1
|
Temizsoy E, Uysal G, Karadag N. The Effect of a Chronobiological Feeding Model on Growth Parameters and Length of Hospitalization in Preterm Infants: A Randomized Controlled Study. Breastfeed Med 2025. [PMID: 40195944 DOI: 10.1089/bfm.2024.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background and Purpose: Preterm infants are born before the 37th gestational week and need prompt nutrition. The circadian rhythm is an internal 24-hour cycle regulated by endogenous molecules. Human milk contains different biological peptides at different times within this cycle. Chrononutrition is a feeding model that is adjusted to match the biological clock of the individual. This study tests chrononutrition as a superior feeding model in preterm infants. This study aimed to evaluate the effect of the chronobiological feeding model on growth parameters and discharge time among preterm infants. Methods: We conducted a prospective, randomized controlled trial in a tertiary neonatal intensive care unit between October 2021 and March 2022, randomized preterm infants to receive either chrononutrition (study group = 45) or standard feeding (control group = 46), and used the infant's follow-up form for data collection. Results: Among 91 neonates, the median gestational age was 33 weeks, and the mean birth weight was 2,100 g. Demographic findings and growth parameters showed no difference between the groups (p > 0.05). Weight gain and percentile measurements at discharge were statistically significantly higher in the study group (p = 0.002 and p = 0.003, respectively). Discharge time was statistically significantly lower after full enteral feeding and hospitalization time was shorter in the study group (p = 0.001). Conclusions: The chronobiological feeding model showcased significant positive effects on anthropometrics and percentile measurements at discharge and led to a 2-day reduction in the length of hospital stay.
Collapse
Affiliation(s)
| | - Gülzade Uysal
- Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Nilgün Karadag
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
2
|
Häusler S, Lanzinger E, Sams E, Fazelnia C, Allmer K, Binder C, Reiter RJ, Felder TK. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024; 16:1422. [PMID: 38794660 PMCID: PMC11124029 DOI: 10.3390/nu16101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Breastfeeding is the most appropriate source of a newborn's nutrition; among the plethora of its benefits, its modulation of circadian rhythmicity with melatonin as a potential neuroendocrine transducer has gained increasing interest. Transplacental transfer assures melatonin provision for the fetus, who is devoid of melatonin secretion. Even after birth, the neonatal pineal gland is not able to produce melatonin rhythmically for several months (with an even more prolonged deficiency following preterm birth). In this context, human breast milk constitutes the main natural source of melatonin: diurnal dynamic changes, an acrophase early after midnight, and changes in melatonin concentrations according to gestational age and during the different stages of lactation have been reported. Understudied thus far are the factors impacting on (changes in) melatonin content in human breast milk and their clinical significance in chronobiological adherence in the neonate: maternal as well as environmental aspects have to be investigated in more detail to guide nursing mothers in optimal feeding schedules which probably means a synchronized instead of mistimed feeding practice. This review aims to be thought-provoking regarding the critical role of melatonin in chrononutrition during breastfeeding, highlighting its potential in circadian entrainment and therefore optimizing (neuro)developmental outcomes in the neonatal setting.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Emma Lanzinger
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Elke Sams
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Claudius Fazelnia
- Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Kevin Allmer
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (K.A.); (T.K.F.)
| | - Christoph Binder
- Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Russel J. Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (K.A.); (T.K.F.)
- Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Boiko DI, Chopra H, Bilal M, Kydon PV, Herasymenko LO, Rud VO, Bodnar LA, Vasylyeva GY, Isakov RI, Zhyvotovska LV, Mehta A, Skrypnikov AM. Schizophrenia and disruption of circadian rhythms: An overview of genetic, metabolic and clinical signs. Schizophr Res 2024; 264:58-70. [PMID: 38101179 DOI: 10.1016/j.schres.2023.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
A molecular clock in the suprachiasmatic nucleus of the anterior hypothalamus, which is entrained by the dark-light cycle and controls the sleep-wake cycle, regulates circadian rhythms. The risk of developing mental disorders, such as schizophrenia, has long been linked to sleep abnormalities. Additionally, a common aspect of mental disorders is sleep disturbance, which has a direct impact on the intensity of the symptoms and the quality of life of the patient. This relationship can be explained by gene alterations such as CLOCK in schizophrenia which are also important components of the physiological circadian rhythm. The function of dopamine and adenosine in circadian rhythm should also be noted, as these hypotheses are considered to be the most popular theories explaining schizophrenia pathogenesis. Therefore, determining the presence of a causal link between the two can be key to identifying new potential targets in schizophrenia therapy, which can open new avenues for clinical research as well as psychiatric care. We review circadian disruption in schizophrenia at the genetic, metabolic, and clinical levels. We summarize data about clock and clock-controlled genes' alterations, neurotransmitter systems' impairments, and association with chronotype in schizophrenia patients. Our findings demonstrate that in schizophrenia either homeostatic or circadian processes of sleep regulation are disturbed. Also, we found an insufficient number of studies aimed at studying the relationship between known biological phenomena of circadian disorders and clinical signs of schizophrenia.
Collapse
Affiliation(s)
- Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, Tamil Nadu, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Pavlo V Kydon
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Larysa O Herasymenko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vadym O Rud
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Lesia A Bodnar
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Ganna Yu Vasylyeva
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Rustam I Isakov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Liliia V Zhyvotovska
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Aashna Mehta
- University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Andrii M Skrypnikov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
4
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Moustakli E, Tsonis O. Exploring Hormone Therapy Effects on Reproduction and Health in Transgender Individuals. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2094. [PMID: 38138197 PMCID: PMC10744413 DOI: 10.3390/medicina59122094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Transgender individuals often face elevated mental health challenges due to gender dysphoria, but gender-affirming treatments such as surgery and hormone therapy have been linked to significant improvements in mental well-being. The potential influence of time and circadian rhythms on these treatments is prevalent. The intricate interplay between hormones, clock genes, and fertility is profound, acknowledging the complexity of reproductive health in transgender individuals. Furthermore, risks associated with gender-affirming hormonal therapy and potential complications of puberty suppression emphasize the importance of ongoing surveillance for these patients and the need of fertility preservation and family-building options for transgender individuals. This narrative review delves into the intricate landscape of hormone therapy for transgender individuals, shedding light on its impact on bone, cardiovascular, and overall health. It explores how hormone therapy affects bone maintenance and cardiovascular risk factors, outlining the complex interplay of testosterone and estrogen. It also underscores the necessity for further research, especially regarding the long-term effects of transgender hormones. This project emphasizes the critical role of healthcare providers, particularly obstetricians and gynecologists, in providing affirming care, calling for comprehensive understanding and integration of transgender treatments. This review will contribute to a better understanding of the impact of hormone therapy on reproductive health and overall well-being in transgender individuals. It will provide valuable insights for healthcare providers, policymakers, and transgender individuals themselves, informing decision-making regarding hormone therapy and fertility preservation options. Additionally, by identifying research gaps, this review will guide future studies to address the evolving healthcare needs of transgender individuals. This project represents a critical step toward addressing the complex healthcare needs of this population. By synthesizing existing knowledge and highlighting areas for further investigation, this review aims to improve the quality of care and support provided to transgender individuals, ultimately enhancing their reproductive health and overall well-being.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Orestis Tsonis
- Fertility Preservation Service, Assisted Conception Unit, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
6
|
Hu S, Jing Y, Li T, Wang YG, Liu Z, Gao J, Tian YC. Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework. BMC Bioinformatics 2023; 24:362. [PMID: 37752445 PMCID: PMC10521455 DOI: 10.1186/s12859-023-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis. METHODS In this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation. CONCLUSION The proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.
Collapse
Affiliation(s)
- Shuwen Hu
- School of Computer Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia
| | - Yi Jing
- Faculty of Science, The University of New South Wales, Sydney, 2052, Australia
| | - Tao Li
- School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - You-Gan Wang
- Institute for Learning Sciences and Teacher Education, Australian Catholic University, Brisbane, QLD, 4000, Australia
| | - Zhenyu Liu
- School of Computer and Information Engineering, Inner Mongolia Agriculture University, Hohhot, 010018, China
| | - Jing Gao
- School of Computer and Information Engineering, Inner Mongolia Agriculture University, Hohhot, 010018, China.
| | - Yu-Chu Tian
- School of Computer Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
7
|
Huerta C, Meza E, Caba-Flores MD, Morales T, Paredes RG, Caba M. Activation of the central but not the medial and cortical amygdala during anticipation for daily nursing in the rabbit. Brain Res 2023; 1809:148341. [PMID: 37001722 DOI: 10.1016/j.brainres.2023.148341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Rabbits have remarkable nursing behavior: after parturition, does visit daily their pups for nursing only once with circadian periodicity. Before the nursing events, they present increased activity and arousal, which shift according to the timing of scheduled nursing, either during the day or night. Brain areas related to maternal behavior and neuroendocrine cells for milk secretion are also entrained. The daily return of the doe for nursing at approximately the same hour suggests a motivational drive with circadian periodicity. Previously, we reported the activation of the mesolimbic system at the time of nursing, but not 12 h before that. Aiming at a better understanding of the mechanism of this anticipatory behavior, we explored the participation of the limbic regions of the amygdala and the bed nucleus of the stria terminalis, as well as the possible activation of the hypothalamic-pituitaryadrenal axis, specifically the corticotropin-releasing factor cells in the hypothalamic paraventricular nucleus of does at different times before and after nursing. The medial and cortical amygdala, the bed nucleus of the stria terminalis, and corticotropin cells showed activation only after nursing. However, the central amygdala was also activated before nursing. We conclude that the medial and the cortical amygdala form part of the afferent olfactory pathway for entrainment, and the central amygdala participates in the anticipatory motivational circuit of the control of periodic nursing. The lack of activation of corticotropin cells before nursing is consistent with the possible harmful effects of the doe's high glucocorticoid levels on the developing pups.
Collapse
Affiliation(s)
- César Huerta
- Centro de Investigaciones Biomédicas (CIB), Universidad Veracruzana, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas (CIB), Universidad Veracruzana, Mexico
| | - Mario Daniel Caba-Flores
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología and Escuela Nacional de Estudios Superiores, Unidad, Juriquilla, UNAM, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas (CIB), Universidad Veracruzana, Mexico.
| |
Collapse
|
8
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
9
|
Das M, Mohanty SR, Minocha T, Mishra NK, Yadav SK, Haldar C. Circadian desynchronization in pregnancy of Golden hamster following long time light exposure: Involvement of Akt/FoxO1 pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112508. [PMID: 35841738 DOI: 10.1016/j.jphotobiol.2022.112508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Coordination between central and peripheral reproductive clocks in females is poorly understood. Long light is having a hazardous effect on reproductive health. Hence, explored the effect of long-time light exposure (LLD; 16L:8D) on the central and peripheral reproductive (ovary and uterus) clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2) and its downstream regulators (Aanat, Egf, Cx26, Cx43, ERα, pAktS-473, pAktT-308, pFoxO1T-24, 14-3-3, HoxA10, HoxA11 and Pibf) expression in non-pregnant and pregnant Golden hamster. Young adult Golden hamsters were exposed to LLD for 30 days and then were mated. We observed that LLD exposure increased the thickness of the endometrium and reduced myometrium thickness, resembling uterine adenomyosis. In non-pregnant females LLD altered the expressions of clock genes in suprachiasmatic nuclei (SCN), ovary and the uterus along with serum estradiol rhythm. LLD upregulated Egf and downregulated Aanat, Cx26, and Cx43 mRNA levels in uterus. LLD upregulated Akt/FoxO1 phosphorylation and 14-3-3 expressions in the uterus of nonpregnant females. LLD exposure to pregnant females lowered serum progesterone, Aanat, Pibf, Hoxa10, and Hoxa11 mRNA expressions on D4 (peri-implantation) and D8 (post-implantation) resulting in a low implantation rate on D8 (post-implantation). Hence it is evident that the frequent pregnancy anomalies noted under a long light schedule might be due to desynchronization in Aanat, Pibf, Hoxa10, and Hoxa11 as well as the central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2). LLD exposure desynchronized the central and peripheral reproductive clock affecting uterine physiology via Akt/FoxO1 pathway in Golden hamsters. Thus, LLD is a risk factor for female reproductive health and fertility.
Collapse
Affiliation(s)
- Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Soumya Ranjan Mohanty
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Tarun Minocha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nitesh Kumar Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Chandana Haldar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Bazhanova ED. Desynchronosis: Types, Main Mechanisms, Role in the Pathogenesis of Epilepsy and Other Diseases: A Literature Review. Life (Basel) 2022; 12:1218. [PMID: 36013397 PMCID: PMC9410012 DOI: 10.3390/life12081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian information is stored in mammalian tissues by an autonomous network of transcriptional feedback loops that have evolved to optimally regulate tissue-specific functions. Currently, stable circadian rhythms of the expression of clock genes (Bmal1/Per2/Cry1, etc.), hormones, and metabolic genes (Glut4/leptin, etc.) have been demonstrated. Desynchronoses are disorders of the body's biorhythms, where the direction and degree of shift of various indicators of the oscillatory process are disturbed. Desynchronosis can be caused by natural conditions or man-made causes. The disruption of circadian rhythms is a risk factor for the appearance of physiological and behavioral disorders and the development of diseases, including epilepsy, and metabolic and oncological diseases. Evidence suggests that seizure activity in the epilepsy phenotype is associated with circadian dysfunction. Interactions between epilepsy and circadian rhythms may be mediated through melatonin, sleep-wake cycles, and clock genes. The correction of circadian dysfunction can lead to a decrease in seizure activity and vice versa. Currently, attempts are being made to pharmacologically correct desynchronosis and related psycho-emotional disorders, as well as combined somatic pathology. On the other hand, the normalization of the light regimen, the regulation of sleep-wake times, and phototherapy as additions to standard treatment can speed up the recovery of patients with various diseases.
Collapse
Affiliation(s)
- Elena D. Bazhanova
- Laboratory of Comparative Biochemistry of Cell Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; ; Tel.: +7-9119008134
- Laboratory of Morphology and Electron Microscopy, Golikov Research Center of Toxicology, 192019 St. Petersburg, Russia
- Laboratory of Apoptosis Studying, Astrakhan State University, 414040 Astrakhan, Russia
| |
Collapse
|
11
|
Fan S, Zhao X, Xie W, Yang X, Yu W, Tang Z, Chen Y, Yuan Z, Han Y, Sheng X, Zhang H, Weng Q. The effect of 3-Methyl-4-Nitrophenol on the early ovarian follicle development in mice by disrupting the clock genes expression. Chem Biol Interact 2022; 363:110001. [PMID: 35654127 DOI: 10.1016/j.cbi.2022.110001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
3-Methyl-4-Nitrophenol (PNMC) is the main degradation product of organophosphate insecticide fenitrothion and a major component of diesel exhaust particles, which is now becoming a widely spread environmental endocrine disruptor. Previous reports showed PNMC exposure can affect the female reproductive system and ovarian function; however, the mechanism remains unclear. The main purpose of this study is to clarify the mechanism underlying the adverse effects of neonatal PNMC treatment on ovarian functions. The neonatal female mice were exposed to 10 mg/kg PNMC and the ovaries were collected on the 7th day after birth. The changes of follicular composition in mice ovaries were analyzed by histological staining, which showed that the proportion of primordial follicles in the ovaries treated by PNMC decreased, while the proportion of secondary follicles increased. The ovarian function was also investigated by detecting the expressions of steroidogenic enzymes (Star, Cyp11a1, Hsd3b1, Cyp17a1, Cyp19a1), gonadotropin receptors (Fshr and Lhr), androgen receptor (Ar), and estrogen receptors (Esr1 and Esr2) by immunohistochemistry or/and real-time quantitative PCR. The expression of Hsd3b1, Cyp17a1 and Esr2 were increased significantly in the PNMC exposed ovaries. Moreover, the expression patterns of clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Nr1d1) were disrupted in the ovaries after PNMC exposure. Furthermore, either the expression of DNA Methyltransferase Dnmt3b, or the methylation ratio of CpG islands in the upstream of Cry1 promoter regions were significantly decreased in PNMC exposed ovaries. Altogether, these results indicate that PNMC exposure affects follicle development and ovarian function by interfering with the epigenetic modification and disrupting the expression of clock genes.
Collapse
Affiliation(s)
- Sijie Fan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Zhao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqian Xie
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoying Yang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenyang Yu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeqi Tang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Caba-Flores MD, Ramos-Ligonio A, Camacho-Morales A, Martínez-Valenzuela C, Viveros-Contreras R, Caba M. Breast Milk and the Importance of Chrononutrition. Front Nutr 2022; 9:867507. [PMID: 35634367 PMCID: PMC9133889 DOI: 10.3389/fnut.2022.867507] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
During pregnancy the human fetus receives timed cues from the circadian rhythms of temperature, metabolites, and hormones from the mother. This influence is interrupted after parturition, the infant does not secrete melatonin and their circadian rhythms are still immature. However, evolution provided the solution to this problem. The newborn can continue receiving the mother's timed cues through breastmilk. Colostrum, transitional, and mature human milk are extraordinary complex biofluids that besides nutrients, contain an array of other non-nutritive components. Upon birth the first milk, colostrum, is rich in bioactive, immunological factors, and in complex oligosaccharides which help the proper establishment of the microbiome in the gut, which is crucial for the infants' health. Hormones, such as glucocorticoids and melatonin, transfer from the mother's plasma to milk, and then the infant is exposed to circadian cues from their mother. Also, milk components of fat, proteins, amino acids, and endogenous cannabinoids, among others, have a markedly different concentration between day and night. In the present review, we give an overview of nutritive and non-nutritive components and their daily rhythms in human milk and explore their physiological importance for the infant. Finally, we highlight some interventions with a circadian approach that emphasize the importance of circadian rhythms in the newborn for their survival, proper growth, and development. It is estimated that ~600,000 deaths/year are due to suboptimal breastfeeding. It is advisable to increase the rate of exclusive breastfeeding, during the day and night, as was established by the evolution of our species.
Collapse
Affiliation(s)
| | - Angel Ramos-Ligonio
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Mexico
| | - Alberto Camacho-Morales
- Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Mario Caba
| |
Collapse
|
13
|
Early development of sleep and brain functional connectivity in term-born and preterm infants. Pediatr Res 2022; 91:771-786. [PMID: 33859364 DOI: 10.1038/s41390-021-01497-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
The proper development of sleep and sleep-wake rhythms during early neonatal life is crucial to lifelong neurological well-being. Recent data suggests that infants who have poor quality sleep demonstrate a risk for impaired neurocognitive outcomes. Sleep ontogenesis is a complex process, whereby alternations between rudimentary brain states-active vs. wake and active sleep vs. quiet sleep-mature during the last trimester of pregnancy. If the infant is born preterm, much of this process occurs in the neonatal intensive care unit, where environmental conditions might interfere with sleep. Functional brain connectivity (FC), which reflects the brain's ability to process and integrate information, may become impaired, with ensuing risks of compromised neurodevelopment. However, the specific mechanisms linking sleep ontogenesis to the emergence of FC are poorly understood and have received little investigation, mainly due to the challenges of studying causal links between developmental phenomena and assessing FC in newborn infants. Recent advancements in infant neuromonitoring and neuroimaging strategies will allow for the design of interventions to improve infant sleep quality and quantity. This review discusses how sleep and FC develop in early life, the dynamic relationship between sleep, preterm birth, and FC, and the challenges associated with understanding these processes. IMPACT: Sleep in early life is essential for proper functional brain development, which is essential for the brain to integrate and process information. This process may be impaired in infants born preterm. The connection between preterm birth, early development of brain functional connectivity, and sleep is poorly understood. This review discusses how sleep and brain functional connectivity develop in early life, how these processes might become impaired, and the challenges associated with understanding these processes. Potential solutions to these challenges are presented to provide direction for future research.
Collapse
|
14
|
Rabbits can be conditioned in a food-induced place preference paradigm. Brain Res 2022; 1781:147815. [DOI: 10.1016/j.brainres.2022.147815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
|
15
|
Suyama A, Iwata N, Soejima Y, Nakano Y, Yamamoto K, Nada T, Otsuka F. Roles of NR5A1 and NR5A2 in the regulation of steroidogenesis by Clock gene and bone morphogenetic proteins by human granulosa cells. Endocr J 2021; 68:1283-1291. [PMID: 34176817 DOI: 10.1507/endocrj.ej21-0223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The functional role of the transcription factors NR5A1 and NR5A2 and their interaction with Clock gene and bone morphogenetic proteins (BMPs) were investigated in human granulosa KGN cells. Treatment with BMP-15 and GDF-9 suppressed forskolin (FSK)-induced steroidogenesis as shown by the mRNA expression levels of StAR and P450scc but not the mRNA expression level of P450arom. Of interest, treatment with BMP-15 and GDF-9 also suppressed FSK-induced NR5A2 mRNA expression. Treatment with BMP-15 suppressed NR5A2 mRNA and protein expression but increased Clock mRNA and protein expression levels by granulosa cells. The mRNA expression levels of NR5A1, but not those of NR5A2, were positively correlated with the levels of Clock mRNA, while the mRNA levels of Id-1, the target gene of BMP signaling, were positively correlated with those of NR5A1 but not with those of NR5A2. It was also demonstrated that the mRNA expression levels of NR5A1 were positively correlated with those of P450arom and 3βHSD, whereas the mRNA expression level of NR5A2 was correlated with those of StAR and P450scc. Furthermore, inhibition of Clock gene expression by siRNA attenuated the expression of NR5A1, and the mRNA levels of Clock gene were significantly correlated with those of NR5A1. Collectively, the results suggested a novel mechanism by which Clock gene expression induced by BMP-15 is functionally linked to the expression of NR5A1, whereas NR5A2 expression is suppressed by BMP-15 in granulosa cells. The interaction between Clock NR5A1/NR5A2 and BMP-15 is likely to be involved in the fine-tuning of steroidogenesis by ovarian granulosa cells.
Collapse
Affiliation(s)
- Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
16
|
Gurgul A, Jasielczuk I, Miksza-Cybulska A, Kawęcka A, Szmatoła T, Krupiński J. Evaluation of genetic differentiation and genome-wide selection signatures in Polish local sheep breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Marín-García PJ, Llobat L. What Are the Keys to the Adaptive Success of European Wild Rabbit ( Oryctolagus cuniculus) in the Iberian Peninsula? Animals (Basel) 2021; 11:2453. [PMID: 34438909 PMCID: PMC8388719 DOI: 10.3390/ani11082453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
The European wild rabbit (Oryctolagus cuniculus) plays an important ecological role in the ecosystems of the Iberian Peninsula. Recently, rabbit populations have drastically reduced, so the species is now considered endangered. However, in some places, this animal is considered a pest. This is the conservation paradox of the 21st century: the wild rabbit is both an invasive alien and an endangered native species. The authors of this review aimed to understand the keys to the adaptive success of European rabbits, addressing all aspects of their biology in order to provide the keys to the ecological management of this species. Aspects including nutrition, genetics, immunity interactions with the environment, behaviour, and conflict with human activities were reviewed. Ultimately, rabbits are resilient and adaptable. The main adaptations that explain the rabbit's adaptive success are its nutrition (wide adaptation to food and good nutritional use of caecotrophy), immune system (powerful and developed), and other aspects related to genetics and behaviour. Rabbits' relationship with humans has led them to colonise other places where they have become pests. Despite these adaptations, populations in native places have been drastically reduced in recent years. Since it serves as a bastion of the Mediterranean ecosystem, a specific conservation program for this species must be carried out. Therefore, a study of the rabbit's response to diseases and nutrition (especially protein), as well as the interaction between them, is of special interest.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
18
|
Soni SK, Basu P, Singaravel M, Sharma R, Pandi-Perumal SR, Cardinali DP, Reiter RJ. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell Mol Life Sci 2021; 78:2503-2515. [PMID: 33388853 PMCID: PMC11073088 DOI: 10.1007/s00018-020-03713-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Chronic disruption of circadian rhythms which include intricate molecular transcription-translation feedback loops of evolutionarily conserved clock genes has serious health consequences and negatively affects cardiovascular physiology. Sirtuins (SIRTs) are nuclear, cytoplasmic and mitochondrial histone deacetylases that influence the circadian clock with clock-controlled oscillatory protein, NAMPT, and its metabolite NAD+. Sirtuins are linked to the multi-organ protective role of melatonin, particularly in acute kidney injury and in cardiovascular diseases, where melatonin, via upregulation of SIRT1 expression, inhibits the apoptotic pathway. This review focuses on SIRT1, an NAD+-dependent class III histone deacetylase which counterbalances the intrinsic histone acetyltransferase activity of one of the clock genes, CLOCK. SIRT1 is involved in the development of cardiomyocytes, regulation of voltage-gated cardiac sodium ion channels via deacetylation, prevention of atherosclerotic plaque formation in the cardiovascular system, protection against oxidative damage and anti-thrombotic actions. Overall, SIRT1 has a see-saw effect on cardioprotection, with low levels being cardioprotective and higher levels leading to cardiac hypertrophy.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyoneel Basu
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | | | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
19
|
Alves RL, Portugal CC, Summavielle T, Barbosa F, Magalhães A. Maternal separation effects on mother rodents’ behaviour: A systematic review. Neurosci Biobehav Rev 2020; 117:98-109. [DOI: 10.1016/j.neubiorev.2019.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
|
20
|
Apel S, Hudson R, Coleman GJ, Rödel HG, Kennedy GA. Regulation of the rabbit's once-daily pattern of nursing: a circadian or hourglass-dependent process? Chronobiol Int 2020; 37:1151-1162. [PMID: 32869679 DOI: 10.1080/07420528.2020.1805459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The European rabbit Oryctolagus cuniculus has an unusual pattern of nursing behavior. After giving birth in a nursery burrow (or laboratory nest box), the mother immediately leaves the young and only returns to nurse for a few minutes once approximately every 24 h. It has been assumed this schedule, like a variety of other functions in the rabbit, is under circadian control. This assumption has been largely based on findings from mothers only permitted restricted access to their young once every 24 h. However, in nature and in the laboratory, mothers with free access to young show nursing visits with a periodicity shorter than 24 h, that does not correspond to other behavioral and physiological rhythms entrained to the prevailing 24 h light/dark (LD) cycle. To investigate how this unusual, apparently non-circadian pattern might be regulated, we conducted two experiments using female Dutch-belted rabbits housed individually in cages designed to automatically register feeding activity and nest box visits. In Experiment 1 we recorded the behavior of 17 mothers with free access to their young under five different LD cycles with long photo and short scotoperiods, spanning the limits of entrainment of the rabbit's circadian system. Whereas feeding rhythms were entrained by LD cycles within the rabbit's circadian range of entrainment, nursing visits showed a consistently shorter periodicity regardless of the LD regimen, largely independent of the circadian system. In Experiment 2 we tested further 12 mothers under more conventional LD 16:8 cycles but "trained" by having access to the nest box restricted to 1 h at the same time each day for the first 7 d of nursing. Mothers were then allowed free access either when their young were left in the box (n = 6), or when the litter had been permanently removed (n = 6). Mothers with pups still present returned to nurse them on the following days according to a similarly advancing pattern to the mothers of Experiment 1 despite the previous 7 d of "training" to an experimentally enforced 24 h nursing schedule as commonly used in previous studies of rabbit maternal behavior. Mothers whose pups had been removed entered the box repeatedly several times on the first day of unrestricted access, but on subsequent days did so only rarely, and at times of day apparently unrelated to the previously scheduled access. We conclude that the pattern of the rabbit's once-daily nursing visits has a periodicity largely independent of the circadian system, and that this is reset at each nursing. When nursing fails to occur nest box visits cease abruptly, with mothers making few or no subsequent visits. Together, these findings suggest that the rabbit's once-daily pattern of nursing is regulated by an hourglass-type process with a period less than 24 h that is reset at each nursing, rather than by a circadian oscillator. Such a mechanism might be particularly adaptive for rhythms of short duration that should end abruptly with a sudden change in context such as death or weaning of the young.
Collapse
Affiliation(s)
- Sabine Apel
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash University , Victoria, Australia
| | - Robyn Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Ciudad de México, Mexico
| | - Grahame J Coleman
- Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne , Melbourne, Australia
| | - Heiko G Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord , Villetaneuse, France
| | - Gerard A Kennedy
- School of Science, Psychology and Sport, Federation University , Ballarat, Australia.,School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University , Bundoora, Australia.,Institute for Breathing and Sleep, Austin Health , Heidelberg, Australia
| |
Collapse
|
21
|
Sun H, Li C, Zhang Y, Jiang M, Dong Q, Wang Z. Light-resetting impact on behavior and the central circadian clock in two vole species (genus: Lasiopodomys). Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110478. [PMID: 32687979 DOI: 10.1016/j.cbpb.2020.110478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The behavioral circadian rhythms of subterranean rodents show intra- and interspecies diversity in terms of adaptation to dark underground environments, but the endogenous molecular mechanism of rhythm regulation in the suprachiasmatic nuclei (SCN) is stable to many species. In this study, we sought to determine the rhythms of behavior and central molecular regulatory mechanisms in the SCN of the subterranean Mandarin voles (Lasiopodomys mandarinus) compared with a related aboveground species, Brandt's voles (Lasiopodomys brandtii). Both species were reared under a 12 L:12 D cycle or in continuous darkness for 4 weeks. The pattern of wheel-running activity was similar in both species and had a periodicity of almost 24 h regardless of rearing conditions. However, the intensity of daily activity in Brandt's voles decreased markedly in darkness, while there was no significant difference in activity intensity in mandarin voles under different light regimes. In both vole species, all tested genes in the SCN showed significant time-dependent expression regardless of rearing conditions, and the expression levels of most genes did not differ significantly between different species and conditions. However, the peak phase shift in gene expression differed between the two species. In conclusion, behavioral patterns in mandarin and Brandt's voles were regulated by a stable molecular endogenous biological clock. The observed differences in activity intensity and phase shift suggest that different mechanisms regulate circadian rhythms in different living environments.
Collapse
Affiliation(s)
- Hong Sun
- College of Physical Education (main Campus), Zhengzhou University, Zhengzhou, Henan Province, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chuyi Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yifeng Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qianqian Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
22
|
Pan X, Taylor MJ, Cohen E, Hanna N, Mota S. Circadian Clock, Time-Restricted Feeding and Reproduction. Int J Mol Sci 2020; 21:ijms21030831. [PMID: 32012883 PMCID: PMC7038040 DOI: 10.3390/ijms21030831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
The goal of this review was to seek a better understanding of the function and differential expression of circadian clock genes during the reproductive process. Through a discussion of how the circadian clock is involved in these steps, the identification of new clinical targets for sleep disorder-related diseases, such as reproductive failure, will be elucidated. Here, we focus on recent research findings regarding circadian clock regulation within the reproductive system, shedding new light on circadian rhythm-related problems in women. Discussions on the roles that circadian clock plays in these reproductive processes will help identify new clinical targets for such sleep disorder-related diseases.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
- Correspondence:
| | - Meredith J. Taylor
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| | - Emma Cohen
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| | - Nazeeh Hanna
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Department of Pediatrics, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, NY 11501, USA
| |
Collapse
|
23
|
Zhao L, Liu M, Ouyang J, Zhu Z, Geng W, Dong J, Xiong Y, Wang S, Zhang X, Qiao Y, Ding H, Sun H, Liang G, Shang H, Han X. The Per-1 Short Isoform Inhibits de novo HIV-1 Transcription in Resting CD4+ T-cells. Curr HIV Res 2019; 16:384-395. [PMID: 30774045 PMCID: PMC6446521 DOI: 10.2174/1570162x17666190218145048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
Background: Understanding of the restriction of HIV-1 transcription in resting CD4+ T-cells is critical to find a cure for AIDS. Although many negative factors causing HIV-1 transcription blockage in resting CD4+ T-cells have been found, there are still unknown mechanisms to explore. Objective: To explore the mechanism for the suppression of de novo HIV-1 transcription in resting CD4+ T-cells. Methods: In this study, a short isoform of Per-1 expression plasmid was transfected into 293T cells with or without Tat's presence to identify Per-1 as a negative regulator for HIV-1 transcription. Silenc-ing of Per-1 was conducted in resting CD4+ T-cells or monocyte-derived macrophages (MDMs) to evaluate the antiviral activity of Per-1. Additionally, we analyzed the correlation between Per-1 expres-sion and viral loads in vivo, and silenced Per-1 by siRNA technology to investigate the potential anti-HIV-1 roles of Per-1 in vivo in untreated HIV-1-infected individuals. Results: We found that short isoform Per-1 can restrict HIV-1 replication and Tat ameliorates this in-hibitory effect. Silencing of Per-1 could upregulate HIV-1 transcription both in resting CD4+ T-cells and MDMs. Moreover, Per-1 expression is inversely correlated with viral loads in Rapid progressors (RPs) in vivo. Conclusion: These data together suggest that Per-1 is a novel negative regulator of HIV-1 transcrip-tion. This restrictive activity of Per-1 to HIV-1 replication may contribute to HIV-1 latency in resting CD4+ T-cells.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Mei Liu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Jiayue Ouyang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Zheming Zhu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Jinxiu Dong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Ying Xiong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Shumei Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Xiaowei Zhang
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ying Qiao
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Hong Sun
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Guoxin Liang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| |
Collapse
|
24
|
Jiménez A, González-Mariscal G. Maternal responsiveness to suckling is modulated by time post-nursing: A behavioural and c-Fos/oxytocin immunocytochemistry study in rabbits. J Neuroendocrinol 2019; 31:e12788. [PMID: 31472100 DOI: 10.1111/jne.12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Doe rabbits nurse once/day for approximately 3 minutes, with circadian periodicity, inside the nest box. The amount of suckling received at each bout regulates this behaviour because reducing the litter size to four kits or less disrupts nursing circadian periodicity and increases suckling bout duration. Additionally, the likelihood that does will nurse kits at a given time of day depends on the time elapsed since the last suckling episode and the litter size nursed then. We hypothesised that the time elapsed since the last nursing would impact the number of c-Fos immunoreactive (IR) cells observed after suckling five kits and also that observed before the next nursing ("no kits"). Suckling significantly increased, relative to "no kits", the number of c-Fos-IR cells in the medial preoptic area and lateral septum but not in the bed nucleus of the stria terminalis (BNST), suprachiasmatic nucleus or ventromedial hypothalamus in does nursing at 18 or 24 hours after the previous bout. No effects of suckling were observed in mothers nursing at 6 hours. Does given kits at 3 hours post last suckling refused to nurse but, in the remaining three groups, all does nursed normally. At "no kits", more c-Fos-IR cells were seen (in all regions except the BNST) in does given kits at 24 hours after the last nursing and killed 1 hour later (ie, 4 hours after lights on) than in those killed earlier. The percentage of oxytocinergic (OT) cells co-expressing c-Fos was not modified by nursing in the paraventricular or supraoptic nuclei but, in the latter, the largest number of total OT-IR cells occurred at 18 and 24 hours post-last nursing. In conclusion, the responsiveness of particular forebrain regions involved in regulating circadian rhythms, lactation, and maternal behaviour is modulated by suckling and time of day.
Collapse
Affiliation(s)
- Angeles Jiménez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
25
|
Brzezinski A, Saada A, Miller H, Brzezinski-Sinai NA, Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J Ovarian Res 2018; 11:95. [PMID: 30463623 PMCID: PMC6247686 DOI: 10.1186/s13048-018-0471-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background It has been shown – mostly in animal models - that circadian clock genes are expressed in granulosa cells and in corpora luteum and might be essential for the ovulatory process and steroidogenesis. Objective We sought to investigate which circadian clock genes exist in human granulosa cells and whether their expression and activity decrease during aging of the ovary. Study design Human luteinized granulosa cells were isolated from young (age 18–33) and older (age 39–45) patients who underwent in-vitro fertilization treatment. Levels of clock genes expression were measured in these cells 36 h after human chorionic gonadotropin stimulation. Methods Human luteinized granulosa cells were isolated from follicular fluid during oocyte retrieval. The mRNA expression levels of the circadian genes CRY1, CRY2, PER1, PER2, CLOCK, ARNTL, ARNTL2, and NPAS2 were analyzed by quantitative polymerase chain reaction. Results We found that the circadian genes CRY1, CRY2, PER1, PER2, CLOCK, ARNTL, ARNTL2, and NPAS2, are expressed in cultured human luteinized granulosa cells. Among these genes, there was a general trend of decreased expression in cells from older women but it reached statistical significance only for PER1 and CLOCK genes (fold change of 0.27 ± 0.14; p = 0.03 and 0.29 ± 0.16; p = 0.05, respectively). Conclusions This preliminary report indicates that molecular circadian clock genes exist in human luteinized granulosa cells. There is a decreased expression of some of these genes in older women. This decline may partially explain the decreased fertility and steroidogenesis of reproductive aging.
Collapse
Affiliation(s)
- Amnon Brzezinski
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel.
| | - A Saada
- Department of Genetics & Metabolism, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - H Miller
- Department of Genetics & Metabolism, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - N A Brzezinski-Sinai
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - A Ben-Meir
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|