1
|
Cao X, Miyamoto MM, Yuan J, Bajpai PK, Zhuang X, Ding S. An amino acid polymorphism in the membrane progesterone receptor alpha protein is tied to female sexual maturity in the large yellow croaker (Larimichthys crocea). Gene 2025; 951:149409. [PMID: 40064306 DOI: 10.1016/j.gene.2025.149409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Progesterone is a major steroid hormone of vertebrates, which regulates many different physiological functions. This study reports on a radical amino acid exchange of an aromatic phenylalanine (F) or tyrosine (Y) with an aliphatic leucine (L) in the membrane progesterone receptor alpha protein of large yellow croaker (Larimichthys crocea), one of the important fishery species in the Northwest Pacific Ocean that is now critically endangered due to overfishing. This derived radical exchange is associated in wild Chinese populations with a slower rate of seasonal sexual maturation by the females. Conversely, the L variant is missing in a farmed Chinese population. Different lines of evidence indicate (i) that the F/Y/L variation originated as an old balanced polymorphism for variable female seasonal spawning and (ii) that this balance has been recently disrupted by human-induced selection due to the overfishing and domestication of this species. Our study provides another test case of how point mutations at the nucleotide level can affect the phenotypes of individuals, and thereby, the evolutionary dynamics of their populations.
Collapse
Affiliation(s)
- Xiaoying Cao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China
| | - Michael M Miyamoto
- Department of Biology, Box 118525, University of Florida, Gainesville, FL 32611-8525, USA
| | - Jigui Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China
| | - Prabodh K Bajpai
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China.
| |
Collapse
|
2
|
Shoorei H, Jafarabadi M, PourBayranvand S, Salehnia M. Comparison of mouse ovarian follicular development and gene expression in the presence of ovarian tissue extract and sodium selenite: An experimental study. Int J Reprod Biomed 2023; 21:415-424. [PMID: 37362095 PMCID: PMC10285190 DOI: 10.18502/ijrm.v21i5.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/01/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Background Ovarian tissue extract (OTE) and sodium selenite (SS) enhance the growth and maturation of preantral follicles in a dose-dependent manner. Objective The present study was designed to bring more information regarding the mechanism of OTE and SS on the mRNA expression of follicle-stimulating hormone receptors (FSHR) and the proliferation cell nuclear antigens (PCNA) of in vitro matured isolated follicles. Materials and Methods The tissue extract was prepared from adult ovaries. The preantral follicles (n = 266) were isolated from 12-16-day-old mice and cultured in the control, experimental I (10 ng/ml SS), and experimental II (OTE) groups for 12 days. The follicular diameter, survival, and maturation rates, also, the production of 17-β-estradiol and progesterone, and the follicular expression of PCNA and FSH receptor genes were analyzed. Results The survival rate of follicles in the SS-treated group (84.58%) was significantly higher than that OTE (75.63%; p = 0.023) and control (69.38%; p = 0.032) groups. The mean diameter of culture follicles in experimental group I (403.8 μm) and experimental group II (383.97 μm) increased significantly in comparison with the control group (342.05 μm; p = 0.032). The developmental rate of follicles, percentages of antrum formation, released metaphase II oocytes (p = 0.027; p = 0.019 respectively), production of hormones and the expression of 2 studied genes were significantly increased in both experimental groups in compare with control group (p = 0.021; p = 0.023 respectively). Conclusion The OTE and SS have a positive effect on development of mouse preantral follicles via over-expression of FSHR and PCNA genes.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Jafarabadi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram PourBayranvand
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Li M, Zhang J, Yang G, Zhang J, Han M, Zhang Y, Liu Y. Effects of Anterior Pituitary Adenomas' Hormones on Glucose Metabolism and Its Clinical Implications. Diabetes Metab Syndr Obes 2023; 16:409-424. [PMID: 36816815 PMCID: PMC9937076 DOI: 10.2147/dmso.s397445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pituitary adenomas have recently become more common and their incidence is increasing yearly. Functional pituitary tumors commonly secrete prolactin, growth hormones, and adrenocorticotropic hormones, which cause diseases such as prolactinoma, acromegaly, and Cushing's disease, but rarely secrete luteinizing, follicle-stimulating, thyroid-stimulating, and melanocyte-stimulating hormones. In addition to the typical clinical manifestations of functional pituitary tumors caused by excessive hormone levels, some pituitary tumors are also accompanied by abnormal glucose metabolism. The effects of these seven hormones on glucose metabolism are important for the treatment of diabetes secondary to pituitary tumors. This review focuses on the effects of hormones on glucose metabolism, providing important clues for the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
4
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
5
|
Casarini L, Paradiso E, Lazzaretti C, D'Alessandro S, Roy N, Mascolo E, Zaręba K, García-Gasca A, Simoni M. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors. J Assist Reprod Genet 2022; 39:893-904. [PMID: 35292926 PMCID: PMC9050977 DOI: 10.1007/s10815-022-02456-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Knowledge of the growth and maturation of human antral follicles is based mainly on concepts and deductions from clinical observations and animal models. To date, new experimental approaches and in vitro data contributed to a deep comprehension of gonadotropin receptors' functioning and may provide new insights into the mechanisms regulating still unclear physiological events. Among these, the production of androgen in the absence of proper LH levels, the programming of follicular atresia and dominance are some of the most intriguing. Starting from evolutionary issues at the basis of the gonadotropin receptor signal specificity, we draw a new hypothesis explaining the molecular mechanisms of the antral follicular growth, based on the modulation of endocrine signals by receptor-receptor interactions. The "heteromer hypothesis" explains how opposite death and life signals are delivered by gonadotropin receptors and other membrane partners, mediating steroidogenesis, apoptotic events, and the maturation of the dominant follicle.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy.
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
- SIERR, Rome, Italy.
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Kornelia Zaręba
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cellular Biology, Centro de Investigación en Alimentación y Desarrollo, 82112, Mazatlán, Sinaloa, Mexico
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
6
|
Byambaragchaa M, Ahn TY, Choi SH, Kang MH, Min KS. Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor (eFSHR). Anim Biosci 2021; 35:399-409. [PMID: 34474536 PMCID: PMC8902225 DOI: 10.5713/ab.21.0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or EC50 levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Tae-Young Ahn
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Seung-Hee Choi
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Korea
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea.,School of Animal Life Convergence Science, Institute of Genetic Engineering, Hankyong National University, Ansung 17579, Korea
| |
Collapse
|
7
|
Constitutive Activation and Inactivation of Mutations Inducing Cell Surface Loss of Receptor and Impairing of Signal Transduction of Agonist-Stimulated Eel Follicle-Stimulating Hormone Receptor. Int J Mol Sci 2020; 21:ijms21197075. [PMID: 32992880 PMCID: PMC7583038 DOI: 10.3390/ijms21197075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we investigated the signal transduction of mutants of the eel follicle-stimulating hormone receptor (eelFSHR). Specifically, we examined the constitutively activating mutant D540G in the third intracellular loop, and four inactivating mutants (A193V, N195I, R546C, and A548V). To directly assess functional effects, we conducted site-directed mutagenesis to generate mutant receptors. We measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO-K1) cells and investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney (HEK) 293 cells. The cells expressing eelFSHR-D540G exhibited a 23-fold increase in the basal cAMP response without agonist treatment. The cells expressing A193V, N195I, and A548V mutants had completely impaired signal transduction, whereas those expressing the R546C mutant exhibited little increase in cAMP responsiveness and a small increase in signal transduction. Cell surface receptor loss in the cells expressing inactivating mutants A193V, R546C, and A548V was clearly slower than in the cell expressing the wild-type eelFSHR. However, cell surface receptor loss in the cells expressing inactivating mutant N195I decreased in a similar manner to that of the cells expressing the wild-type eelFSHR or the activating mutant D540G, despite the completely impaired cAMP response. These results provide important information regarding the structure–function relationships of G protein-coupled receptors during signal transduction.
Collapse
|
8
|
Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020; 8:e1194. [PMID: 32100955 PMCID: PMC7196478 DOI: 10.1002/mgg3.1194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Relaxin/relaxin family peptide receptor 1 (RXFP1) signaling is important for both normal physiology and disease. Strong preclinical evidence supports relaxin as a potent antifibrotic molecule. However, relaxin‐based therapy failed in clinical trial in patients with systemic sclerosis. We and others have discovered that aberrant expression of RXFP1 may contribute to the abnormal relaxin/RXFP1 signaling in different diseases. Reduced RXFP1 expression and alternative splicing transcripts with potential functional consequences have been observed in fibrotic tissues. A relative decrease in RXFP1 expression in fibrotic tissues—specifically lung and skin—may explain a potential insensitivity to relaxin. In addition, receptor dimerization also plays important roles in relaxin/RXFP1 signaling. Methods This review describes the tissue specific expression, characteristics of the splicing variants, and homo/heterodimerization of RXFP1 in both normal physiological function and human diseases. We discuss the potential implications of these molecular features for developing therapeutics to restore relaxin/RXFP1 signaling and to harness relaxin's potential antifibrotic effects. Results Relaxin/RXFP1 signaling is important in both normal physiology and in human diseases. Reduced expression of RXFP1 in fibrotic lung and skin tissues surrenders both relaxin/RXFP1 signaling and their responsiveness to exogenous relaxin treatments. Alternative splicing and receptor dimerization are also important in regulating relaxin/RXFP1 signaling. Conclusions Understanding the molecular mechanisms that drive aberrant expression of RXFP1 in disease and the functional roles of alternative splicing and receptor dimerization will provide insight into therapeutic targets that may restore the relaxin responsiveness of fibrotic tissues.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Breen J, Perry VEA, Anderson RA, Rodgers RJ. Transcript abundance of stromal and thecal cell related genes during bovine ovarian development. PLoS One 2019; 14:e0213575. [PMID: 30856218 PMCID: PMC6411104 DOI: 10.1371/journal.pone.0213575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Movement and expansion of mesonephric-derived stroma appears to be very important in the development of the ovary. Here, we examined the expression of 24 genes associated with stroma in fetal ovaries during gestation (n = 17; days 58-274) from Bos taurus cattle. RNA was isolated from ovaries for quantitative RT-PCR. Expression of the majority of genes in TGFβ signalling, stromal transcription factors (NR2F2, AR), and some stromal matrix genes (COL1A1, COL3A1 and FBN1, but not FBN3) showed a positive linear increase with gestational age. Expression of genes associated with follicles (INSL3, CYP17A1, CYP11A1 and HSD3B1), was low until mid-gestation and then increased with gestational age. LHCGR showed an unusual bimodal pattern; high levels in the first and last trimesters. RARRES1 and IGFBP3 also increased with gestational age. To relate changes in gene expression in stromal cells with that in non stromal cells during development of the ovary we combined the data on the stromal genes with another 20 genes from non stromal cells published previously and then performed hierarchical clustering analysis. Three major clusters were identified. Cluster 1 genes (GATA4, FBN3, LHCGR, CYP19A1, ESR2, OCT4, DSG2, TGFB1, CCND2, LGR5, NR5A1) were characterised by high expression only in the first trimester. Cluster 2 genes (FSHR, INSL3, HSD3B1, CYP11A1, CYP17A1, AMH, IGFBP3, INHBA) were highly expressed in the third trimester and largely associated with follicle function. Cluster 3 (COL1A1, COL3A1, FBN1, TGFB2 TGFB3, TGFBR2, TGFBR3, LTBP2, LTBP3, LTBP4, TGFB1I1, ALDH1A1, AR, ESR1, NR2F2) had much low expression in the first trimester rising in the second trimester and remaining at that level during the third trimester. Cluster 3 contained members of two pathways, androgen and TGFβ signalling, including a common member of both pathways namely the androgen receptor cofactor TGFβ1 induced transcript 1 protein (TGFB1I1; hic5). GATA4, FBN3 and LHCGR, were highly correlated with each other and were expressed highly in the first trimester during stromal expansion before follicle formation, suggesting that this could be a critical phase in the development of the ovarian stroma.
Collapse
Affiliation(s)
- Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - James Breen
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- University of Adelaide Bioinformatics Hub, Adelaide, South Australia, Australia
| | - Viv E. A. Perry
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
He WB, Du J, Yang XW, Li W, Tang WL, Dai C, Chen YZ, Zhang YX, Lu GX, Lin G, Gong F, Tan YQ. Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome. Reprod Biomed Online 2019; 38:397-406. [DOI: 10.1016/j.rbmo.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023]
|
11
|
Banerjee AA, Mahale SD. Extracellular loop 3 substitutions K589N and A590S in FSH receptor increase FSH-induced receptor internalization and along with S588T substitution exhibit impaired ERK1/2 phosphorylation. Arch Biochem Biophys 2018; 659:57-65. [DOI: 10.1016/j.abb.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
|
12
|
Nataraja S, Sriraman V, Palmer S. Allosteric Regulation of the Follicle-Stimulating Hormone Receptor. Endocrinology 2018; 159:2704-2716. [PMID: 29800292 DOI: 10.1210/en.2018-00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
Follicle-stimulating hormone receptor (FSHR) belongs to the leucine-rich repeat family of the G protein-coupled receptor (LGR), which includes the glycoprotein hormone receptors luteinizing hormone receptor, thyrotropin receptor, and other LGRs 4, 5, 6, and 7. FSH is the key regulator of folliculogenesis in females and spermatogenesis in males. FSH elicits its physiological response through its cognate receptor on the cell surface. Binding of the hormone FSH to its receptor FSHR brings about conformational changes in the receptor that are transduced through the transmembrane domain to the intracellular region, where the downstream effector interaction takes place, leading to activation of the downstream signaling cascade. Identification of small molecules that could activate or antagonize FSHR provided interesting tools to study the signal transduction mechanism of the receptor. However, because of the nature of the ligand-receptor interaction of FSH-FSHR, which contains multiple sites in the extracellular binding domain, most of the small-molecule modulators of FSHR are unable to bind to the orthosteric site of the receptors. Rather they modulate receptor activation through allosteric sites in the transmembrane region. This review will discuss allosteric modulation of FSHR primarily through the discovery of small-molecule modulators, focusing on current data on the status of development and the utility of these as tools to better understand signaling mechanisms.
Collapse
|
13
|
Qi X, Guo Y, Song Y, Yu C, Zhao L, Fang L, Kong D, Zhao J, Gao L. Follicle-stimulating hormone enhances hepatic gluconeogenesis by GRK2-mediated AMPK hyperphosphorylation at Ser485 in mice. Diabetologia 2018; 61:1180-1192. [PMID: 29442133 DOI: 10.1007/s00125-018-4562-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Increased serum follicle-stimulating hormone (FSH) is correlated with fasting hyperglycaemia. However, the underlying mechanism remains unclear. Because excessive hepatic gluconeogenesis is a major cause of fasting hyperglycaemia the present study investigated whether FSH increases hepatic gluconeogenesis in mice. METHODS Ovariectomised mice supplemented with oestradiol (E2) to maintain normal levels of serum E2 (OVX+E2 mice) were injected with low or high doses of FSH. We knocked out Crtc2, a crucial factor in gluconeogenesis, and Fshr to discern their involvement in FSH signalling. To evaluate the role of the G-protein-coupled receptor (GPCR) kinase 2 (GRK2), which could affect glucose metabolism and interact directly with non-GPCR components, a specific GRK2 inhibitor was used. The pyruvate tolerance test (PTT), quantification of PEPCK and glucose-6-phosphatase (G6Pase), key enzymes of gluconeogenesis, GRK2 and phosphorylation of AMP-activated protein kinase (AMPK) were examined to evaluate the level of gluconeogenesis in the liver. A nonphosphorylatable mutant of AMPK Ser485 (AMPK S485A) was transfected into HepG2 cells to evaluate the role of AMPK Ser485 phosphorylation. RESULTS FSH increased fasting glucose (OVX+E2+high-dose FSH 8.18 ± 0.60 mmol/l vs OVX+E2 6.23 ± 1.33 mmol/l), the PTT results, and the transcription of Pepck (also known as Pck1; 2.0-fold increase) and G6pase (also known as G6pc; 2.5-fold increase) in OVX+E2 mice. FSH also enhanced the promoter luciferase activities of the two enzymes in HepG2 cells. FSH promoted the membrane translocation of GRK2, which is associated with increased AMPK Ser485 and decreased AMPK Thr172 phosphorylation, and enhanced the nuclear translocation of cyclic AMP-regulated transcriptional coactivator 2 (CRTC2). GRK2 could bind with AMPK and induce Ser485 hyperphosphorylation. Furthermore, either the GRK2 inhibitor or AMPK S485A blocked FSH-regulated AMPK Thr172 dephosphorylation and gluconeogenesis. Additionally, the deletion of Crtc2 or Fshr abolished the function of FSH in OVX+E2 mice. CONCLUSIONS/INTERPRETATION The results indicate that FSH enhances CRTC2-mediated gluconeogenesis dependent on AMPK Ser485 phosphorylation via GRK2 in the liver, suggesting an essential role of FSH in the pathogenesis of fasting hyperglycaemia.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Yanjing Guo
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Li Fang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Dehuan Kong
- Department of Geriatrics, Tai'an City Central Hospital, Tai'an, Shandong, People's Republic of China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China.
| | - Ling Gao
- Scientific Centre, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
14
|
First mutation in the FSHR cytoplasmic tail identified in a non-pregnant woman with spontaneous ovarian hyperstimulation syndrome. BMC MEDICAL GENETICS 2017; 18:44. [PMID: 28446136 PMCID: PMC5405471 DOI: 10.1186/s12881-017-0407-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Background Spontaneous ovarian hyperstimulation syndrome (sOHSS) is a rare event occurring mostly during natural pregnancy. Among described etiologies, some activating mutations of FSH receptor (FSHR) have been identified. Case presentation We report hereby the case of a non-pregnant women with three episodes of sOHSS. Hormonal evaluation was normal and no pituitary adenoma was detected. However, genetic analysis identified a novel heterozygous FSHR mutation (c.1901 G > A). This R634H mutation is the first described in the cytoplasmic tail of the receptor. Functional analysis failed to reveal constitutive activity of the mutant but a decreased cAMP production in response to FSH. The weak activity of this mutant is correlated with a markedly reduced cell surface expression. Conclusion Pathophysiology of non gestationnal sOHSS is still ill established. The molecular characterization of this new mutant indicates that it might not be at play. Therefore, further investigations are needed to improve knowledge of the molecular mechanism of this syndrome.
Collapse
|
15
|
Xie M, Li M, Zhou J, Ding X, Shao Y, Jing J, Liu Y, Yao B. Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway. Sci Rep 2017; 7:180. [PMID: 28282971 PMCID: PMC5428030 DOI: 10.1038/s41598-017-00203-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and FSH receptor (FSHR) are expressed in ovarian granulosa cells, and play important roles in regulating follicle growth and oocyte maturation. Studies have linked the BDNF-associated signaling pathway to FSHR mRNA expression in the regulation of follicle development, but the mechanisms remain unknown. In the current study, we found that BDNF stimulated the secretion of estradiol and progesterone, and increased the proliferation of KGN cells (human granulosa-like tumor cell line). BDNF treatment also increased phosphorylated and ubiquitinated FSHR, and activated cAMP/PKA/CREB signaling pathway. Moreover, inhibition of BDNF expression by siRNA markedly reduced the estradiol secretion and down-regulated FSHR, aromatase and phosphorylated CREB; meanwhile, FSH treatment partly alleviated the effects of BDNF siRNA on KGN cells. These findings suggested that BDNF modulates graunlosa cell functions and the action probably mediated by FSHR-coupled signaling pathway, to affect aromatase-mediated steroidogenesis. These results provide an alternative target to optimize ovarian granulosa cell function.
Collapse
Affiliation(s)
- Min Xie
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meiling Li
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Ji Zhou
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaomeng Ding
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yidan Shao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jun Jing
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuxiu Liu
- Department of Medical Statistics, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Abstract
The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility.
Collapse
Affiliation(s)
- Marco D'Aurora
- a Department of Psychological , Health and Territorial Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
| | - Samantha Sperduti
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- c Department of Medical , Oral and Biotechnological Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Italy
| | - Giovanna Di Emidio
- d Department of Health , Life and Environmental Sciences, University of L'Aquila , L'Aquila , Italy Coppito , and
| | - Liborio Stuppia
- a Department of Psychological , Health and Territorial Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
| | - Paolo Giovanni Artini
- e Department of Experimental and Clinical Medicine , Division of Gynecology and Obstetrics, University of Pisa , Pisa , Italy
| | - Valentina Gatta
- a Department of Psychological , Health and Territorial Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
| |
Collapse
|