11:e516. [PMID: 34841688 PMCID: PMC8567034 DOI: 10.1002/ctm2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Among the prognostic and predictive biomarkers of breast cancer (BC), the role of estrogen receptor (ER)α wild-type has been acknowledged, although the action of certain ERα splice variants has not been elucidated. Insulin/insulin receptor (IR) axis has also been involved in the progression and metastasis of BC. For instance, hyperinsulinemia, which is often associated with obesity and type 2 diabetes, may be a risk factor for BC. Similarly, an aberrant expression of IR or its hyperactivation may correlate with aggressive BC phenotypes. In the present study, we have shown that a novel naturally immortalized BC cell line (named BCAHC-1) is characterized by a unique expression of 46 kDa ERα splice variant (ERα46) along with IR. Moreover, we have shown that a multifaceted crosstalk between ERα46 and IR occurs in BCAHC-1 cells upon estrogen and insulin exposure for growth and pulmonary metastasis. Through high-throughput RNA sequencing analysis, we have also found that the cytokine interleukin-11 (IL11) is the main factor linking BCAHC-1 cells to breast cancer-associated fibroblasts (CAFs). In particular, we have found that IL11 induced by estrogens and insulin in BCAHC-1 cells regulates pro-tumorigenic genes of the "extracellular matrix organization" signaling pathway, such as ICAM-1 and ITGA5, and promotes both migratory and invasive features in breast CAFs. Overall, our results may open a new scientific avenue to identify additional prognostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of PhysicsUniversity of CalabriaRendeItaly
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory, and Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly
| | | | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rita Guzzi
- Department of PhysicsUniversity of CalabriaRendeItaly
| | | | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of CataniaGaribaldi‐Nesima HospitalCataniaItaly
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| |
Collapse
|
10
|
Du ZR, Gu Y, Xie XM, Zhang M, Jiang GY, Chen WF. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats. J Steroid Biochem Mol Biol 2021; 214:105989. [PMID: 34478828 DOI: 10.1016/j.jsbmb.2021.105989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Genistein is an estrogen-like phytoestrogen that can exert biological effects via the crosstalk of estrogen receptor and insulin-like growth factor 1 receptor (IGF-1R). The present study aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) and IGF-1R in the anti-inflammatory effects of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in ovariectomized rats. Our results showed that genistein treatment could ameliorate the apomorphine-induced rotational behavior in LPS-induced inflammatory PD rat model. Genistein attenuated LPS-induced decrease of the contents of dopamine (DA) and its metabolites in striatum as well as the loss of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra (SN) of the lesioned side, which could be blocked by GPER antagonist G15 or IGF-1R antagonist JB1. Meanwhile, G15 or JB1 could attenuate the anti-inflammatory effects of genistein in LPS-induced microglial activation and production of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, genistein could inhibit the LPS-induced phosphorylation of p38, JNK, ERK and IκB in the lesioned side of SN and these effects could also be blocked by G15 or JB1. Taken together, our data provide the first evidence that genistein can inhibit the increase of microglia and protect dopaminergic neurons at least in part via GPER and IGF-1R signaling pathways in ovariectomized PD rat model.
Collapse
Affiliation(s)
- Zhong-Rui Du
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Laboratory of Sports of Human Science, Ludong University, Yantai, 264000, China
| | - Yu Gu
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiao-Man Xie
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mei Zhang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guo-Yi Jiang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Fernandez CJ, George AS, Subrahmanyan NA, Pappachan JM. Epidemiological link between obesity, type 2 diabetes mellitus and cancer. World J Methodol 2021; 11:23-45. [PMID: 34026577 PMCID: PMC8127420 DOI: 10.5662/wjm.v11.i3.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a complex interaction between obesity, type 2 diabetes mellitus (T2DM) and cancer, and an increase in the incidence of cancer is expected with the growing obesity-diabetes pandemic. The association of cancer with diabetes mellitus and obesity appears to be site-specific, the highest risk being for post-menopausal breast cancer, endometrial cancer, and colorectal cancer. Moreover, there is worsening of hyperglycaemia with the onset of cancer, evidencing a bi-directional link between cancer and diabetes mellitus and the need for monitoring for diabetes in cancer survivors. In this review, we look at the epidemiological evidence from observational studies and Mendelian randomization studies linking obesity, diabetes, and cancer, as well as the complex pathophysiological mechanisms involved, including insulin resistance with associated hyperinsulinaemia, the effect of chronic low-grade inflammation, and the effect of various adipokines that are associated with obesity and T2DM. Additionally, we describe the novel therapeutic strategies, based on their role on the discrete pathophysiological mechanisms involved in the tumourigenesis.
Collapse
Affiliation(s)
- Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Annu Susan George
- Department of Medical Oncology, VPS Lakeshore Hospital, Cochin 682040, India
| | | | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
12
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
13
|
Sidorkiewicz I, Jóźwik M, Niemira M, Krętowski A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers (Basel) 2020; 12:E2559. [PMID: 32911852 PMCID: PMC7563767 DOI: 10.3390/cancers12092559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) remains one of the most common cancers of the female reproductive system. Epidemiological and clinical data implicate insulin resistance (IR) and its accompanying hyperinsulinemia as key factors in the development of EC. MicroRNAs (miRNAs) are short molecules of non-coding endogenous RNA that function as post-transcriptional regulators. Accumulating evidence has shown that the miRNA expression pattern is also likely to be associated with EC risk factors. The aim of this work was the verification of the relationships between IR, EC, and miRNA, and, as based on the literature data, elucidation of miRNA's potential utility for EC prevention in IR patients. The pathways affected in IR relate to the insulin receptors, insulin-like growth factors and their receptors, insulin-like growth factor binding proteins, sex hormone-binding globulin, and estrogens. Herein, we present and discuss arguments for miRNAs as a plausible molecular link between IR and EC development. Specifically, our careful literature search indicated that dysregulation of at least 13 miRNAs has been ascribed to both conditions. We conclude that there is a reasonable possibility for miRNAs to become a predictive factor of future EC in IR patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
14
|
Alboghobeish Z, Hekmatdoost A, Jalali S, Ahmadi M, Rashidkhani B. Carbohydrate Intake, Glycemic Index, and Glycemic Load and the Risk of Breast Cancer among Iranian Women. Nutr Cancer 2020; 73:785-793. [DOI: 10.1080/01635581.2020.1776886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zeinab Alboghobeish
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Jalali
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ahmadi
- Hamadan University of Medical Sciences and Health Services, Hamedan, Iran
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hernández-Silva CD, Villegas-Pineda JC, Pereira-Suárez AL. Expression and Role of the G Protein-Coupled Estrogen Receptor (GPR30/GPER) in the Development and Immune Response in Female Reproductive Cancers. Front Endocrinol (Lausanne) 2020; 11:544. [PMID: 32973677 PMCID: PMC7468389 DOI: 10.3389/fendo.2020.00544] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer is a major public health issue and represents the second leading cause of death in women worldwide, as female reproductive-related neoplasms are the main cause of incidence and mortality. Female reproductive cancers have a close relationship to estrogens, the principal female sex steroid hormones. Estrogens exert their actions by the nuclear estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). ERα, and ERβ act as transcription factors mediating genomic effects. Besides, the G protein-coupled estrogen receptor (GPER, formerly known as GPR30) was recently described as a seven-transmembrane receptor that mediates non-genomic estrogenic signaling, including calcium mobilization, cAMP synthesis, cleavage of matrix metalloproteinases, transactivation of epidermal growth factor receptor (EGFR), and the subsequent activation of PI3K and MAPK signaling pathways, which are the reasons why it is related to cellular processes, such as cell-cycle progression, cellular proliferation, differentiation, apoptosis, migration, and invasion. Since its discovery, selective agonists and antagonists have been found and developed. GPER has been implicated in a variety of hormone-responsiveness tumors, such as breast, endometrial, ovarian, cervical, prostate, and testicular cancer as well as lung, hepatic, thyroid, colorectal, and adrenocortical cancers. Nevertheless, GPER actions in cancer are still debatable due to the conflicting information that has been reported to date, since many reports indicate that activation of this receptor can modulate carcinogenesis. In contrast, many others show that its activation inhibits tumor activity. Besides, estrogens play an essential role in the regulation of the immune system, but little information exists about the role of GPER activation on its modulation within cancer context. This review focuses on the role that the stimulation of GPER plays in female reproductive neoplasms, specifically breast, endometrial, ovarian, and cervical cancers, in its tumor activity and immune response regulation.
Collapse
Affiliation(s)
- Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez
| |
Collapse
|
16
|
Fabian CJ, Nye L, Powers KR, Nydegger JL, Kreutzjans AL, Phillips TA, Metheny T, Winblad O, Zalles CM, Hagan CR, Goodman ML, Gajewski BJ, Koestler DC, Chalise P, Kimler BF. Effect of Bazedoxifene and Conjugated Estrogen (Duavee) on Breast Cancer Risk Biomarkers in High-Risk Women: A Pilot Study. Cancer Prev Res (Phila) 2019; 12:711-720. [PMID: 31420361 PMCID: PMC6774863 DOI: 10.1158/1940-6207.capr-19-0315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022]
Abstract
Interventions that relieve vasomotor symptoms while reducing risk for breast cancer would likely improve uptake of chemoprevention for perimenopausal and postmenopausal women. We conducted a pilot study with 6 months of the tissue selective estrogen complex bazedoxifene (20 mg) and conjugated estrogen (0.45 mg; Duavee) to assess feasibility and effects on risk biomarkers for postmenopausal breast cancer. Risk biomarkers included fully automated mammographic volumetric density (Volpara), benign breast tissue Ki-67 (MIB-1 immunochemistry), and serum levels of progesterone, IGF-1, and IGFBP3, bioavailable estradiol and testosterone. Twenty-eight perimenopausal and postmenopausal women at increased risk for breast cancer were enrolled: 13 in cohort A with baseline Ki-67 < 1% and 15 in cohort B with baseline Ki-67 of 1% to 4%. All completed the study with > 85% drug adherence. Significant changes in biomarkers, uncorrected for multiple comparisons, were a decrease in mammographic fibroglandular volume (P = 0.043); decreases in serum progesterone, bioavailable testosterone, and IGF-1 (P < 0.01), an increase in serum bioavailable estradiol (P < 0.001), and for women from cohort B a reduction in Ki-67 (P = 0.017). An improvement in median hot flash score from 15 at baseline to 0 at 6 months, and menopause-specific quality-of-life total, vasomotor, and sexual domain scores were also observed (P < 0.001). Given the favorable effects on risk biomarkers and patient reported outcomes, a placebo-controlled phase IIB trial is warranted.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren Nye
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Kandy R Powers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Nydegger
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amy L Kreutzjans
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Onalisa Winblad
- Department of Diagnostic Radiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Carola M Zalles
- Department of Pathology, Boca Raton Hospital, Boca Raton, Florida
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Byron J Gajewski
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
17
|
Vella V, Malaguarnera R, Nicolosi ML, Morrione A, Belfiore A. Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118522. [PMID: 31394114 DOI: 10.1016/j.bbamcr.2019.118522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
The insulin/insulin-like growth factor system (IIGFs) plays a fundamental role in the regulation of prenatal and postnatal growth, metabolism and homeostasis. As a consequence, dysregulation of this axis is associated with growth disturbance, type 2 diabetes, chronic inflammation and tumor progression. A functional crosstalk between IIGFs and discoidin domain receptors (DDRs) has been recently discovered. DDRs are non-integrin collagen receptors that canonically undergo slow and long-lasting autophosphorylation after binding to fibrillar collagen. While both DDR1 and DDR2 functionally interact with IIGFs, the crosstalk with DDR1 is so far better characterized. Notably, the IIGFs-DDR1 crosstalk presents a feed-forward mechanism, which does not require collagen binding, thus identifying novel non-canonical action of DDR1. Further studies are needed to fully explore the role of this IIGFs-DDRs functional loop as potential target in the treatment of inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | | | - Maria Luisa Nicolosi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.
| |
Collapse
|
18
|
Lappano R, Mallet C, Rizzuti B, Grande F, Galli GR, Byrne C, Broutin I, Boudieu L, Eschalier A, Jacquot Y, Maggiolini M. The Peptide ERα17p Is a GPER Inverse Agonist that Exerts Antiproliferative Effects in Breast Cancer Cells. Cells 2019; 8:cells8060590. [PMID: 31207943 PMCID: PMC6627388 DOI: 10.3390/cells8060590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The inhibition of the G protein-coupled estrogen receptor (GPER) offers promising perspectives for the treatment of breast tumors. A peptide corresponding to part of the hinge region/AF2 domain of the human estrogen receptor α (ERα17p, residues 295–311) exerts anti-proliferative effects in various breast cancer cells including those used as triple negative breast cancer (TNBC) models. As preliminary investigations have evoked a role for the GPER in the mechanism of action of this peptide, we focused our studies on this protein using SkBr3 breast cancer cells, which are ideal for GPER evaluation. ERα17p inhibits cell growth by targeting membrane signaling. Identified as a GPER inverse agonist, it co-localizes with GPER and induces the proteasome-dependent downregulation of GPER. It also decreases the level of pEGFR (phosphorylation of epidermal growth factor receptor), pERK1/2 (phosphorylation of extracellular signal-regulated kinase), and c-fos. ERα17p is rapidly distributed in mice after intra-peritoneal injection and is found primarily in the mammary glands. The N-terminal PLMI motif, which presents analogies with the GPER antagonist PBX1, reproduces the effect of the whole ERα17p. Thus, this motif seems to direct the action of the entire peptide, as highlighted by docking and molecular dynamics studies. Consequently, the tetrapeptide PLMI, which can be claimed as the first peptidic GPER disruptor, could open new avenues for specific GPER modulators.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Christophe Mallet
- NEURO-DOL Basics & Clinical Pharmacology of Pain, INSERM, CHU, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
- ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Cillian Byrne
- Laboratoire des Biomolécules (LBM), CNRS-UMR 7203, Sorbonne University, Ecole Normale Supérieure, 75252 Paris Cedex 05, France.
| | - Isabelle Broutin
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS-UMR 8038, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 75270 Paris Cedex 06, France.
| | - Ludivine Boudieu
- NEURO-DOL Basics & Clinical Pharmacology of Pain, INSERM, CHU, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
- ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Alain Eschalier
- NEURO-DOL Basics & Clinical Pharmacology of Pain, INSERM, CHU, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
- ANALGESIA Institute, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Yves Jacquot
- Laboratoire des Biomolécules (LBM), CNRS-UMR 7203, Sorbonne University, Ecole Normale Supérieure, 75252 Paris Cedex 05, France.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
19
|
Chiu HC, Li CJ, Yiang GT, Tsai APY, Wu MY. Epithelial to Mesenchymal Transition and Cell Biology of Molecular Regulation in Endometrial Carcinogenesis. J Clin Med 2019; 8:E439. [PMID: 30935077 PMCID: PMC6518354 DOI: 10.3390/jcm8040439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Endometrial carcinogenesis is involved in several signaling pathways and it comprises multiple steps. The four major signaling pathways-PI3K/AKT, Ras/Raf/MEK/ERK, WNT/β-catenin, and vascular endothelial growth factor (VEGF)-are involved in tumor cell metabolism, growth, proliferation, survival, and angiogenesis. The genetic mutation and germline mitochondrial DNA mutations also impair cell proliferation, anti-apoptosis signaling, and epithelial⁻mesenchymal transition by several transcription factors, leading to endometrial carcinogenesis and distant metastasis. The PI3K/AKT pathway activates the ransforming growth factor beta (TGF-β)-mediated endothelial-to-mesenchymal transition (EMT) and it interacts with downstream signals to upregulate EMT-associated factors. Estrogen and progesterone signaling in EMT also play key roles in the prognosis of endometrial carcinogenesis. In this review article, we summarize the current clinical and basic research efforts regarding the detailed molecular regulation in endometrial carcinogenesis, especially in EMT, to provide novel targets for further anti-carcinogenesis treatment.
Collapse
Affiliation(s)
- Hsiao-Chen Chiu
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
20
|
Vivacqua A, Muoio MG, Miglietta AM, Maggiolini M. Differential MicroRNA Landscape Triggered by Estrogens in Cancer Associated Fibroblasts (CAFs) of Primary and Metastatic Breast Tumors. Cancers (Basel) 2019; 11:cancers11030412. [PMID: 30909585 PMCID: PMC6468788 DOI: 10.3390/cancers11030412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/22/2023] Open
Abstract
Cancer associated fibroblasts (CAFs) play a main role in breast cancer progression and metastasis. Estrogens modulate in breast CAFs the expression of microRNAs (miRNAs) that are involved in the development of many tumors. In order to provide novel insights on the regulation of miRNAs by estrogens in breast cancer, we analyzed the expression of 754 miRNAs in CAFs obtained from primary mammary tumors and CAFs derived from a cutaneous breast cancer metastasis. Using the TaqMan™ Human MicroRNA Array, we found that 17β-estradiol (E2) modulates numerous peculiar and common miRNAs in CAFs derived from primary and the metastatic malignancies. In particular, we assessed that E2 modulates 133 miRNAs (41 up and 92 downregulated) in CAFs derived from primary breast tumors, whereas E2 modulates 415 miRNAs (399 up and 16 downregulated) in CAFs derived from a cutaneous metastasis of breast carcinoma. Therefore, a number of miRNAs three times higher in metastatic CAFs with respect to primary breast CAFs was found modulated by E2. Our findings shed new light on the cumulative regulation of miRNAs by E2 in the main players of the tumor microenvironment as CAFs. Moreover, our data may be taken into consideration that is useful toward innovative prognostic and therapeutic approaches in breast cancer progression.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Maria Grazia Muoio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | | | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
21
|
Xihua L, Shengjie T, Weiwei G, Matro E, Tingting T, Lin L, Fang W, Jiaqiang Z, Fenping Z, Hong L. Circulating miR-143-3p inhibition protects against insulin resistance in Metabolic Syndrome via targeting of the insulin-like growth factor 2 receptor. Transl Res 2019; 205:33-43. [PMID: 30392876 DOI: 10.1016/j.trsl.2018.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is characterized by a cluster of metabolic disorders including obesity, dyslipidemia, hyperglycemia, and hypertension. Here, we report that 27 microRNAs were found to be expressed differently in serum and urine samples of MetS patients compared to control subjects on microarray analysis. Further qualitative real time- polymerase chain reaction analyses confirmed that circulating levels of miR-143-3p were significantly elevated in MetS patients compared with controls, both in serum and urine samples. After accounting for confounding factors, high levels of miR-143-3p remained an independent risk factor for insulin resistance. Inhibition of miR-143-3p expression in mice protected against development of obesity-associated insulin resistance. Furthermore, we demonstrated that insulin-like growth factor 2 receptor (IGF2R) was among the target genes of miR-143-3p by searching 3 widely used bioinformatics databases and preliminary validation. Our experiments suggest that knockdown of circulating miR-143-3p may protect against insulin resistance in the setting of MetS via targeting of IGF2R and activation of the insulin signaling pathway. Our results characterize the miR-143-3p-IGF2R pathway as a potential target for the treatment of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Lin Xihua
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, the Affliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Tang Shengjie
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Gui Weiwei
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Erik Matro
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Tingting
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Lin
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wu Fang
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Jiaqiang
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Fenping
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Hong
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Gogola J, Hoffmann M, Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate the proliferation of granulosa tumor spheroids via GPR30 and IGF1R but not via the classic estrogen receptors. CHEMOSPHERE 2019; 217:100-110. [PMID: 30414542 DOI: 10.1016/j.chemosphere.2018.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies have found that women have detectable levels of organic pollutants such as hexachlorobenzene (HCB), 2,2-dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyl 153 (PCB153), perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) in their follicular fluid. Thus, these compounds may directly affect the function of granulosa cells within the ovary and may promote granulosa cell tumor (GCT) progression. Two human GCT cell lines, COV434 and KGN, have been used as in vitro model systems to represent juvenile (JGCT) and adult (AGCT) GCT subtypes, respectively. In this study, we found that basal expression of estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), and insulin-like growth factor 1 receptor (IGF1R) was higher in the AGCT subtype than in the JGCT subtype. All of the compounds acted as mitogenic factors at low nanomolar concentrations in the JGCT and AGCT forms of GCT. Interestingly, PFOA, PFOS, and HCB stimulated cell proliferation through IGF1R, whereas p,p'-DDE acted through GPR30. Moreover, a mixture of the five compounds also significantly stimulated granulosa cell proliferation; however, the observed effect was lower than predicted. Interestingly, the proliferative effect of a mixture of these compounds was dependent on IGF1R and GPR30 but independent of the classic estrogen receptors. Taken together, our results demonstrate for the first time that mixtures of persistent organic pollutants present in follicular fluids may induce granulosa tumor progression through IGF1R and GPR30 by acting as mitogenic factors in granulosa cells.
Collapse
Affiliation(s)
- Justyna Gogola
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Marta Hoffmann
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
23
|
Tian W, Teng F, Gao J, Gao C, Liu G, Zhang Y, Yu S, Zhang W, Wang Y, Xue F. Estrogen and insulin synergistically promote endometrial cancer progression via crosstalk between their receptor signaling pathways. Cancer Biol Med 2019; 16:55-70. [PMID: 31119046 PMCID: PMC6528450 DOI: 10.20892/j.issn.2095-3941.2018.0157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Despite evidence that estrogens and insulin are involved in the development and progression of many cancers, their synergistic role in endometrial carcinoma (EC) has not been analyzed yet. Methods Here, we investigated how estrogens act synergistically with insulin to promote EC progression. Cell growth in vitro and in vivo, effects of estradiol and insulin on apoptosis and cell cycle distribution, and expression and activation of estrogen receptor (ER), insulin receptor (InsR), and key proteins in the PI3K and MAPK pathways were examined after combined stimulation with estradiol and insulin. Results Compared to EC cells treated with estradiol or insulin alone, those treated with both estradiol and insulin exhibited stronger stimulation. Estradiol significantly induced phosphorylation of InsR-β and IRS-1, whereas insulin significantly induced phosphorylation of ER-α. In addition, treatment with both insulin and estradiol together significantly increased the expression and phosphorylation of Akt, MAPK, and ERK. Notably, InsR-β inhibition had a limited effect on estradiol-dependent proliferation, cell cycle, and apoptosis, whereas ER-α inhibition had a limited insulin-dependent effect, in EC cell lines. Insulin and estradiol individually and synergistically promoted EC xenograft growth in mice. Conclusions Estrogen and insulin play synergistic roles in EC carcinogenesis and progression by activating InsR-β and ER-α, promoting a crosstalk between them, and thereby resulting in the activation of downstream PI3K/Akt and MAPK/ERK signaling pathways.
Collapse
Affiliation(s)
| | - Fei Teng
- Department of Gynecology and Obstetrics
| | | | - Chao Gao
- Department of Gynecology and Obstetrics
| | | | | | - Shizhu Yu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Zhang
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem 27157, NC USA
| | | | | |
Collapse
|
24
|
The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci 2018; 19:ijms19123814. [PMID: 30513575 PMCID: PMC6321330 DOI: 10.3390/ijms19123814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine tumor. Although the majority of TCs show good prognoses, a minor proportion are aggressive and refractory to conventional therapies. So far, the molecular mechanisms underlying TC pathogenesis are incompletely understood. Evidence suggests that TC cells and their precursors are responsive to insulin and insulin-like growth factors (IGFs), and often overexpress receptors for insulin (IR) and IGF-1 (IGF-1R). IR exists in two isoforms, namely IR-A and IR-B. The first binds insulin and IGF-2, unlike IR-B, which only binds insulin. IR-A is preferentially expressed in prenatal life and contributes to development through IGF-2 action. Aggressive TC overexpresses IR-A, IGF-2, and IGF-1R. The over-activation of IR-A/IGF-2 loop in TC is associated with stem-like features and refractoriness to some targeted therapies. Importantly, both IR isoforms crosstalk with IGF-1R, giving rise to the formation of hybrids receptors (HR-A or HR-B). Other interactions have been demonstrated with other molecules such as the non-integrin collagen receptor, discoidin domain receptor 1 (DDR1), and the receptor for the hepatocyte growth factor (HGF), Met. These functional networks provide mechanisms for IR signaling diversification, which may also exert a role in TC stem cell biology, thereby contributing to TC initiation and progression. This review focuses on the molecular mechanisms by which deregulated IR isoforms and their crosstalk with other molecules and signaling pathways in TC cells and their precursors may contribute to thyroid carcinogenesis, progression, and resistance to conventional treatments. We also highlight how targeting these alterations starting from TC progenitors cells may represent new therapeutic strategies to improve the clinical management of advanced TCs.
Collapse
|
25
|
Akimoto T, Takasawa A, Takasawa K, Aoyama T, Murata M, Osanai M, Saito T, Sawada N. Estrogen/GPR30 Signaling Contributes to the Malignant Potentials of ER-Negative Cervical Adenocarcinoma via Regulation of Claudin-1 Expression. Neoplasia 2018; 20:1083-1093. [PMID: 30227306 PMCID: PMC6141703 DOI: 10.1016/j.neo.2018.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Cervical adenocarcinomas are believed to lose estrogen response on the basis of no expression of a nuclear estrogen receptor such as ERα in clinical pathology. Here, we demonstrated that cervical adenocarcinoma cells respond to a physiological concentration of estrogen to upregulate claudin-1, a cell surface molecule highly expressed in cervical adenocarcinomas. Knockout of claudin-1 induced apoptosis and significantly inhibited proliferation, migration, and invasion of cervical adenocarcinoma cells and tumorigenicity in vivo. Importantly, all of the cervical adenocarcinoma cell lines examined expressed a membrane-bound type estrogen receptor, G protein–coupled receptor 30 (GPR30/GPER1), but not ERα. Estrogen-dependent induction of claudin-1 expression was mediated by GPR30 via ERK and/or Akt signaling. In surgical specimens, there was a positive correlation between claudin-1 expression and GPR30 expression. Double high expression of claudin-1 and GPR30 predicts poor prognosis in patients with cervical adenocarcinomas. Mechanism-based targeting of estrogen/GPR30 signaling and claudin-1 may be effective for cervical adenocarcinoma therapy.
Collapse
Affiliation(s)
- Taishi Akimoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan; Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan.
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
26
|
Belfiore A, Malaguarnera R, Nicolosi ML, Lappano R, Ragusa M, Morrione A, Vella V. A novel functional crosstalk between DDR1 and the IGF axis and its relevance for breast cancer. Cell Adh Migr 2018; 12:305-314. [PMID: 29486622 DOI: 10.1080/19336918.2018.1445953] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last decades increasing importance has been attributed to the Insulin/Insulin-like Growth Factor signaling (IIGFs) in cancer development, progression and resistance to therapy. In fact, IIGFs is often deregulated in cancer. In particular, the mitogenic insulin receptor isoform A (IR-A) and the insulin-like growth factor receptor (IGF-1R) are frequently overexpressed in cancer together with their cognate ligands IGF-1 and IGF-2. Recently, we identified discoidin domain receptor 1 (DDR1) as a new IR-A interacting protein. DDR1, a non-integrin collagen tyrosine kinase receptor, is overexpressed in several malignancies and plays a role in cancer progression and metastasis. Herein, we review recent findings indicating that DDR1 is as a novel modulator of IR and IGF-1R expression and function. DDR1 functionally interacts with IR and IGF-1R and enhances the biological actions of insulin, IGF-1 and IGF-2. Conversely, DDR1 is upregulated by IGF-1, IGF-2 and insulin through the PI3K/AKT/miR-199a-5p circuit. Furthermore, we discuss the role of the non-canonical estrogen receptor GPER1 in the DDR1-IIGFs crosstalk. These data suggest a wider role of DDR1 as a regulator of cell response to hormones, growth factors, and signals coming from the extracellular matrix.
Collapse
Affiliation(s)
- Antonino Belfiore
- a Endocrinology, Department of Clinical and Experimental Medicine , University of Catania, Garibaldi-Nesima Hospital , Catania , Italy
| | - Roberta Malaguarnera
- b Endocrinology, Department of Health Sciences , University Magna Graecia of Catanzaro , Catanzaro , Italy
| | - Maria Luisa Nicolosi
- b Endocrinology, Department of Health Sciences , University Magna Graecia of Catanzaro , Catanzaro , Italy
| | - Rosamaria Lappano
- c Department of Pharmacy , Health and Nutritional Sciences, University of Calabria , Rende , Italy
| | - Marco Ragusa
- d Department of Biomedical and Biotechnological Sciences , Unit of BioMolecular, Genome, and Complex System BioMedicine, University of Catania , Catania , Italy
| | - Andrea Morrione
- e Department of Urology and Biology of Prostate Cancer Program , Sidney Kimmel Cancer Center, Thomas Jefferson University , Philadelphia , Pennsylvania
| | - Veronica Vella
- a Endocrinology, Department of Clinical and Experimental Medicine , University of Catania, Garibaldi-Nesima Hospital , Catania , Italy.,f School of Human and Social Sciences, "Kore" University of Enna , Enna , Italy
| |
Collapse
|
27
|
Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. J Steroid Biochem Mol Biol 2018; 176:4-15. [PMID: 28347854 PMCID: PMC5716468 DOI: 10.1016/j.jsbmb.2017.03.021] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland.
| | - Edward J Filardo
- Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Stephen J Lolait
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center and University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
28
|
Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells. Oncotarget 2018; 7:52710-52728. [PMID: 27384677 PMCID: PMC5288143 DOI: 10.18632/oncotarget.10348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.
Collapse
|
29
|
De Francesco EM, Sims AH, Maggiolini M, Sotgia F, Lisanti MP, Clarke RB. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res 2017; 19:129. [PMID: 29212519 PMCID: PMC5719673 DOI: 10.1186/s13058-017-0923-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. METHODS We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. RESULTS We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. CONCLUSIONS These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies.
Collapse
Affiliation(s)
- Ernestina M De Francesco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via Savinio, 87036, Rende, Italy. .,Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M204GJ, UK.
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, UK
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via Savinio, 87036, Rende, Italy
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, M5 4WT, UK
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, M5 4WT, UK
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M204GJ, UK.
| |
Collapse
|
30
|
Yuan H, Deng R, Zhao X, Chen R, Hou G, Zhang H, Wang Y, Xu M, Jiang B, Yu J. SUMO1 modification of KHSRP regulates tumorigenesis by preventing the TL-G-Rich miRNA biogenesis. Mol Cancer 2017; 16:157. [PMID: 29020972 PMCID: PMC5637259 DOI: 10.1186/s12943-017-0724-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators involved in diverse physiological and pathological processes including cancer. SUMO (small ubiquitin-like modifier) is a reversible protein modifier. We recently found that SUMOylation of TARBP2 and DGCR8 is involved in the regulation of the miRNA pathway. KHSRP is a single stranded nucleic acid binding protein with roles in transcription and mRNA decay, and it is also a component of the Drosha-DGCR8 complex promoting the miRNA biogenesis. Methods The in vivo SUMOylation assay using the Ni2+-NTA affinity pulldown or immunoprecipitation (IP) and the in vitro E.coli-based SUMOylation assay were used to analyze SUMOylation of KHSRP. Nuclear/Cytosol fractionation assay and immunofluorescent staining were used to observe the localization of KHSRP. High-throughput miRNA sequencing, quantantive RT-PCR and RNA immunoprecipitation assay (RIP) were employed to determine the effects of KHSRP SUMO1 modification on the miRNA biogenesis. The soft-agar colony formation, migration, vasculogenic mimicry (VM) and three-dimensional (3D) cell culture assays were performed to detect the phenotypes of tumor cells in vitro, and the xenograft tumor model in mice was conducted to verify that SUMO1 modification of KHSRP regulated tumorigenesis in vivo. Results KHSRP is modified by SUMO1 at the major site K87, and this modification can be increased upon the microenvironmental hypoxia while reduced by the treatment with growth factors. SUMO1 modification of KHSRP inhibits its interaction with the pri-miRNA/Drosha-DGCR8 complex and probably increases its translocation from the nucleus to the cytoplasm. Consequently, SUMO1 modification of KHSRP impairs the processing step of pre-miRNAs from pri-miRNAs which especially harbor short G-rich stretches in their terminal loops (TL), resulting in the downregulation of a subset of TL-G-Rich miRNAs such as let-7 family and consequential tumorigenesis. Conclusions Our data demonstrate how the miRNA biogenesis pathway is connected to tumorigenesis and cancer progression through the reversible SUMO1 modification of KHSRP. Electronic supplementary material The online version of this article (10.1186/s12943-017-0724-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haihua Yuan
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guofang Hou
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Xu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
31
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
32
|
Molina L, Figueroa CD, Bhoola KD, Ehrenfeld P. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer. Expert Opin Ther Targets 2017; 21:755-766. [PMID: 28671018 DOI: 10.1080/14728222.2017.1350264] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.
Collapse
Affiliation(s)
- Luis Molina
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Carlos D Figueroa
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Kanti D Bhoola
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Pamela Ehrenfeld
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| |
Collapse
|
33
|
Lv QY, Xie BY, Yang BY, Ning CC, Shan WW, Gu C, Luo XZ, Chen XJ, Zhang ZB, Feng YJ. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER. J Cancer 2017; 8:894-902. [PMID: 28382153 PMCID: PMC5381179 DOI: 10.7150/jca.17064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022] Open
Abstract
Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.
Collapse
Affiliation(s)
- Qiao-Ying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Ying Xie
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Yi Yang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Cheng-Cheng Ning
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Wei-Wei Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Chao Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xue-Zhen Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiao-Jun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Zhen-Bo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University school of medicine, Shanghai, 201620, China
| | - You-Ji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University school of medicine, Shanghai, 201620, China
| |
Collapse
|
34
|
Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis. Front Endocrinol (Lausanne) 2017; 8:31. [PMID: 28275367 PMCID: PMC5319972 DOI: 10.3389/fendo.2017.00031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments.
Collapse
Affiliation(s)
- Veronica Vella
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Giuliano
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Bellomo
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonino Belfiore,
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
35
|
GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget 2016; 7:94-111. [PMID: 26646587 PMCID: PMC4807985 DOI: 10.18632/oncotarget.6475] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022] Open
Abstract
Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.
Collapse
|
36
|
Crispo A, Augustin LSA, Grimaldi M, Nocerino F, Giudice A, Cavalcanti E, Di Bonito M, Botti G, De Laurentiis M, Rinaldo M, Esposito E, Riccardi G, Amore A, Libra M, Ciliberto G, Jenkins DJA, Montella M. Risk Differences Between Prediabetes And Diabetes According To Breast Cancer Molecular Subtypes. J Cell Physiol 2016; 232:1144-1150. [PMID: 27579809 DOI: 10.1002/jcp.25579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023]
Abstract
Hyperglycemia and hyperinsulinemia may play a role in breast carcinogenesis and prediabetes and diabetes have been associated with increased breast cancer (BC) risk. However, whether BC molecular subtypes may modify these associations is less clear. We therefore investigated these associations in all cases and by BC molecular subtypes among women living in Southern Italy. Cases were 557 patients with non-metastatic incident BC and controls were 592 outpatients enrolled during the same period as cases and in the same hospital for skin-related non-malignant conditions. Adjusted multivariate logistic regression models were built to assess the risks of developing BC in the presence of prediabetes or diabetes. The analyses were repeated by strata of BC molecular subtypes: Luminal A, Luminal B, HER2+, and Triple Negative (TN). Prediabetes and diabetes were significantly associated with higher BC incidence after controlling for known risk factors (OR = 1.94, 95% CI 1.32-2.87 and OR = 2.46, 95% CI 1.38-4.37, respectively). Similar results were seen in Luminal A and B while in the TN subtype only prediabetes was associated with BC (OR = 2.43, 95% CI 1.11-5.32). Among HER2+ patients, only diabetes was significantly associated with BC risk (OR = 3.04, 95% CI 1.24-7.47). Furthermore, when postmenopausal HER2+ was split into hormone receptor positive versus negative, the association with diabetes remained significant only in the former (OR = 5.13, 95% CI 1.53-17.22). These results suggest that prediabetes and diabetes are strongly associated with BC incidence and that these metabolic conditions may be more relevant in the presence of breast cancer molecular subtypes with positive hormone receptors. J. Cell. Physiol. 232: 1144-1150, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Crispo
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - L S A Augustin
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy.,Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada
| | - M Grimaldi
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - F Nocerino
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - A Giudice
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - E Cavalcanti
- Department of Diagnostic Pathology and Laboratory, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M Di Bonito
- Department of Diagnostic Pathology and Laboratory, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - G Botti
- Department of Diagnostic Pathology and Laboratory, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M De Laurentiis
- Department of Breast Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M Rinaldo
- Department of Breast Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - E Esposito
- Department of Breast Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy.,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - G Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - A Amore
- Department of Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M Libra
- Section of Clinical and General Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Ciliberto
- Scientific Direction, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - D J A Jenkins
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada
| | - M Montella
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| |
Collapse
|
37
|
Peng F, Hu D, Lin X, Chen G, Liang B, Zhang H, Ji K, Huang J, Lin J, Zheng X, Niu W. Preoperative metabolic syndrome and prognosis after radical resection for colorectal cancer: The Fujian prospective investigation of cancer (FIESTA) study. Int J Cancer 2016; 139:2705-2713. [PMID: 27560834 DOI: 10.1002/ijc.30404] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
This prospective study sought to investigate the prediction of preoperative metabolic syndrome and its components for the risk of colorectal cancer (CRC) mortality by analyzing a subset of data from the ongoing Fujian prospective investigation of cancer (FIESTA) study. In total, 1,318 CRC patients who received radical resection were consecutively enrolled between January 2000 and December 2008. The median follow-up time was 58.6 months, with 412 deaths from CRC. The CRC patients with metabolic syndrome had significantly shorter median survival time (MST) than those without (50.9 vs. 170.3 months, p < 0.001). Among four components of metabolic syndrome, hyperglycemia was the strongest predictor and its presence was associated with shorter MST than its absence (44.4 vs. 170.3 months, p < 0.001). Moreover, the complication of metabolic syndrome in CRC patients was associated with a 2.98-fold increased risk of CRC mortality (hazard ratio [HR] = 2.98, 95% confidence interval [CI]: 2.40-3.69, p < 0.001) after adjusting for confounding factors. The magnitude of this association was especially potentiated in CRC patients with tumor-node-metastasis stage I/II (HR = 3.94, 95% CI: 2.65-5.85, p < 0.001), invasion depth T1/T2 (HR = 5.41, 95% CI: 2.54-11.50, p < 0.001), regional lymph node metastasis N0 (HR = 4.06, 95% CI: 2.85-5.80, p < 0.001) and negative distant metastasis (HR = 3.23, 95% CI: 2.53-4.12, p < 0.001). Further survival tree analysis reinforced the prognostic capability of fasting blood glucose in CRC survival. Our findings convincingly demonstrated that preoperative metabolic syndrome, especially hyperglycemia, was a robust predictor for CRC mortality, and the protection was more obvious in patients with Stage I/II.
Collapse
Affiliation(s)
- Feng Peng
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Dan Hu
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Binying Liang
- Medical-Record Department, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hejun Zhang
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Kaida Ji
- State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Huang
- State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxiu Lin
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongwei Zheng
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Wenquan Niu
- State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, De Marco P, Cirillo F, Cappello AR, Dolce V, Belfiore A, Maggiolini M, De Francesco EM. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget 2016; 6:34158-77. [PMID: 26415222 PMCID: PMC4741443 DOI: 10.18632/oncotarget.5779] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023] Open
Abstract
Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.
Collapse
Affiliation(s)
| | - Andrea Scarpelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Assunta Pisano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | |
Collapse
|
39
|
Hima S, Sreeja S. Modulatory role of 17β-estradiol in the tumor microenvironment of thyroid cancer. IUBMB Life 2015; 68:85-96. [DOI: 10.1002/iub.1462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sithul Hima
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology; Thycaud Thiruvananthapuram Kerala India
| | - Sreeharshan Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology; Thycaud Thiruvananthapuram Kerala India
| |
Collapse
|
40
|
Lappano R, Rosano C, Pisano A, Santolla MF, De Francesco EM, De Marco P, Dolce V, Ponassi M, Felli L, Cafeo G, Kohnke FH, Abonante S, Maggiolini M. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models. Dis Model Mech 2015; 8:1237-46. [PMID: 26183213 PMCID: PMC4610237 DOI: 10.1242/dmm.021071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Camillo Rosano
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Assunta Pisano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | | | - Paola De Marco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Vincenza Dolce
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Marco Ponassi
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Lamberto Felli
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Grazia Cafeo
- Department of Chemical Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Marcello Maggiolini
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| |
Collapse
|