1
|
Hu M, Yan H, Chen J, Gao R, Li W, Zhou H, Wang J, Liu Q, Wang X, Hu P, Fu C. Comparative transcriptome analysis identified genes involved in ovarian development in Takifugu rubripes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101407. [PMID: 39736263 DOI: 10.1016/j.cbd.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Ovarian development is a complex process involving multiple genes, but the molecular mechanisms underlying this process in Takifugu rubripes remain poorly understood. This study aimed to identify genes associated with ovarian development in T. rubripes and to investigate the regulatory mechanisms of oocyte maturation. Transcriptome data were compared across four different developmental stages (stage II to V) to identify differentially expressed genes (DEGs) and perform GO and KEGG enrichment analysis. The expression patterns of randomly selected genes were then validated by qPCR. The results yielded a total of 1,289,401,820 raw data from all libraries, with 16,929 DEGs identified across all comparison groups. The DEGs were predominantly enriched in ovarian steroidogenesis, estrogen-mediated signaling, and TGF-beta signaling pathways. The qPCR analysis showed that cyp17a1 was identified as being expressed at similar levels in stage II and III. Thereafter, cyp17a1 was observed to undergo a continuous increase in expression from stage III to V. cyp19a1, nanos1, foxl2 and ar were identified as being expressed at similar levels at stage II and III, then increase in expression from stage III to IV and subsequent downregulation from stage IV to V. hsd17b1 was identified as being expressed at similar levels at stage II and IV. This study represents a transcriptomic study of ovarian development in female T. rubripes. Several essential ovarian-related genes and sex-related biological pathways were identified. The results will improve our understanding of the molecular mechanisms underlying ovarian development in this species.
Collapse
Affiliation(s)
- Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Weiyuan Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jia Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Pengfei Hu
- Inner Mongolia Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia 015199, China
| | - Chuang Fu
- Changhai County Marine and Fisheries Comprehensive Administrative LawEnforcement Team, Dalian, China
| |
Collapse
|
2
|
Xu J, Lei L, Li P, Huang ZC, Meng Y, He B, Kuang JL. Specnuezhenide and ecliptasaponin A from Ligustrum lucidum Ait and Ecliptae Herba improved premature ovarian failure by targeting the ESR1. J Pharmacol Sci 2025; 158:13-26. [PMID: 40121053 DOI: 10.1016/j.jphs.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
This study was designed to investigate the role of Ligustrum lucidum Ait and Ecliptae Herba on premature ovarian failure (POF) and the underlying mechanisms. In the POF mouse model constructed using cyclophosphamide (CTX), Ligustrum lucidum Ait and Ecliptae Herba increased ovarian index and estradiol (E2) levels and curtailed motility and follicle-stimulating hormone (FSH). Ligustrum lucidum Ait and Ecliptae Herba alleviated ovarian pathological damage in POF mice and promoted the expression of ovarian CD31 and Vascular Endothelial Growth Factor A (VEGFA). Through high-performance liquid chromatography-mass spectrometry (HPLC-MS) and network pharmacology, Specnuezhenide and ecliptasaponin A were identified as the key components of Ligustrum lucidum Ait and Ecliptae Herba in anti-POF action. The important target associated with these components is Estrogen Receptor (ESR) 1. Molecular docking and in vitro experiments showed that Specnuezhenide and ecliptasaponin A can both bind to the ESR protein; knocking down ESR1 inhibited the anti-apoptotic effect of Specnuezhenide and ecliptasaponin A on CTX-induced POF cells. In conclusion, the key components of Ligustrum lucidum Ait and Ecliptae Herba that alleviate POF are Specnuezhenide and ecliptasaponin A, which improve the condition by upregulating ESR1.
Collapse
Affiliation(s)
- Jia Xu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, PR China
| | - Lei Lei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Ping Li
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, PR China
| | - Zi-Chun Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, PR China
| | - Ying Meng
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, PR China
| | - Bing He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, PR China.
| | - Ji-Lin Kuang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, PR China.
| |
Collapse
|
3
|
Dong S, Xu J, Meng X, Jiang X, Yang D, Zhao X, Li X, Ding G. Impact of hexafluoropropylene oxide trimer acid (HFPO-TA) on sex differentiation after exposures during different development stages of zebrafish (Danio rerio). Food Chem Toxicol 2024; 194:115108. [PMID: 39536898 DOI: 10.1016/j.fct.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has been widely used and ubiquitously detected in aquatic environments. However, its potential effects on sex differentiation of aquatic organisms are not well known. Therefore, in this study, zebrafish were exposed to HFPO-TA at different development stages (0-21, 21-42, and 42-63 dpf) to investigate the effects on sex differentiation and its underlying mechanisms. All three exposures to HFPO-TA resulted in the feminization of zebrafish, and the impact of Stage II was most significant. The transcription levels of key genes related to female differentiation (bpm15, cyp19a1a, esr1, vtg1, and sox9b) were up-regulated, while those of key genes related to male differentiation (dmrt1, gata4, amh, and sox9a) were down-regulated, which could lead to the feminization. In addition, it was found that the dysregulations of these genes were prolonged in adult zebrafish even through a long recovery, which could cause sex imbalance in populations. Therefore, HFPO-TA might not be a safe alternative to PFOA, and more evidences from multi- and transgenerational toxicology are warranted.
Collapse
Affiliation(s)
- Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiangyue Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
4
|
Yang D, Li F, Zhao X, Dong S, Song G, Wang H, Li X, Ding G. Hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts sex differentiation of zebrafish (Danio rerio) via an epigenetic mechanism of DNA methylation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107077. [PMID: 39236549 DOI: 10.1016/j.aquatox.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an alternative to perfluorooctanoic acid, has been shown to have estrogenic effects. However, its potential to disrupt fish sex differentiation during gonadal development remains unknown. Therefore, this study exposed zebrafish to HFPO-TA from approximately 2 hours post fertilization (hpf) to 60 days post fertilization (dpf) to investigate its effects on sex differentiation. Results indicated that HFPO-TA disrupted steroid hormone homeostasis, delayed gonadal development in both sexes, and resulted in a female-skewed sex ratio in zebrafish. HFPO-TA exposure up-regulated gene expressions of cyp19a1a, esr1, vtg1 and foxl2, while down-regulated those of amh, sox9a and dmrt1. These suggested that HFPO-TA dysregulated the expressions of key genes related to sex differentiation of zebrafish, promoted the production and activation of estrogen, and further induced the feminization. Interestingly, we observed promoter hypomethylation of cyp19a1a and promoter hypermethylation of amh in male zebrafish, which were negatively associated with their gene expressions. These suggested that HFPO-TA dysregulated these key genes through DNA methylation in their promoters. Therefore, the HFPO-TA disrupted the sex differentiation of zebrafish through an epigenetic mechanism involving DNA methylation, ultimately skewing the sex ratio towards females. Overall, this study demonstrated adverse effects of HFPO-TA on fish sex differentiation and provided novel insights into the underlying epigenetic mechanism.
Collapse
Affiliation(s)
- Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Fanghua Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
5
|
Guerrero-Limón G, Muller M. Exploring estrogen antagonism using CRISPR/Cas9 to generate specific mutants for each of the receptors. CHEMOSPHERE 2024; 364:143100. [PMID: 39159765 DOI: 10.1016/j.chemosphere.2024.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Endocrine disruptors are chemicals that have been in the spotlight for some time now. Their modulating action on endocrine signaling pathways made them a particularly interesting topic of research within the field of ecotoxicology. Traditionally, endocrine disrupting properties are studied using exposure to suspected chemicals. In recent years, a major breakthrough in biology has been the advent of targeted gene editing tools to directly assess the function of specific genes. Among these, the CRISPR/Cas9 method has accelerated progress across many disciplines in biology. This versatile tool allows to address antagonism differently, by directly inactivating the receptors targeted by endocrine disruptors. Here, we used the CRISPR/Cas9 method to knock out the different estrogen receptors in zebrafish and we assessed the potential effects this generates during development. We used a panel of biological tests generally used in zebrafish larvae to investigate exposure to compounds deemed as endocrine disrupting chemicals. We demonstrate that the absence of individual functional estrogen receptors (Esr1, Esr2b, or Gper1) does affect behavior, heart rate and overall development. Each mutant line was viable and could be grown to adulthood, the larvae tended to be morphologically grossly normal. A substantial fraction (70%) of the esr1 mutants presented severe craniofacial deformations, while the remaining 30% of esr1 mutants also had changes in behavior. esr2b mutants had significantly increased heart rate and significant impacts on craniofacial morphometrics. Finally, mutation of gper1 affected behavior, decreased standard length, and decreased bone mineralization as assessed in the opercle. Although the exact molecular mechanisms underlying these effects will require further investigations in the future, we added a new concept and new tools to explore and better understand the actions of the large group of endocrine disrupting chemicals found in our environment.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Huang Y, Yang H, Li Y, Guo Y, Li G, Chen H. Comparative Transcriptome Analysis Reveals the Effect of Aurantiochytrium sp. on Gonadal Development in Zebrafish. Animals (Basel) 2023; 13:2482. [PMID: 37570291 PMCID: PMC10417364 DOI: 10.3390/ani13152482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Aurantiochytrium sp. has received much attention as a potential resource for mass production of omega-3 fatty acids, which contribute to improved growth and reproduction in aquatic animals. In this study, we evaluated the gonadal index changes in zebrafish supplemented with 1-3% Aurantiochytrium sp. crude extract (TE) and the effects of ex vivo environmental Aurantiochytrium sp. on oocytes. 1% TE group showed significant improvement in the gonadal index, and both in vitro incubation and intraperitoneal injection promoted the maturation of zebrafish oocytes. In contrast, the transcriptome revealed 576 genes that were differentially expressed between the 1% TE group and the control group, including 456 up-regulated genes and 120 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis of differentially expressed genes indicated that Aurantiochytrium sp. potentially affects pathways such as lipid metabolism, immune regulation, and oocyte development in zebrafish. The results of this study enriched the knowledge of Aurantiochytrium sp. in regulating gonadal development in zebrafish and provided a theoretical basis for its application in aquaculture.
Collapse
Affiliation(s)
- Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Yikai Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Yuwen Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
7
|
Shaw K, Therrien M, Lu C, Liu X, Trudeau VL. Mutation of brain aromatase disrupts spawning behavior and reproductive health in female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1225199. [PMID: 37435485 PMCID: PMC10332311 DOI: 10.3389/fendo.2023.1225199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Aromatase (Cyp19a1) is the steroidogenic enzyme that converts androgens into bioactive estrogens, and hence is in a pivotal position to mediate reproduction and sexual behavior. In teleosts, there are two aromatase paralogs: cyp19a1a that is highly expressed in granulosa and Leydig cells in the gonads with critical function in sexual differentiation of the ovary, and cyp19a1b that is highly expressed in radial glial cells in the brain with unknown roles in reproduction. Cyp19a1 -/- mutant zebrafish lines were used to investigate the importance of the cyp19a1 paralogs for spawning behavior and offspring survival and early development. Mutation of cyp19a1b was found to increase the latency to the first oviposition in females. Mutation of cyp19a1b in females also increased the number of eggs spawned; however, significantly more progeny died during early development resulting in no net increase in female fecundity. This finding suggests a higher metabolic cost of reproduction in cyp19a1b -/- mutant females. In males, the combined mutation of both cyp19a1 paralogs resulted in significantly lower progeny survival rates, indicating a critical function of cyp19a1 during early larval development. These data establish the specific importance of cyp19a1b for female spawning behavior and the importance of the cyp19a1 paralogs for early larval survival.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Mylène Therrien
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
8
|
Yuan M, Chen S, Zeng C, Fan Y, Ge W, Chen W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. ENVIRONMENT INTERNATIONAL 2023; 176:107976. [PMID: 37236126 DOI: 10.1016/j.envint.2023.107976] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Bisphenol A (BPA) is the most simple and predominant component of the Bisphenol family. BPA is widely present in the environment and the human body as a result of its extensive usage in the plastic and epoxy resins of consumer goods like water bottles, food containers, and tableware. Since the 1930s, when BPA's estrogenic activity was first observed, and it was labeled as a "mimic hormone of E2", studies on the endocrine-disrupting effects of BPA then have been widely conducted. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades. By using the zebrafish, the negative effects of BPA either through estrogenic signaling pathways or non-estrogenic signaling pathways were largely found. In this review, we tried to draw a full picture of the current state of knowledge on the estrogenic and non-estrogenic effects of BPA with their mechanisms of action through the zebrafish model of the past two decades, which may help to fully understand the endocrine-disrupting effects of BPA and its action mechanism, and give a direction for the future studies.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chu Zeng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China.
| |
Collapse
|
9
|
Pierron F, Daffe G, Daramy F, Heroin D, Barré A, Bouchez O, Clérendeau C, Romero-Ramirez A, Nikolski M. Transgenerational endocrine disruptor effects of cadmium in zebrafish and contribution of standing epigenetic variation to adaptation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131579. [PMID: 37163897 DOI: 10.1016/j.jhazmat.2023.131579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Evidence has emerged that environmentally-induced epigenetic changes can have long-lasting effects on gene transcription across generations. These recent findings highlight the need to investigate the transgenerational impacts of pollutants to assess their long term effects on populations. In this study, we investigated the transgenerational effect of cadmium on zebrafish across 4 generations. A first whole methylome approach carried out on fish of the first two generations led us to focus our investigations on the estradiol receptor alpha gene (esr1). We observed a sex-dependent transgenerational inheritance of Cd-induced DNA methylation changes up to the last generation. These changes were associated with single nucleotide polymorphisms (SNPs) that were themselves at the origin of the creation or deletion of methylation sites. Thus, Cd-induced genetic selection gave rise to DNA methylation changes. We also analyzed the transcription level of various sections of esr1 as well as estrogen responsive genes. While Cd triggered transgenerational disorders, Cd-induced epigenetic changes in esr1 contributed to the rapid transgenerational adaptation of fish to Cd. Our results provide insight into the processes underpinning rapid adaptation and highlight the need to maintain genetic diversity within natural populations to bolster the resilience of species faced with the global environmental changes.
Collapse
Affiliation(s)
- Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, INRAE, La Rochelle Univ., UMS 2567 POREA, F-33615 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Débora Heroin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Aurélien Barré
- Univ. Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | | | - Macha Nikolski
- Univ. Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France; Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux 33077, France
| |
Collapse
|
10
|
A Cross-Species Analysis Reveals Dysthyroidism of the Ovaries as a Common Trait of Premature Ovarian Aging. Int J Mol Sci 2023; 24:ijms24033054. [PMID: 36769379 PMCID: PMC9918015 DOI: 10.3390/ijms24033054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Although the imbalance of circulating levels of Thyroid Hormones (THs) affects female fertility in vertebrates, its involvement in the promotion of Premature Ovarian Aging (POA) is debated. Therefore, altered synthesis of THs in both thyroid and ovary can be a trait of POA. We investigated the relationship between abnormal TH signaling, dysthyroidism, and POA in evolutionary distant vertebrates: from zebrafish to humans. Ovarian T3 signaling/metabolism was evaluated by measuring T3 levels, T3 responsive transcript, and protein levels along with transcripts governing T3 availability (deiodinases) and signaling (TH receptors) in distinct models of POA depending on genetic background and environmental exposures (e.g., diets, pesticides). Expression levels of well-known (Amh, Gdf9, and Inhibins) and novel (miR143/145 and Gas5) biomarkers of POA were assessed. Ovarian dysthyroidism was slightly influenced by genetics since very few differences were found between C57BL/6J and FVB/NJ females. However, diets exacerbated it in a strain-dependent manner. Similar findings were observed in zebrafish and mouse models of POA induced by developmental and long-life exposure to low-dose chlorpyrifos (CPF). Lastly, the T3 decrease in follicular fluids from women affected by diminished ovarian reserve, as well as of the transcripts modulating T3 signaling/availability in the cumulus cells, confirmed ovarian dysthyroidism as a common and evolutionary conserved trait of POA.
Collapse
|
11
|
Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel) 2022; 11:1567. [PMID: 36009286 PMCID: PMC9404823 DOI: 10.3390/antiox11081567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, the core mechanisms that control gametogenesis are largely multiple, complex, successive, and orchestrated by intrinsic and extrinsic factors. However, age, health status, and hormonal activity are important factors for good fertility; other intangible intracellular molecular mechanisms that manage oocyte development are still unclear. The present study was designed to elucidate the ultrastructure changes in the ovary in response to its exposure to zinc oxide nanoparticles (ZnO-NPs) and to explore the role of autophagy and apoptosis during egg maturation and ovulation on the fertility of female zebrafish. In our study, ZnO-NPs could induce cytotoxicity in the maturing oocyte by activating autophagy and apoptosis in a caspase-dependent manner and could induce oxidative stress by generating reactive oxygen species (ROS) that elevated the mutated ovarian tP53 protein. Simultaneously, necroptosis developed, mimicking the features of apoptosis and necrosis. Collectively, ZnO-NPs created a suitable necrotic environment that led to follicular developmental retardation that altered oocyte ovulation and reduced fecundity of female zebrafish.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha M. Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gian E. Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Wafaa G. El-Nagar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
12
|
Nynca J, Słowińska M, Wiśniewska J, Jastrzębski J, Dobosz S, Ciereszko A. Ovarian transcriptome analysis of diploid and triploid rainbow trout revealed new pathways related to gonadal development and fertility. Animal 2022; 16:100594. [PMID: 35870268 DOI: 10.1016/j.animal.2022.100594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Triploidisation represents several advantages (e.g. sterility) and therefore is routinely applied in aquaculture of several commercially important fish species, including rainbow trout. The comparative transcriptomic analysis of ovaries of triploid (3N) and diploid (2N) female rainbow trout revealed a total of 9 075 differentially expressed genes (DEGs; 4 105 genes upregulated in 2N and 4 970 genes upregulated in 3N ovaries, respectively). Identified clusters for DEGs upregulated in 3N and 2N ovaries were different, including carbohydrate and lipid metabolic process and transport, protein modification, signalling (related to folliculogenesis) and response to stimulus for DEGs upregulated in 2N, and developmental process, signalling (related to apoptosis, cellular senescence and adherence junctions) and regulation of RNA metabolic process for DEGs upregulated in 3N. The enrichment of processes involved in carbohydrate and lipid metabolism in 2N ovaries indicated high metabolism of ovarian tissue and the energy reservoir generation indispensable during the earliest stages of development. Our results highlight the importance of oocyte hydration along with oestrogen, insulin, leptin, fibroblast growth factor, and Notch signalling and pathways related to the regulation of cyclic adenosine monophosphate (cAMP) levels in proper oocyte meiotic maturation prior to ovulation in 2N ovaries. Conversely, triploidisation may lead to an increase in ovarian cellular senescence and apoptosis, which in turn can result in abnormal gonadal morphology and fibrosis. The downregulation of genes responsible for the precise regulation of meiosis and proper chromosome segregation during meiosis probably affects meiotic maturation via irregular meiotic division of chromosomes. The induction of triploidy of the rainbow trout genome resulted in enhanced expression of male-specific genes, genes responsible for re-establishing the transcriptional balance after genome reorganisation and genes involved in regulatory mechanisms, including gene silencing and DNA methylation. To the best of our knowledge, this is the first genome-wide investigation providing in-depth comprehensive and comparative gene expression patterns in the ovary from 2N and 3N rainbow trout females helping in elucidating the molecular mechanisms leading to impaired gonadal development and sterility of female triploids.
Collapse
Affiliation(s)
- J Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - M Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - S Dobosz
- Inland Fisheries Institute, Department of Salmonid Research, Żukowo, Poland
| | - A Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
13
|
Estrogens revert neutrophil hyperplasia by inhibiting Hif1α-cMyb pathway in zebrafish myelodysplastic syndromes models. Cell Death Dis 2022; 8:323. [PMID: 35842445 PMCID: PMC9288432 DOI: 10.1038/s41420-022-01121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterized by daunting genetic heterogeneity and a high risk of leukemic transformation, which presents great challenges for clinical treatment. To identify new chemicals for MDS, we screened a panel of FDA-approved drugs and verified the neutrophil hyperplasia inhibiting role of 17β-estradiol (E2, a natural estrogen) in several zebrafish MDS models (pu.1G242D/G242D, irf8Δ57Δ/57 and c-mybhyper). However, the protective mechanism of estrogen in the development of hematological malignancies remains to be explored. Here, analyzing the role of E2 in the development of each hematopoietic lineage, we found that E2 exhibited a specific neutrophil inhibiting function. This neutrophil inhibitory function of E2 is attributed to its down-regulation of c-myb, which leads to accelerated apoptosis and decreased proliferation of neutrophils. We further showed that knockdown of hif1α could mimic the neutrophil inhibiting role of E2, and hif1α overexpression could reverse the protective function of E2. Collectively, our findings highlight the protective role of E2 on MDS by inhibiting hif1α-c-myb pathway, suggesting that E2 is a promising and effective drug for hematopoietic tumors associated with abnormal neutrophil hyperplasia.
Collapse
|
14
|
Zainal-Abidin RA, Afiqah-Aleng N, Abdullah-Zawawi MR, Harun S, Mohamed-Hussein ZA. Protein–Protein Interaction (PPI) Network of Zebrafish Oestrogen Receptors: A Bioinformatics Workflow. Life (Basel) 2022; 12:life12050650. [PMID: 35629318 PMCID: PMC9143887 DOI: 10.3390/life12050650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Protein–protein interaction (PPI) is involved in every biological process that occurs within an organism. The understanding of PPI is essential for deciphering the cellular behaviours in a particular organism. The experimental data from PPI methods have been used in constructing the PPI network. PPI network has been widely applied in biomedical research to understand the pathobiology of human diseases. It has also been used to understand the plant physiology that relates to crop improvement. However, the application of the PPI network in aquaculture is limited as compared to humans and plants. This review aims to demonstrate the workflow and step-by-step instructions for constructing a PPI network using bioinformatics tools and PPI databases that can help to predict potential interaction between proteins. We used zebrafish proteins, the oestrogen receptors (ERs) to build and analyse the PPI network. Thus, serving as a guide for future steps in exploring potential mechanisms on the organismal physiology of interest that ultimately benefit aquaculture research.
Collapse
Affiliation(s)
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
- Correspondence: (N.A.-A.); (Z.-A.M.-H.)
| | | | - Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (N.A.-A.); (Z.-A.M.-H.)
| |
Collapse
|
15
|
Elersek T, Novak M, Mlinar M, Virant I, Bahor N, Leben K, Žegura B, Filipič M. Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. TOXICS 2021; 10:toxics10010004. [PMID: 35051046 PMCID: PMC8781212 DOI: 10.3390/toxics10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Igor Virant
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Nika Bahor
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Karin Leben
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Correspondence:
| |
Collapse
|
16
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Sun D, Chen Q, Zhu B, Zhao H, Duan S. Multigenerational reproduction and developmental toxicity, and HPG axis gene expression study on environmentally-relevant concentrations of nonylphenol in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144259. [PMID: 33387771 DOI: 10.1016/j.scitotenv.2020.144259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is a toxic xenobiotic compound, which is persistent in the aquatic environment and is extremely toxic to aquatic organisms. Although the exact molecular mechanisms of its toxic effect are well understood, the multigenerational reproduction and multigenerational - gene expression changes caused by NP still remain unclear. The following work investigated the effect of NP on four consecutive generations of zebrafish by examining their growth and several reproductive parameters, the degree of gonad damage, and the expression of related reproduction related genes. The results showed that high concentrations (20 and 200 μg·L-1) of NP could decrease growth and induce gonad damage in zebrafish. In addition, gnrh2 and gnrh3 genes were up-regulated, and fshβ and lhβ genes were downregulated in the hypothalamus in male zebrafish; while in female fish, the fshβ and lhβ were upregulated in P and F1 generations, and then down-regulated in the F2 generation. Meanwhile, the cyp19a1a gene was downregulated in the gonad of male fish, while the genes of fshr, lhr and esr showed a downward trend in females. Compared to P generation, F2 generation was more tolerant to higher NP concentrations (20 and 200 μg·L-1), as was also more sensitive to lower concentrations of NP (2 μg·L-1). Consequently, stress and damage caused by environmentally-relevant concentrations of aquatic pollutants in a vertebrate model were measured and predicted. Prevention and control measures can be actively and effectively proposed, which might be transversal to other exposed organisms, including humans. After several generations, typical transgenerational genetic phenomena might occur, which should be addressed by further studies.
Collapse
Affiliation(s)
- Dong Sun
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- School of Life Science and Engineering, State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hui Zhao
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Xu H, Jiang Y, Li S, Xie L, Tao YX, Li Y. Zebrafish Oxr1a Knockout Reveals Its Role in Regulating Antioxidant Defenses and Aging. Genes (Basel) 2020; 11:genes11101118. [PMID: 32987694 PMCID: PMC7598701 DOI: 10.3390/genes11101118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) is essential for protection against oxidative stress in mammals, but its functions in non-mammalian vertebrates, especially in fish, remain uncertain. Here, we created a homozygous oxr1a-knockout zebrafish via the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Compared with wild-type (WT) zebrafish, oxr1a−/− mutants exhibited higher mortality and more apoptotic cells under oxidative stress, and multiple antioxidant genes (i.e., gpx1b, gpx4a, gpx7 and sod3a) involved in detoxifying cellular reactive oxygen species were downregulated significantly. Based on these observations, we conducted a comparative transcriptome analysis of early oxidative stress response. The results show that oxr1a mutation caused more extensive changes in transcriptional networks compared to WT zebrafish, and several stress response and pro-inflammatory pathways in oxr1a−/− mutant zebrafish were strongly induced. More importantly, we only observed the activation of the p53 signaling and apoptosis pathway in oxr1a−/− mutant zebrafish, revealing an important role of oxr1a in regulating apoptosis via the p53 signaling pathway. Additionally, we found that oxr1a mutation displayed a shortened lifespan and premature ovarian failure in prolonged observation, which may be caused by the loss of oxr1a impaired antioxidant defenses, thereby increasing pro-apoptotic events. Altogether, our findings demonstrate that oxr1a is vital for antioxidant defenses and anti-aging in zebrafish.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yu Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Sheng Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
- Correspondence: ; Tel.: +86-2368-2519-62
| |
Collapse
|
19
|
Li M, Peng J, Zeng Z. Overexpression of long non-coding RNA nuclear enriched abundant transcript 1 inhibits the expression of p53 and improves premature ovarian failure. Exp Ther Med 2020; 20:69. [PMID: 32963599 DOI: 10.3892/etm.2020.9197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
It has been previously reported that the long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) can regulate cell apoptosis. The present study aimed to investigate the involvement of NEAT1 in premature ovarian failure (POF). A total of 60 patients with POF admitted at the Sixth Affiliated Hospital of Sun Yat-sen University between December 2016 and December 2018 were enrolled in the present study. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure NEAT1 expression level in tissue samples from patients with POF and healthy controls. Transient transfections were performed on two normal Chinese hamster ovary cell lines Lec8 and CHO, followed by RT-qPCR and western blot to evaluate gene interaction. Flow cytometry was performed to assess cell apoptosis. The results from the present study demonstrated that NEAT1 expression in ovarian tissues was significantly downregulated in patients with POF compared with healthy controls. Furthermore, the expression of p53 was upregulated in ovarian tissues from patients with POF compared with healthy controls and was inversely associated with NEAT1 expression. In hamster ovary cells, overexpression of NEAT1 led to inhibition of p53, whereas NEAT1 knockdown promoted the expression of p53. In addition, ovary cell apoptosis was inhibited following NEAT1 overexpression and stimulated following p53 overexpression. In conclusion, overexpression of NEAT1 may inhibit the expression of p53 and improve premature ovarian failure.
Collapse
Affiliation(s)
- Manchao Li
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jintao Peng
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhi Zeng
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
20
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
21
|
Chen Y, Tang H, Wang L, Wei T, Liu X, Lin H. New insights into the role of mTORC1 in male fertility in zebrafish. Gen Comp Endocrinol 2020; 286:113306. [PMID: 31669651 DOI: 10.1016/j.ygcen.2019.113306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) plays crucial roles in male fertility. In mammals, deregulation of mTORC1 led to disordered spermatogonia proliferation and spermatogenesis, which eventually caused infertility in males. However, its roles in male fertility of non-mammalian species remain unclarified. In the present study, it was found that treatment of rapamycin, an mTORC1 inhibitor, resulted in infertility with decreased milt production and sperm motility in zebrafish. However, it is surprising to find that spermatogenesis was normal in these fish. All types of germ cells were found and the proliferation of spermatogonia and spermatocyte were normal. These results suggested that maturation of sperm may be impaired in males treated with rapamycin. Increased apoptosis was found surrounding the lumen containing spermatozoa, implicating a loss of Sertoli cells in testes treated with rapamycin. Moreover, LH/hCG mediated up-regulation of steroidogenic genes was abolished. The expression of npr and ar induced by LH/hCG was also blocked, which further suppressed the signaling of progestin and androgen. Collectively, mTORC1 maintains male fertility via different mechanisms in fish and mammals. mTORC1 is dispensable for spermatogenesis in zebrafish, but possibly supports the maintenance of Sertoli cells and mediates the signaling of hormones, which are crucial for sperm maturation.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tengyu Wei
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Isola JVV, Zanini BM, Sidhom S, Kopchick JJ, Bartke A, Masternak MM, Stout MB, Schneider A. 17α-Estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates. Exp Gerontol 2020; 129:110769. [PMID: 31698046 PMCID: PMC6911620 DOI: 10.1016/j.exger.2019.110769] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/05/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Growth hormone receptor knockout mice (GHRKO) have reduced body size and increased insulin sensitivity. These mice are known for having extended lifespan, healthspan and female reproductive longevity. Seventeen α-estradiol (17α-E2) is reported to increase insulin sensitivity and extend lifespan in male mice, with less robust effects in female mice. The aim of this study was to evaluate the ovarian reserve in wild type and GHRKO mice treated with 17α-E2. The mice were divided into four groups, GHRKO mice receiving a standard chow diet, GHRKO mice treated 17α-E2, wild type mice receiving a standard chow diet and WT mice treated with 17α-E2. 17α-E2 was provided in the diet for four months. IGF1 plasma concentrations and changes in body weight were assessed. Histological slides were prepared from the ovaries and the number of follicles was counted. GHRKO mice receiving the control diet had a greater number of primordial follicles and lower numbers of primary follicles compared to the other groups (p < 0.05). 17α-E2 treatment decreased the number of primordial follicles in GHRKO mice (p < 0.05), however had no effect in wild type mice. Treatment with 17α-E2 had no significant effect on the change in body weight during the experiment (p = 0.75). Plasma IGF1 concentrations were significantly lower in GHRKO mice as compared to wild type. In conclusion, we found that GHRKO mice displayed lesser primordial follicle activation as compared to wild type mice, but this phenotype was reversed by 17α-E2 administration, suggesting that ovarian aging is increased by 17α-E2 in long-living mice with extended reproductive longevity.
Collapse
Affiliation(s)
- José V V Isola
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Silvana Sidhom
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
23
|
Yan L, Feng H, Wang F, Lu B, Liu X, Sun L, Wang D. Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia. J Steroid Biochem Mol Biol 2019; 191:105379. [PMID: 31078694 DOI: 10.1016/j.jsbmb.2019.105379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Abstract
Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptors (ESRs) in all vertebrates. To date, distinct roles of estrogen receptors have been characterized only in human and model organisms, including mouse, rat, zebrafish and medaka. Physiological role of estrogen/receptor signaling in reproduction remains poorly defined in non-model organisms. In the present study, we successfully generated esr1, esr2a and esr2b mutant lines in tilapia by CRISPR/Cas9 and examined their phenotypes. Surprisingly, the esr1 mutants showed no phenotypes of reproductive development and function in both females and males. The esr2a mutant females showed significantly delayed ovarian development and follicle growth at 90 and 180 dah, and the development caught up later at 360 dah. The esr2a mutant males showed no phenotypes at 90 dah, and displayed smaller gonads and efferent ducts, less spermatogonia and more abnormal sperms at 180 dah. In contrast, the esr2b mutants displayed abnormal development of ovarian ducts and efferent ducts which failed to connect to the genital orifice, and which in turn, resulted in infertility in female and male, respectively, although they produced gametes in their gonads. Taken together, our study provides evidence for differential functions of esr1, esr2a and esr2b in fish reproduction.
Collapse
Affiliation(s)
- Longxia Yan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Haiwei Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feilong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
24
|
Chen Y, Tang H, He J, Wu X, Wang L, Liu X, Lin H. Interaction of nuclear ERs and GPER in vitellogenesis in zebrafish. J Steroid Biochem Mol Biol 2019; 189:10-18. [PMID: 30711474 DOI: 10.1016/j.jsbmb.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Abstract
Estrogens exert their biological functions through the estrogen receptors (ERs). In zebrafish, three nuclear estrogen receptors (nERs) named ERα, ERβ1 and ERβ2 and one membrane-bound G protein-coupled estrogen receptor (GPER) are identified. Vitellogenin (Vtg) is predominantly expressed in liver and strongly response to the stimulation of estrogen. It has been proposed that all three nERs are functionally involved in vitellogenesis and ERα may act as the major mediator in teleost. However, the role of GPER and its interaction with nERs in this process are not yet defined in teleost species. In the present study, we provide genetic evidence for the functional significance of ERα that the expression of Vtg genes (vtg1, vtg2, vtg3) and their response to estradiol stimulation were significantly decreased in esr1 mutant zebrafish. Activation of ERβ1 and ERβ2 induced Vtg expression through ERα. Moreover, the involvement of GPER in vitellogenesis and its interaction with nERs in zebrafish were firstly proposed in this work. Activation of GPER induced Vtg genes expression while inhibition of GPER significantly attenuated the estrogenic effect on Vtg. Both treatments altered the expression levels of nERs, suggesting GPER acts interactively with nERs. Collectively, the involvement of both nERs and GPER in regulation of vitellogenesis is demonstrated. ERα is the central factor, acting interactively with ERβ1, ERβ2 and GPER, and GPER regulates vitellogenesis directly and interactively with nERs.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jianan He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Zayed Y, Qi X, Peng C. Identification of Novel MicroRNAs and Characterization of MicroRNA Expression Profiles in Zebrafish Ovarian Follicular Cells. Front Endocrinol (Lausanne) 2019; 10:518. [PMID: 31417497 PMCID: PMC6684945 DOI: 10.3389/fendo.2019.00518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional levels and thereby play important roles in regulating many physiological and developmental processes. Oocyte maturation in fish is induced by hormones produced from the hypothalamus, pituitary, and ovary. Gonadotropin-releasing hormone (GnRH) stimulates the secretion of luteinizing hormone (LH), which in turn, induces the secretion of maturation-inducing hormone (MIH) from the ovary. It is documented that small early vitellogenic (or stage IIIa) follicles are unable to undergo oocyte maturation whereas oocytes in mid- to late vitellogenic (stage IIIb) follicles can be induced by LH and MIH to become mature. To determine whether miRNAs may be involved in the growth and acquisition of maturational competency of ovarian follicles, we determined the miRNA expression profiles in follicular cells collected from stage IIIa and IIIb follicles using next-generation sequencing. It was found that miRNAs are abundantly expressed in the follicular cells from both stages IIIa and IIIb follicles. Furthermore, bioinformatics analysis revealed the presence of 214 known, 31 conserved novel and 44 novel miRNAs in zebrafish vitellogenic ovarian follicular cells. Most mature miRNAs in follicular cells were found to be in the length of 22 nucleotides. Differential expression analysis revealed that 11 miRNAs were significantly up-regulated, and 13 miRNAs were significantly down-regulated in the stage IIIb follicular cells as compared with stage IIIa follicular cells. The expression of four of the significantly regulated miRNAs, dre-miR-22a-3p, dre-miR-16a, dre-miR-181a-3p, and dre-miR-29a, was validated by real-time PCR. Finally, gene enrichment and pathway analyses of the predicted targets of the significantly regulated miRNAs supported the involvement of several key signaling pathways in regulating ovarian function, including oocyte maturation. Taken together, this study identifies novel zebrafish miRNAs and characterizes miRNA expression profiles in somatic cells within the zebrafish ovarian follicles. The differential expression of miRNAs between stage IIIa and IIIb follicular cells suggests that these miRNAs are important regulators of zebrafish ovarian follicle development and/or oocyte maturation.
Collapse
Affiliation(s)
- Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Xin Qi
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|