1
|
Wang J, Gu X, Chen P, Wang S, Huang P, Niu Y, Yang W, Ding Z, Liang Y, Shi M, Wei R, Wang W. Systematic transcriptome-wide analysis and validation of tributyltin-induced differential changes in the liver with sex-specific effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:117995. [PMID: 40068549 DOI: 10.1016/j.ecoenv.2025.117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Tributyltin (TBT), a prevalent environmental antiseptic, contaminates seafood, fish, and drinking water, posing health risks. While TBT's hepatic toxicity is well-known, its sex-specific effects on liver function remain poorly understood. METHODS To address this gap, a comprehensive analysis was conducted utilizing the Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET) dataset. Chromatin accessibility changes and transcriptomic alterations were analyzed via ATAC-seq and RNA-seq in liver tissues from TBT-exposed male and female mice. In vitro experiments were performed to validate the key bioinformatic findings. RESULTS TBT exposure induced significant chromatin accessibility changes and transcriptomic alterations in male liver compared to female counterparts. Notably, Signal transducer and activator of transcription 3 (STAT3) was identified as a central regulator among differentially expressed genes (DEGs) in male liver cells. Functional validation experiments confirmed that TBT-mediated downregulation of STAT3 impaired liver cell function and contributed to increased hepatotoxicity in males. CONCLUSIONS Our study highlights significant sex-dependent differences in TBT-induced hepatotoxicity and identifies STAT3 as a critical mediator in male liver cells, providing a novel perspective on the toxicology of TBT.
Collapse
Affiliation(s)
- Jinyan Wang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xin Gu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Pengchen Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Sisi Wang
- School of Pharmaceutical Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pan Huang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yaping Niu
- School of Pharmaceutical Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyue Yang
- The First Clinical Medicine School, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ziyang Ding
- School of Pharmaceutical Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanting Liang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Mingjun Shi
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China.
| | - Ran Wei
- School of Medical and Health Engineering, Changzhou University, Changzhou, China.
| | - Wei Wang
- Foshan Fetal Medicine Research Institute, Foshan Maternity and Children's Healthcare Hospital Affiliated to Guangdong Medical University, Foshan, China; Department of Obstetrics, Foshan Maternity and Children's Healthcare Hospital Affiliated to Guangdong Medical University, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Chen J, Wei Y, Zhou J, Cao X, Yuan R, Lu Y, Guo Y, Shao X, Sun W, Jia M, Chen X. Tributyltin-induced oxidative stress causes developmental damage in the cardiovascular system of zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 252:118811. [PMID: 38555090 DOI: 10.1016/j.envres.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 μg/L, 1 μg/L, and 2 μg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yaoyajie Lu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xue Shao
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weidi Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mengtao Jia
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xiuli Chen
- Ecological Environment College, Baotou Teachers' College, Baotou, 014030, China.
| |
Collapse
|
3
|
Zamora Z, Wang S, Chen YW, Diamante G, Yang X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. ENVIRONMENT INTERNATIONAL 2024; 183:108339. [PMID: 38043319 PMCID: PMC11216742 DOI: 10.1016/j.envint.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Cardiometabolic disorders (CMD) are a growing public health problem across the world. Among the known cardiometabolic risk factors are compounds that induce endocrine and metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially considering the complexity contributed by species-, chemical-, and dose-specific effects. Moreover, different experimental and analytical methodologies employed by different studies pose challenges when comparing findings across studies. To explore the molecular mechanisms of EDCs in a systematic manner, we established a data-driven computational approach to meta-analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological pathways, modeled gene regulatory networks and regulators, and determined CMD associations based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma (PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT exhibited highly divergent gene signatures, pathways, network regulators, and disease associations from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed highly variable transcriptomic patterns, providing molecular support for the variability in BPA responses. Our work offers insights into the commonality and differences in the molecular mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare molecular mechanisms of environmental substances to elucidate the underlying connections between chemical exposure and disease risks.
Collapse
Affiliation(s)
- Zacary Zamora
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Shaban SF, Khattab MA, Abd El Hameed SH, Abdelrahman SA. Evaluating the histomorphological and biochemical changes induced by Tributyltin Chloride on pituitary-testicular axis of adult albino rats and the possible ameliorative role of hesperidin. Ultrastruct Pathol 2023; 47:304-323. [PMID: 36988127 DOI: 10.1080/01913123.2023.2195489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This study was performed to explore in detail the toxic effects of Tributyltin Chloride (TBT) on the pituitary-testicular axis and the possible amelioration with Hesperidin. Seventy-two adult male albino rats were divided into four groups: Control group (I), TBT-treated group (II), TBT+Hesperidin group (III), and Recovery group (IV). Body and testicular weights were measured. Blood samples were taken to estimate serum levels of testosterone, FSH and LH hormones by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) level was measured in testes homogenates. Tissue samples from the pituitary glands and testes were processed for light, electron microscope examination, and immunohistochemical detection of anti-FSH, and Ki67 proteins. Results showed a statistically significant decrease in testicular weight, serum testosterone, FSH and LH levels and a significant increase in tissue MDA in the TBT group when compared to the control group. TBT treatment caused severe histopathological changes with decreased area percent of PAS-stained basophils, and anti FSH immuno-stained gonadotrophs in the pituitary gland. The testes of group II also showed marked tissue damage, cell loss with decreased epithelial height and decreased number of proliferating spermatogenic cells. Hesperidin supplementation with TBT proved significant amelioration of the previously mentioned parameters in both glands which could improve male fertility. In conclusion: The flavonoid Hesperidin has the potential to protect against the reproductive damage induced by TBT in susceptible individuals.
Collapse
Affiliation(s)
- Sahar F Shaban
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar H Abd El Hameed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Chen P, Song Y, Tang L, Zhong W, Zhang J, Cao M, Chen J, Cheng G, Li H, Fan T, Kwok HF, Wang J, Yang C, Xiao W. Tributyltin chloride (TBTCL) induces cell injury via dysregulation of endoplasmic reticulum stress and autophagy in Leydig cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130785. [PMID: 36860030 DOI: 10.1016/j.jhazmat.2023.130785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Tributyltin chloride (TBTCL), a commonly used antiseptic substance, is commonly found in the environment. Human exposure to TBTCL through the consumption of contaminated seafood, fish, or drinking water has aroused concern. It is well-characterized that TBTCL has multiple detrimental effects on the male reproductive system. However, the potential cellular mechanisms are not fully elucidated. Here, we characterized molecular mechanisms of TBTCL-induced cell injury in Leydig cells, a critical supporter for spermatogenesis. We showed that TBTCL induces apoptosis and cell cycle arrest in TM3 mouse Leydig cells. RNA sequencing analyses revealed that endoplasmic reticulum (ER) stress and autophagy were potentially involved in TBTCL-induced cytotoxicity. We further showed that TBTCL causes ER stress and inhibited autophagy flux. Notably, the inhibition of ER stress attenuates not only TBTCL-induces autophagy flux inhibition but also apoptosis and cell cycle arrest. Meanwhile, the activation of autophagy alleviates, and inhibition of autophagy exaggerates TBTCL-induced apoptosis and cell cycle arrest flux. These results suggest that TBTCL-induced ER stress and autophagy flux inhibition contributed to apoptosis and cell cycle arrest in Leydig cells, providing novel understanding into the mechanisms of TBTCL-induced testis toxicity.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Wenbin Zhong
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - JingJing Zhang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Cao
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Junhui Chen
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Guangqing Cheng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiying Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Tianyun Fan
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanbin Yang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Wei Xiao
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Jankauskas SS, Kansakar U, Sardu C, Varzideh F, Avvisato R, Wang X, Matarese A, Marfella R, Ziosi M, Gambardella J, Santulli G. COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants (Basel) 2023; 12:326. [PMID: 36829885 PMCID: PMC9952002 DOI: 10.3390/antiox12020326] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation (INI), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
7
|
Mendes ABA, Motta NAV, Lima GF, Autran LJ, Brazão SC, Magliano DC, Sepúlveda-Fragoso V, Scaramello CBV, Graceli JB, Miranda-Alves L, Brito FCF. Evaluation of the effects produced by subacute tributyltin administration on vascular reactivity of male wistar rats. Toxicology 2022; 465:153067. [PMID: 34902535 DOI: 10.1016/j.tox.2021.153067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Tributyltin chloride (TBT) is an organotin compound widely used in several high biocides for agroindustrial applications, such as fungicides, and marine antifouling paints leading to endocrine disrupting actions, such as imposex development in mollusks. In female rats, TBT has been shown to promote ovarian dysfunction, reduction of estrogen protective effect in the vascular morphophysiology, at least in part by oxidative stress consequences. Estrogen causes coronary endothelium-dependent and independent vasodilation. However, the TBT effects on cardiovascular system of male rats are not fully understood. The aim of this study was to evaluate the effects of subacute TBT exposure in aorta vascular reactivity from male wistar rats. Rats were randomly divided into three groups: control (C), TBT 500 ng/kg/day and TBT 1000 ng/kg/day. TBT was administered daily for 30 days by oral gavage. We found that TBT exposure enhanced testosterone serum levels and it was also observed obesogenic properties. TBT exposure evoked an increase in endothelium-dependent and independent phenylephrine-induced contraction, associated to an inhibition in eNOS activity. On the other hand, it was observed an enhancement of iNOS and NF-kB protein expression. We also observed an increase in oxidative stress parameters, such as superoxide dismutase (SOD) and catalase expression, and also an increase in malondialdehyde production. Finally, TBT exposure produced aortic intima-media thickness. Taken together, these data suggest a potential cardiovascular toxicological effect after subacute TBT exposure in male rats.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Lipid Peroxidation/drug effects
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/drug effects
- Phosphorylation
- Rats, Wistar
- Testosterone/blood
- Trialkyltin Compounds/toxicity
- Vasoconstriction/drug effects
- Rats
Collapse
Affiliation(s)
- Ana Beatriz Araújo Mendes
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Postgraduate Program in Pharmacology and Medicinal Chemistry and Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio De Janeiro (UFRJ), Brazil
| | - Nadia Alice Vieira Motta
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Gabriel Ferreira Lima
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Lis Jappour Autran
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Stephani Correia Brazão
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology Biomedical Institute, Fluminense Federal University (UFF), Brazil
| | - Vinícius Sepúlveda-Fragoso
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology Biomedical Institute, Fluminense Federal University (UFF), Brazil
| | - Christianne Brêtas Vieira Scaramello
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Jones Bernardes Graceli
- Laboratory of Endocrinology and Cell Toxicology, Department of Morphology/ CCS, Federal University of Espírito Santo (UFES), Brazil
| | - Leandro Miranda-Alves
- Postgraduate Program in Endocrinology, Faculty of Medicine, Postgraduate Program in Pharmacology and Medicinal Chemistry and Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio De Janeiro (UFRJ), Brazil
| | - Fernanda Carla Ferreira Brito
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil.
| |
Collapse
|
8
|
Liu H, Jiang W, Ye Y, Yang B, Shen X, Lu S, Zhu J, Liu M, Yang C, Kuang H. Maternal exposure to tributyltin during early gestation increases adverse pregnancy outcomes by impairing placental development. ENVIRONMENTAL TOXICOLOGY 2021; 36:1303-1315. [PMID: 33720505 DOI: 10.1002/tox.23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a persistent organotin pollutant widely used as agricultural and wood biocides, exhibiting well-documented toxicity to reproductive functions in aquatic organisms. However, the effect of TBT on early pregnancy and placental development has been rarely studied in mice. Pregnant mice were fed with 0, 0.2, and 2 mg/kg/day TBT from gravid day 1 to day 8 or 13. TBT exposure led to an increase in the number of resorbed embryo and a reduction in the weight of fetus at gestational days 13. Further study showed that TBT significantly decreased placental weight and area, lowered laminin immunoreactivity and the expressions of placental development-related molecules including Fra1, Eomes, Hand1, and Ascl2. Moreover, TBT treatment markedly inhibited the placental proliferation and induced up-regulation of p53 and cleaved caspase-3 proteins, and down-regulation of Bcl-2 protein. In addition, TBT administration increased levels of malondialdehyde and H2 O2 and decreased activities of catalase and superoxide dismutase. Collectively, these results suggested TBT-induced adverse pregnancy outcomes during early pregnancy might be involved in developmental disorders of the placenta via dysregulation of key molecules, proliferation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yafen Ye
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. ENVIRONMENT INTERNATIONAL 2019; 125:350-364. [PMID: 30743143 DOI: 10.1016/j.envint.2019.01.078] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 05/22/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are added to food, cosmetics, plastic packages, and children's toys and have thus become an integral part of the human environment. In the last decade, there has been increasing interest in the effect of EDCs on human health, including their impact on the immune system. So far, researchers have proved that EDCs (e.g. bisphenols, phthalates, triclosan, phenols, propanil, tetrachlorodibenzo-p-dioxin, diethylstilbestrol, tributyltin (TBT), and parabens) affect the development, functions, and lifespan of immune cells (e.g., monocytes, neutrophils, mast cells, eosinophils, lymphocytes, dendritic cells, and natural killers). In this review, we have summarized the current knowledge of the multivariable influence of EDCs on immune cells and underlined the novel approach to EDC studies, including dose-dependent effects and low-dose effects. We discuss critically the possible relationship between exposure to EDCs and immunity related diseases (e.g. allergy, asthma, diabetes, and lupus). Moreover, based on the literature, we construct a model of possible mechanisms of EDC action on immune cells at cellular, molecular, and epigenetic levels.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
10
|
Pereira CLV, Ximenes CF, Merlo E, Sciortino AS, Monteiro JS, Moreira A, Jacobsen BB, Graceli JB, Ginsburg KS, Ribeiro Junior RF, Bers DM, Stefanon I. Cardiotoxicity of environmental contaminant tributyltin involves myocyte oxidative stress and abnormal Ca 2+ handling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:371-382. [PMID: 30690233 PMCID: PMC7724993 DOI: 10.1016/j.envpol.2019.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 05/11/2023]
Abstract
Tributyltin (TBT) is an organotin environmental pollutant widely used as an agricultural and wood biocide and in antifouling paints. Countries began restricting TBT use in the 2000s, but their use continues in some agroindustrial processes. We studied the acute effect of TBT on cardiac function by analyzing myocardial contractility and Ca2+ handling. Cardiac contractility was evaluated in isolated papillary muscle and whole heart upon TBT exposure. Isolated ventricular myocytes were used to measure calcium (Ca2+) transients, sarcoplasmic reticulum (SR) Ca2+ content and SR Ca2+ leak (as Ca2+ sparks). Reactive oxygen species (ROS), as superoxide anion (O2•-) was detected at intracellular and mitochondrial myocardium. TBT depressed cardiac contractility and relaxation in papillary muscle and intact whole heart. TBT increased cytosolic, mitochondrial ROS production and decreased mitochondrial membrane potential. In isolated cardiomyocytes TBT decreased both Ca2+ transients and SR Ca2+ content and increased diastolic SR Ca2+ leak. Decay of twitch and caffeine-induced Ca2+ transients were slowed by the presence of TBT. Dantrolene prevented and Tiron limited the reduction in SR Ca2+ content and transients. The environmental contaminant TBT causes cardiotoxicity within minutes, and may be considered hazardous to the mammalian heart. TBT acutely induced a negative inotropic effect in isolated papillary muscle and whole heart, increased arrhythmogenic SR Ca2+ leak leading to reduced SR Ca2+ content and reduced Ca2+ transients. TBT-induced myocardial ROS production, may destabilize the SR Ca2+ release channel RyR2 and reduce SR Ca2+ pump activity as key factors in the TBT-induced negative inotropic and lusitropic effects.
Collapse
Affiliation(s)
- C L V Pereira
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - C F Ximenes
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - E Merlo
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - A S Sciortino
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - J S Monteiro
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - A Moreira
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - B B Jacobsen
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil; Department of Pharmacology, University of California, Davis, USA
| | - J B Graceli
- Department of Morphology, Federal University of Espírito Santo-UFES, Espírito Santo, Brazil
| | - K S Ginsburg
- Department of Pharmacology, University of California, Davis, USA
| | - R F Ribeiro Junior
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil; Department of Pharmacology, University of California, Davis, USA
| | - D M Bers
- Department of Pharmacology, University of California, Davis, USA
| | - I Stefanon
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil; Department of Pharmacology, University of California, Davis, USA.
| |
Collapse
|
11
|
Zhou X, Li M, Xiao M, Ruan Q, Chu Z, Ye Z, Zhong L, Zhang H, Huang X, Xie W, Li L, Yao P. ERβ Accelerates Diabetic Wound Healing by Ameliorating Hyperglycemia-Induced Persistent Oxidative Stress. Front Endocrinol (Lausanne) 2019; 10:499. [PMID: 31396159 PMCID: PMC6667639 DOI: 10.3389/fendo.2019.00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Delayed wound healing in diabetic patients is a serious diabetic complication, resulting in major health problems as well as high mortality and disability. The detailed mechanism still needs to be fully understood. In this study, we aim to investigate potential mechanisms and explore an efficient strategy for clinical treatment of diabetic wound healing. Human umbilical endothelial cells were exposed to hyperglycemia for 4 days, then switched to normoglycemia for an additional 4 days. The cells were harvested for the analysis of reactive oxygen species (ROS) generation, gene expression and VEGF signaling pathway. Furthermore, the diabetic wound model was established in rats for the evaluation of wound healing rates under the treatment of either ERβ agonist/antagonist or SOD mimetic MnTBAP. Our results show that transient hyperglycemia exposure results in persistent ROS overgeneration after the switch to normoglycemia, along with suppressed expression of ERβ, SOD2, and the VEGF signaling pathway. Either ERβ expression or activation diminishes ROS generation. In vivo experiments with diabetic rats show that ERβ activation or SOD mimetic MnTBAP diminishes ROS generation in tissues and accelerates diabetic wound healing. Transient hyperglycemia exposure induces ROS generation and suppresses ERβ expression, subsequently resulting in SOD2 suppression with additional elevated ROS generation. This forms a positive-feed forward loop for ROS generation with persistent oxidative stress. ERβ expression or activation breaks this loop and ameliorates this effect, thereby accelerating diabetic wound healing. We conclude that ERβ accelerates diabetic wound healing by ameliorating hyperglycemia-induced persistent oxidative stress. This provides a new strategy for clinical treatment of diabetic wound healing based on ERβ activation.
Collapse
Affiliation(s)
- Xueqing Zhou
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Meifang Xiao
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Ziqing Ye
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Liyan Zhong
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
- *Correspondence: Weiguo Xie
| | - Ling Li
- Hainan Maternal and Child Health Hospital, Haikou, China
- Ling Li
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
- Hainan Maternal and Child Health Hospital, Haikou, China
- Paul Yao
| |
Collapse
|