1
|
Mele C, De Marchi L, Pitino R, Costantini L, Cavigiolo B, Caputo M, Marzullo P, Aimaretti G. The interplay between thyrotropic axis, neurological complications, and rehabilitation outcomes in patients with traumatic brain injury. Best Pract Res Clin Endocrinol Metab 2025:102001. [PMID: 40307077 DOI: 10.1016/j.beem.2025.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term disability, with its pathophysiology encompassing both primary mechanical damage and secondary neuroinflammatory, metabolic, and biochemical alterations. These complex mechanisms contribute to the observed heterogeneous clinical outcomes, including neuroendocrine dysfunctions, post-traumatic seizures, and disorders of consciousness (DoC). Thyroid hormones (THs) play essential roles in synaptic plasticity, neurogenesis and neuronal homeostasis, and the hypothalamic-pituitary-thyroid (HPT) axis has recently emerged as a potential acute and chronic modulator of neurological and functional recovery following TBI, thereby hinting at the potential involvement of THs in post-TBI outcomes. While evidence suggests that alterations in the HPT axis may influence susceptibility to seizures, progression of DoC, and rehabilitation outcomes, an increased blood-brain barrier permeability in concert with dysregulated deiodinase activity and expanding oxidative stress have all been proposed as mechanisms linking THs to post-TBI neurological complications. This review aims to summarize current evidence on the potential role of the thyrotropic axis in neurological and rehabilitation outcomes following TBI.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| | - Lucrezia De Marchi
- Department of Endocrinology, UZ Brussel, Laarbeeklaan, Brussels, Belgium
| | - Rosa Pitino
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luisa Costantini
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Beatrice Cavigiolo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Division of Endocrinology and Diabetology, Sant'Andrea Hospital, Azienda Sanitaria Locale (ASL) Vercelli, Vercelli, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
2
|
Aljboor GS, Tulemat A, Al-Saedi AR, Radoi MP, Toader C, Papacocea TM. Acute and chronic hypopituitarism following traumatic brain injury: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:841. [PMID: 39527353 PMCID: PMC11554839 DOI: 10.1007/s10143-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is associated with various endocrine abnormalities, including pituitary axis dysfunction. Understanding the prevalence and temporal patterns of these dysfunctions is crucial for effective clinical management. This study aimed to systematically review the literature and conduct a meta-analysis to determine the prevalence of pituitary axis dysfunction following TBI, assess temporal patterns across different post-injury durations, and identify potential contributing factors. A comprehensive search was conducted across multiple electronic databases between 1st of January 2000 until 31st March 2024. Studies reporting the prevalence of pituitary axis dysfunction post-TBI were included. Pooled estimates with 95% confidence intervals (CIs) were calculated using random-effects models in the R statistical software. Subgroup analyses were performed based on duration post-TBI (< 3 months, 3-6 months, 6-12 months, > 12 months) to explore temporal variations. Heterogeneity was assessed using the I^2 statistic. A total of 52 studies were included in the meta-analysis, encompassing 7367 participants. The pooled estimate for the prevalence of any pituitary axis dysfunction post-TBI was 33% (95% CI [28%; 37%]). Subgroup analysis by duration revealed varying prevalence rates: < 3 months (40%, 95% CI [27%; 53%]), 3-6 months (31%, 95% CI [15%; 47%]), 6-12 months (26%, 95% CI [19%; 33%]), and > 12 months (32%, 95% CI [26%; 38%]). Prevalence of multiple axes affection was 7% (95% CI [6%; 9%]), with varying rates across durations. Specific axes affection varied: Growth Hormone (GH) deficiency was 18% (95% CI [14%; 21%]), adrenocorticotropic hormone (ACTH) deficiency was 10% (95% CI [8%; 13%]), pituitary-gonadal axis hormones deficiency was 16% (95% CI [12%; 19%]), and thyroid-stimulating hormone (TSH) deficiency was 6% (95% CI [5%; 7%]). This meta-analysis highlights a significant prevalence of pituitary axis dysfunction following TBI, with temporal variations observed across different post-injury durations. The findings underscore the importance of tailored clinical management strategies based on the duration and type of dysfunction. Further research addressing potential contributing factors is warranted to enhance understanding and management of these conditions.
Collapse
Affiliation(s)
- Ghaith S Aljboor
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania.
- Neurosurgical Department, . Pantelimon Emergency Hospital, Bucharest, Romania.
| | - Aoun Tulemat
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Ali Ridha Al-Saedi
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020021, Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020021, Bucharest, Romania
| | - Toma Marius Papacocea
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Neurosurgical Department, . Pantelimon Emergency Hospital, Bucharest, Romania
| |
Collapse
|
3
|
Ebrahimi F, Andereggen L, Christ ER. Morbidities and mortality among hospitalized patients with hypopituitarism: Prevalence, causes and management. Rev Endocr Metab Disord 2024; 25:599-608. [PMID: 38802643 PMCID: PMC11162375 DOI: 10.1007/s11154-024-09888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/29/2024]
Abstract
Hypopituitarism is a highly heterogeneous multisystem disorder that can have a major impact on long-term morbidity and mortality, but even more so during acute medical conditions requiring hospitalization. Recent studies suggest a significant in-hospital burden with prolonged length of stay, increased rate of intensive care unit (ICU) admission, and initiation of mechanical ventilation - all of which may lead to an increased risk of in-hospital mortality. On the one hand, patients with hypopituitarism are often burdened by metabolic complications, including obesity, hypertension, dyslipidemia, and hyperglycemia, which alone, or in combination, are known to significantly alter relevant physiological mechanisms, including metabolism, innate and adaptive immune responses, coagulation, and wound healing, thereby contributing to adverse in-hospital outcomes. On the other hand, depending on the extent and the number of pituitary hormone deficiencies, early recognition of hormone deficiencies and appropriate management and replacement strategy within a well-organized multidisciplinary team are even stronger determinants of short-term outcomes during acute hospitalization in this vulnerable patient population. This review aims to provide an up-to-date summary of recent advances in pathophysiologic understanding, clinical implications, and recommendations for optimized multidisciplinary management of hospitalized patients with hypopituitarism.
Collapse
Affiliation(s)
- Fahim Ebrahimi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden.
- Department of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.
| | - Lukas Andereggen
- Department of Neurosurgery, Cantonal Hospital Aarau, Aarau, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Emanuel R Christ
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Cárdenas J, Kelepouris N, Adiga R, Yuen KCJ. Coverage of education and training of traumatic brain injury-induced growth hormone deficiency in US residency and fellowship programs: a cross-sectional study. BMC MEDICAL EDUCATION 2024; 24:53. [PMID: 38200500 PMCID: PMC10782717 DOI: 10.1186/s12909-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Hypopituitarism, including growth hormone deficiency (GHD), is a common sequela of traumatic brain injury (TBI). This study explored the coverage of education and training of TBI-induced hypopituitarism in general and GHD in particular, in postgraduate program curricula to identify knowledge gaps and opportunities. METHODS An online survey and qualitative interviews (focus groups) were conducted among endocrinology, neurology, and physiatry postgraduate program directors in the United States (US). The study received an IRB exemption. RESULTS A total of 419 fellowship and residency programs were invited to participate; 60 program directors completed the survey and 11 of these participated in the focus groups. About half of the respondents considered TBI-induced hypopituitarism important or fairly important to include in the curriculum, and nearly two-thirds considered it an appropriate training component. Neurology program directors considered education regarding hypopituitarism following TBI less important and relevant for their curricula compared with endocrinology and physiatry program directors. About half (53%) of the programs responded that they included TBI-induced pituitary disorders in their curricula. About two-thirds (68%) of endocrinology programs, compared with only one-quarter (25%) of neurology programs, covered TBI-induced pituitary disorders. Respondents identified multiple barriers to expanding hypopituitarism following TBI in the curriculum, including the rarity of condition and lack of time/room in the curriculum. Respondents reported that consensus clinical guidelines and the availability of more data on TBI-induced hypopituitarism, including GHD, would greatly impact the development of educational curricula on this topic. CONCLUSIONS To improve the management of TBI-induced hypopituitarism, education and training should be expanded in US fellowship and residency programs to prepare trainees to effectively screen, diagnose, and treat TBI-induced hypopituitarism, including GHD.
Collapse
Affiliation(s)
- Javier Cárdenas
- Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Dr, Morgantown, WV, 26506, USA
| | - Nicky Kelepouris
- Novo Nordisk Inc, 800 Scudders Mill Rd, Plainsboro, NJ, 08536, USA
| | - Radhika Adiga
- Novo Nordisk Inc, 800 Scudders Mill Rd, Plainsboro, NJ, 08536, USA
| | - Kevin C J Yuen
- Barrow Neurological Institute, 240 W Thomas Rd, Suite 404, Phoenix, AZ, 85013, USA.
| |
Collapse
|
5
|
Herodes M, Legaspi A, Garcia JM. Mild traumatic brain injury as a cause of adult growth hormone deficiency: Diagnosis and treatment. Best Pract Res Clin Endocrinol Metab 2023; 37:101818. [PMID: 37666680 DOI: 10.1016/j.beem.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In recent years, mild traumatic brain injury (mTBI) has been recognized as a cause of acquired growth hormone deficiency (AGHD) and is likely much more prevalent than previous estimates. There is great overlap between persistent symptoms following mTBI and those of AGHD and it is possible that these persistent symptoms of mTBI are, at least in part, due to or aggravated by AGHD. This article reviews the current literature of AGHD following mTBI, and proposes practice recommendations for the screening, diagnosis, and management of patients with AGHD following mTBI.
Collapse
Affiliation(s)
- Megan Herodes
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Aviel Legaspi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Rickels E, Steudel WI, Repschläger U, Schulte C, Weissgärber H, Wende D. The Long-Term Sequelae of Traumatic Brain Injury Over 10 Years of Follow-Up—A Matched Cohort Study Based on Routine Data of a Statutory Health Insurance Carrier. DEUTSCHES ARZTEBLATT INTERNATIONAL 2023; 120:271-276. [PMID: 36864637 PMCID: PMC10304003 DOI: 10.3238/arztebl.m2023.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND The acute effects of traumatic brain injury (TBI) are well documented, but there is no systematic quantification of its long-term sequelae in Germanlanguage literature. The purpose of this article is to compare the frequency of conditions linked to prior TBI with their frequency in the non-brain-injured population. METHODS A matched cohort study was carried out on the basis of routine data from the BARMER statutory health insurance carrier. The exposure group consisted of patients treated over the period 2006-2009 for TBI at a variety of treatment intensities, including persons with multiple organ trauma. The control group consisted of BARMER insurees without prior TBI who were matched with the patients in the exposure group for age, sex, and pre-existing diseases. Late sequelae were sought in the routine data for a period of ten years after the injury. The outcome rates of the exposure and control groups were compared with Kaplan-Meier estimators and Poisson regression. RESULTS 114 296 persons with TBI in the period 2006-2009 were included in the study. The mortality within ten years of TBI was 305 per 1000 individuals. The relative mortality in the exposure group was higher than that in control individuals of the same age and sex, with an incidence rate ratio (IRR) of 1.67 (95% confidence interval, [1.60; 1.74]). Immobility, dementia, epilepsy, endocrine disorders, functional disorders, depression, anxiety, cognitive deficits, headache, and sleep disorders were also more common in the exposure group. Persons with TBI requiring highintensity treatment displayed the highest relative incidence rates of the conditions studied over 10 years of follow-up. Persons who had been admitted to the hospital because of TBI had higher relative incidence rates for epilepsy and dementia than those who had been cared for on an outpatient basis. CONCLUSION Adverse sequelae of TBI can still be seen ten years after the exposure. These patients die earlier than persons without TBI and suffer earlier and more frequently from associated conditions.
Collapse
Affiliation(s)
| | | | - Uwe Repschläger
- BARMER Institute for Health Care System Research (bifg), Berlin
| | - Claudia Schulte
- BARMER Institute for Health Care System Research (bifg), Berlin
| | | | - Danny Wende
- BARMER Institute for Health Care System Research (bifg), Berlin
| |
Collapse
|
7
|
Vlad RM, Albu AI, Nicolaescu ID, Dobritoiu R, Carsote M, Sandru F, Albu D, Păcurar D. An Approach to Traumatic Brain Injury-Related Hypopituitarism: Overcoming the Pediatric Challenges. Diagnostics (Basel) 2023; 13:diagnostics13020212. [PMID: 36673021 PMCID: PMC9857786 DOI: 10.3390/diagnostics13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism is a rare polymorphic complication of brain injury, with very little data, particularly concerning children and teenagers. This is a comprehensive review of the literature regarding this pathology, starting from a new pediatric case. The research was conducted on PubMed and included publications from the last 22 years. We identified nine original studies on the pediatric population (two case reports and seven studies; only four of these seven were prospective studies). TBI-related hypopituitarism is associated with isolated hormonal deficits ranging from 22.5% to 86% and multiple hormonal deficiencies from 5.9% to 50% in the studied pediatric population. Growth hormone (GH) deficiency is most often found, including the form with late occurrence after TBI; it was described as persistent in half of the studies. Thyroid-stimulating hormone (TSH) deficiency is identified as a distant complication following TBI; in all three studies, we identified this complication was found to be permanent. Adrenocorticotropic hormone (ACTH) deficiency did not relate to a certain type of brain trauma, and it was transient in reported cases. Hyperprolactinemia was the most frequent hormonal finding, also occurring late after injury. Central diabetes insipidus was encountered early post-TBI, typically with a transient pattern and did not relate to a particular type of injury. TBI-related hypopituitarism, although rare in children, should be taken into consideration even after a long time since the trauma. A multidisciplinary approach is needed if the patient is to safely overcome any acute condition.
Collapse
Affiliation(s)
- Raluca Maria Vlad
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (R.M.V.); (A.I.A.); Tel.: +40-722451462 (R.M.V.); +40-723886967 (A.I.A.)
| | - Alice Ioana Albu
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Elias” Emergency Clinical Hospital, 011461 Bucharest, Romania
- Correspondence: (R.M.V.); (A.I.A.); Tel.: +40-722451462 (R.M.V.); +40-723886967 (A.I.A.)
| | | | - Ruxandra Dobritoiu
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “C. I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Dragos Albu
- 2nd Clinical Department Obstetrics Gynecology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Păcurar
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
8
|
Yuen KCJ, Masel B, Jaffee MS, O'Shanick G, Wexler TL, Reifschneider K, Urban RJ, Hoang S, Kelepouris N, Hoffman AR. A consensus on optimization of care in patients with growth hormone deficiency and mild traumatic brain injury. Growth Horm IGF Res 2022; 66:101495. [PMID: 35933894 DOI: 10.1016/j.ghir.2022.101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE/DESIGN Approximately 2.9 million children and adults in the US experience traumatic brain injuries (TBIs) annually, most of which are considered mild. TBI can induce varying consequences on pituitary function, with growth hormone deficiency (GHD) among the more commonly reported conditions. Panels of pediatric and adult endocrinologists, neurologists, physical medicine and rehabilitation specialists, and neuropsychologists convened in February and October 2020 to discuss ongoing challenges and provide strategies for detection and optimal management of patients with mild TBI and GHD. RESULTS Difficulties include a low rate of seeking medical attention in the population, suboptimal screening tools, cost and complexity of GHD testing, and a lack of consensus regarding when to test or retest for GHD. Additionally, referrals to endocrinologists from other specialists are uncommon. Recommendations from the panels for managing such patients included multidisciplinary guidelines on the diagnosis and management of post-TBI GHD and additional education on long-term metabolic and probable cognitive benefits of GH replacement therapy. CONCLUSION As patients of all ages with mild TBI may develop GHD and/or other pituitary deficiencies, a multidisciplinary approach to provide education to endocrinologists, neurologists, neurosurgeons, traumatologists, and other providers and guidelines for the early identification and management of persistent mild TBI-related GHD are urgently needed.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, USA
| | - Brent Masel
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael S Jaffee
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Tamara L Wexler
- Rusk Rehabilitation, NYU Langone Health, New York, NY, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kent Reifschneider
- Division of Endocrinology, Children's Hospital of The King's Daughters, Norfolk, VA, USA
| | - Randall J Urban
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Andrew R Hoffman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Zhang XC, Sun Y. Hypopituitary syndrome with pituitary crisis in a patient with traumatic shock: A case report. World J Clin Cases 2022; 10:7029-7036. [PMID: 36051123 PMCID: PMC9297421 DOI: 10.12998/wjcc.v10.i20.7029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Shock is among the most common conditions that clinicians face in intensive care unit (ICU), of which hypovolemic shock is encountered most frequently; some patients instead suffer from neurogenic, cardiogenic, or infectious forms of shock. However, there are additional types of shock from unusual causes that are often undiagnosed. Here, we report the case of a patient who was initially misdiagnosed with hypovolemic shock, but exhibited persistent hypotension because of continuous fluid replacement and vasoactive drug administration, and was eventually diagnosed with hypopituitarism with crisis.
CASE SUMMARY A 73-year-old Chinese man was admitted to the neurosurgery department following injury caused by a heavy object with symptoms of anemia and high fever. He was transferred to the ICU on the fourth day after hospitalization because of hypotension and unconsciousness. Blood analysis indicated that the patient was suffering from anemia and thrombocytopenia. Ultrasonography showed that there was no apparent abnormality in the cardiac structure but there was mild tricuspid regurgitation. Computed tomography revealed that there were signs of hemorrhage at the right basal ganglia; accordingly, hypovolemic shock, possibly septic shock, was initially considered. Even after routine treatment for shock, the hypotension remained severe. The patient was again thoroughly examined to investigate the underlying cause. The antishock therapy was supplemented with corticosteroids to counter potential hypopituitarism. The patient made a full recovery, and the blood pressure returned to normal.
CONCLUSION A case of pituitary adenoma with multiple injuries was identified. Because of hypopituitarism, functionality of the corresponding endocrine system was restricted, with the most pronounced manifestation being unstable blood circulation requiring hormone replacement therapy. Such cases are relatively rare but may occur if multiple injuries are sustained. The present case represents a reference for the clinical treatment of patients with multiple injuries.
Collapse
Affiliation(s)
- Xing-Cheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Yun Sun
- Department of Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
10
|
Akira M, Yuichi T, Tomotaka U, Takaaki K, Kenichi M, Chimi M. The Outcome of Neurorehabilitation Efficacy and Management of Traumatic Brain Injury. Front Hum Neurosci 2022; 16:870190. [PMID: 35814948 PMCID: PMC9256961 DOI: 10.3389/fnhum.2022.870190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
For public health professionals, traumatic brain injury (TBI) and its possible protracted repercussions are a significant source of worry. In opposed to patient neurorehabilitation with developed brain abnormalities of different etiologies, neurorehabilitation of affected persons has several distinct features. The clinical repercussions of the various types of TBI injuries will be discussed in detail in this paper. During severe TBI, the medical course frequently follows a familiar first sequence of coma, accompanied by disordered awareness, followed by agitation and forgetfulness, followed by return of function. Clinicians must be aware of common medical issues that might occur throughout the various stages of neurorehabilitation, for example, posttraumatic hydrocephalus, paroxysmal sympathetic hyperactivity and posttraumatic neuroendocrine disorders, at each step of the process. Furthermore, we address problems about the scheduling of various rehabilitation programs as well as the availability of current data for comprehensive rehabilitative neuropsychology techniques.
Collapse
Affiliation(s)
- Miyamoto Akira
- Faculty of Rehabilitation Sciences, Nishikyushu University, Kanzaki, Japan
| | - Takata Yuichi
- Faculty of Human Science, Hokkaido Bunkyo University, Eniwa, Japan
| | - Ueda Tomotaka
- Faculty of Rehabilitation Sciences, Nishikyushu University, Kanzaki, Japan
| | - Kubo Takaaki
- Division of Physical Therapy, Department of Rehabilitation, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Mori Kenichi
- Omote Orthopedic Osteoporosis Clinic, Toyonaka, Japan
| | - Miyamoto Chimi
- Department of Occupational Therapy, Faculty of Health Science, Aino University, Ibaraki, Japan
- *Correspondence: Miyamoto Chimi,
| |
Collapse
|
11
|
First Case of Chronic Post-Traumatic Anterior Pituitary Dysfunction in a Professional Rugby Player: A Case Report. ANNALES D'ENDOCRINOLOGIE 2022; 83:142-146. [DOI: 10.1016/j.ando.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022]
|
12
|
Plavov O, Martinez-Perez R, Garcia-Ballestas E, Agrawal A, Moscote-Salazar LR. Re: A national survey of clinical practice of surveillance for post-traumatic brain injury hypopituitarism in the United Kingdom and Ireland. Br J Neurosurg 2021; 35:800. [PMID: 32401048 DOI: 10.1080/02688697.2020.1766664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Affiliation(s)
| | - Rafael Martinez-Perez
- Department of Neurosurgery, Wexner Medical Center, The Ohio State university, Columbus, OH, USA
| | | | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India
| | | |
Collapse
|
13
|
Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22052686. [PMID: 33799967 PMCID: PMC7961958 DOI: 10.3390/ijms22052686] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) has increased over the last years with an important impact on public health. Many preclinical and clinical studies identified multiple and heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cognitive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation is responsible for several long-term clinical consequences, including hypopituitarism. This review aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in determining hypothalamic-pituitary dysfunctions.
Collapse
|
14
|
Prodam F, Caputo M, Mele C, Marzullo P, Aimaretti G. Insights into non-classic and emerging causes of hypopituitarism. Nat Rev Endocrinol 2021; 17:114-129. [PMID: 33247226 DOI: 10.1038/s41574-020-00437-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Hypopituitarism is defined as one or more partial or complete pituitary hormone deficiencies, which are related to the anterior and/or posterior gland and can have an onset in childhood or adulthood. The most common aetiology is a sellar or suprasellar lesion, often an adenoma, which causes hypopituitarism due to tumour mass effects, or the effects of surgery and/or radiation therapy. However, other clinical conditions, such as traumatic brain injury, and autoimmune and inflammatory diseases, can result in hypopituitarism, and there are also genetic causes of hypopituitarism. Furthermore, the use of immune checkpoint inhibitors to treat cancer is increasing the risk of hypopituitarism, with a pattern of hormone defects that is different from the classic patterns and depends on mechanisms that are specific for each drug. Moreover, autoantibody production against the pituitary and hypothalamus has been demonstrated in studies investigating the development or worsening of some cases of hypopituitarism. Finally, evidence suggests that posterior pituitary damage can affect oxytocin secretion. The aim of this Review is to summarize current knowledge on non-classic and emerging causes of hypopituitarism, so as to help clinicians improve early identification, avoid life-threatening events and improve the clinical care and quality of life of patients at risk of hypopituitarism.
Collapse
Affiliation(s)
- Flavia Prodam
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Mele
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of General Medicine, I.R.C.C.S. Istituto Auxologico Italiano, Ospedale San Giuseppe, Verbania, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
15
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
16
|
Gilis-Januszewska A, Kluczyński Ł, Hubalewska-Dydejczyk A. Traumatic brain injuries induced pituitary dysfunction: a call for algorithms. Endocr Connect 2020; 9:R112-R123. [PMID: 32412425 PMCID: PMC7274553 DOI: 10.1530/ec-20-0117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury affects many people each year, resulting in a serious burden of devastating health consequences. Motor-vehicle and work-related accidents, falls, assaults, as well as sport activities are the most common causes of traumatic brain injuries. Consequently, they may lead to permanent or transient pituitary insufficiency that causes adverse changes in body composition, worrisome metabolic function, reduced bone density, and a significant decrease in one's quality of life. The prevalence of post-traumatic hypopituitarism is difficult to determine, and the exact mechanisms lying behind it remain unclear. Several probable hypotheses have been suggested. The diagnosis of pituitary dysfunction is very challenging both due to the common occurrence of brain injuries, the subtle character of clinical manifestations, the variable course of the disease, as well as the lack of proper diagnostic algorithms. Insufficiency of somatotropic axis is the most common abnormality, followed by presence of hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The purpose of this review is to summarize the current state of knowledge about post-traumatic hypopituitarism. Moreover, based on available data and on our own clinical experience, we suggest an algorithm for the evaluation of post-traumatic hypopituitarism. In addition, well-designed studies are needed to further investigate the pathophysiology, epidemiology, and timing of pituitary dysfunction after a traumatic brain injury with the purpose of establishing appropriate standards of care.
Collapse
Affiliation(s)
- Aleksandra Gilis-Januszewska
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| | - Łukasz Kluczyński
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
- Correspondence should be addressed to Ł Kluczyński:
| | - Alicja Hubalewska-Dydejczyk
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
17
|
Abstract
PURPOSE Traumatic brain injury (TBI) is a common cause of mortality and major disability worldwide. The initial management often depends on the severity of the injury. Pituitary dysfunction can develop as a sequela of TBI, and can have long-term, debilitating impact on the patients. Early identification and prompt intervention of post-traumatic hypopituitarism (PTHP) is essential to prevent or minimize the adverse consequences of this condition. We hereby provide an overview of the current management of TBI from a neurosurgical standpoint. We then review the pathophysiology and risk factors of developing PTHP, as well as our recommendations for its management. METHODS A review of current literature on TBI and PTHP, including primary research articles, reviews and clinical guidelines. RESULTS The current neurosurgical approach to the management of TBI is presented, followed by the pathophysiology and risk factors of PTHP, as well as our recommendations for its management. CONCLUSIONS Post-traumatic hypopitutiarism is a serious and potentially debilitating condition that is likely under-recognised and under-diagnosed. From a neurosurgical perspective, we advocate a pragmatic approach, i.e. screening those considered at high risk of developing PTHP based on clinical features and biochemical/endocrinological testings; and referring them to a specialist endocrinologist for further management as indicated.
Collapse
Affiliation(s)
- Chin Lik Tan
- 0000 0004 0621 9599grid.412106.0Division of Neurosurgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074 Singapore
- 0000000121885934grid.5335.0Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 167, CB2 0QQ Cambridge, UK
| | - Peter J. Hutchinson
- 0000000121885934grid.5335.0Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 167, CB2 0QQ Cambridge, UK
| |
Collapse
|
18
|
Abstract
Traumatic brain injury (TBI) is an important public health problem with an increasing incidence in the last years. Relatively few cases are fatal; most individuals will survive and, in the long-term, the sequalae of TBI will include neuroendocrine dysfunctions with a much higher frequency than previously suspected. Patients who develop hypopituitarism after TBI present manifestations due to the number of deficient hormones, severity of hormonal deficiency, and the duration of hypopituitarism without diagnosis and treatment. The clinical spectrum of hypopituitarism is very large and many signs and symptoms of TBI survivors such as fatigue, concentration difficulties, depressive symptoms are nonspecific and overlap with symptoms of post-traumatic stress disorder and variably severe hypopituitarism related to brain damage remaining undiagnosed. This can explain why the diagnosis of hypopituitarism is often missed or delayed after this condition with potentially serious and hazardous consequences for the affected patients. Moreover, clinical experience cumulatively suggests that TBI-associated hypopituitarism is associated with poor recovery and worse outcome, since post-traumatic hypopituitarism is independently associated with cognitive impairment, poor quality of life, abnormal body composition, and adverse metabolic profile. In the present review, the current data related to clinical consequences of pituitary dysfunction after TBI in adult patients and therapeutic approaches are reported.
Collapse
Affiliation(s)
- Marina Caputo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
| | - C Mele
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - F Prodam
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
- Department of Health Science, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - P Marzullo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of General Medicine, I.R.C.C.S. Istituto Auxologico Italiano, Ospedale San Giuseppe Verbania, Verbania, Italy
| | - G Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
19
|
Dassa Y, Crosnier H, Chevignard M, Viaud M, Personnier C, Flechtner I, Meyer P, Puget S, Boddaert N, Breton S, Polak M. Pituitary deficiency and precocious puberty after childhood severe traumatic brain injury: a long-term follow-up prospective study. Eur J Endocrinol 2019; 180:281-290. [PMID: 30884465 DOI: 10.1530/eje-19-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Objectives Childhood traumatic brain injury (TBI) is a public health issue. Our objectives were to determine the prevalence of permanent pituitary hormone deficiency and to detect the emergence of other pituitary dysfunctions or central precocious puberty several years after severe TBI. Design Follow-up at least 5 years post severe TBI of a prospective longitudinal study. Patients Overall, 66/87 children, who had endocrine evaluation 1 year post severe TBI, were included (24 with pituitary dysfunction 1 year post TBI). Main outcome measures In all children, the pituitary hormones basal levels were assessed at least 5 years post TBI. Growth hormone (GH) stimulation tests were performed 3-4 years post TBI in children with GH deficiency (GHD) 1 year post TBI and in all children with low height velocity (<-1 DS) or low IGF-1 (<-2 DS). Central precocious puberty (CPP) was confirmed by GnRH stimulation test. Results Overall, 61/66 children were followed up 7 (5-10) years post TBI (median; (range)); 17/61 children had GHD 1 year post TBI, and GHD was confirmed in 5/17 patients. For one boy, with normal pituitary function 1 year post TBI, GHD was diagnosed 6.5 years post TBI. 4/61 patients developed CPP, 5.7 (2.4-6.1) years post-TBI. Having a pituitary dysfunction 1 year post TBI was significantly associated with pituitary dysfunction or CPP more than 5 years post TBI. Conclusion Severe TBI in childhood can lead to permanent pituitary dysfunction; GHD and CPP may appear after many years. We recommend systematic hormonal assessment in children 1 year after severe TBI and a prolonged monitoring of growth and pubertal maturation. Recommendations should be elaborated for the families and treating physicians.
Collapse
Affiliation(s)
- Yamina Dassa
- Paediatric Endocrinology, Gynaecology and Diabetology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | - Hélène Crosnier
- Paediatric Endocrinology, Gynaecology and Diabetology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | - Mathilde Chevignard
- Rehabilitation Department for Children and Adolescents with Acquired Neurological Injury, Saint-Maurice Hospitals, Saint-Maurice, France
- Laboratoire d'Imagerie Biomédicale and GRC HanCRe, Sorbonne University, Paris, France
| | - Magali Viaud
- Paediatric Endocrinology, Gynaecology and Diabetology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | | | - Isabelle Flechtner
- Paediatric Endocrinology, Gynaecology and Diabetology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | - Philippe Meyer
- Paediatric Anaesthesiology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
- Paris Descartes University, Paris, France
| | - Stéphanie Puget
- Paris Descartes University, Paris, France
- Paediatric Neurosurgery Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | - Nathalie Boddaert
- Paris Descartes University, Paris, France
- Radiology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | - Sylvain Breton
- Radiology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
| | - Michel Polak
- Paediatric Endocrinology, Gynaecology and Diabetology Unit, Assistance Publique-Hôpitaux de Paris, Necker Enfants-Malades University Hospital, Paris, France
- Paris Descartes University, Paris, France
- IMAGINE Institute Affiliate, Paris, France
| |
Collapse
|
20
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Kgosidialwa O, Agha A. Hypopituitarism post traumatic brain injury (TBI): review. Ir J Med Sci 2019; 188:1201-1206. [PMID: 30931510 DOI: 10.1007/s11845-019-02007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/11/2019] [Indexed: 01/27/2023]
Abstract
Post-traumatic hypopituitarism (PTHP) is an important and relatively common complication of TBI (traumatic brain injury). A number of studies have shown that this clinical phenomenon can occur soon after TBI (acute) or later in the chronic phase. Patients with moderate to severe TBI are at a particular risk of developing PTHP. In the acute setting, it is important to monitor patients for hypoadrenalism as this confers a high risk for morbidity and even mortality. The gonadotrophin, growth hormone and TSH deficiencies are better defined in the chronic phase. Untreated PTHP can lead to delayed recovery, impaired rehabilitation and persistent neuropsychiatric symptoms. This review will discuss the frequency and natural history of PTHP and its clinical implications and propose a pathway for investigation and management of this still under-recognised entity.
Collapse
Affiliation(s)
- Oratile Kgosidialwa
- Academic Department of Endocrinology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Amar Agha
- Academic Department of Endocrinology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| |
Collapse
|
22
|
Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review. Med Sci (Basel) 2019; 7:medsci7030047. [PMID: 30889900 PMCID: PMC6473767 DOI: 10.3390/medsci7030047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) and its potential long-term consequences are of major concern for public health. Neurorehabilitation of affected individuals has some specific characteristics in contrast to neurorehabilitation of patients with acquired brain lesions of other aetiology. This review will deal with the clinical consequences of the distinct lesions of TBI. In severe TBI, clinical course often follows a typical initial sequence of coma; followed by disturbed consciousness; later, post-traumatic agitation and amnesia; and finally, recovery of function occurs. In the different phases of neurorehabilitation, physicians should be aware of typical medical complications such as paroxysmal sympathetic hyperactivity, posttraumatic hydrocephalus, and posttraumatic neuroendocrine dysfunctions. Furthermore, we address questions on timing and on existing evidence for different rehabilitation programmes and for holistic neuropsychological rehabilitation approaches.
Collapse
|
23
|
Polich G, Iaccarino MA, Zafonte R. Psychopharmacology of traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:253-267. [PMID: 31727216 DOI: 10.1016/b978-0-444-64012-3.00015-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pathophysiology of traumatic brain injury (TBI) can be highly variable, involving functional and/or structural damage to multiple neuroanatomical networks and neurotransmitter systems. This wide-ranging potential for physiologic injury is reflected in the diversity of neurobehavioral and neurocognitive symptoms following TBI. Here, we aim to provide a succinct, clinically relevant, up-to-date review on psychopharmacology for the most common sequelae of TBI in the postacute to chronic period. Specifically, treatment for neurobehavioral symptoms (depression, mania, anxiety, agitation/irritability, psychosis, pseudobulbar affect, and apathy) and neurocognitive symptoms (processing speed, attention, memory, executive dysfunction) will be discussed. Treatment recommendations will reflect general clinical practice patterns and the research literature.
Collapse
Affiliation(s)
- Ginger Polich
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Mary Alexis Iaccarino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.
| |
Collapse
|