1
|
Huhtaniemi IT. Luteinizing hormone receptor knockout mouse: What has it taught us? Andrology 2025. [PMID: 39840520 DOI: 10.1111/andr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites. Hypogonadism is observed in humans expressing inactivating mutations in the LHβ-subunit (LHB)and LHCGR genes, confirming the crucial role of LH and LHCGR in gonadal development and function. Unraveling of the LHR structure and the advent of gene manipulation techniques enabled the production of mouse models with inactivated LHR function, that is, the LHR knockout (LuRKO) mouse, some 20 years ago. This mouse model has thereafter been instrumental in various experimental settings, alone or combined with other genetically modified mouse models, in providing novel, and in some cases unexpected, details about the LH/LHR function. We will review here the salient findings of these studies.
Collapse
Affiliation(s)
- Ilpo T Huhtaniemi
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Turku, Finland
| |
Collapse
|
2
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
4
|
Zehnaker A, Vallet A, Gourdon J, Sarti C, Jugnarain V, Haj Hassan M, Mathias L, Gauthier C, Raynaud P, Boulo T, Beauclair L, Bigot Y, Casarini L, Crépieux P, Poupon A, Piégu B, Jean-Alphonse F, Bruneau G, Reiter É. Combined Multiplexed Phage Display, High-Throughput Sequencing, and Functional Assays as a Platform for Identifying Modulatory VHHs Targeting the FSHR. Int J Mol Sci 2023; 24:15961. [PMID: 37958944 PMCID: PMC10650796 DOI: 10.3390/ijms242115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches. We used next-generation sequencing to identify 34 clusters of specifically enriched sequences that were functionally assessed in a primary screen based on a cAMP response element (CRE)-dependent reporter gene assay. In this assay, 23 VHHs displayed negative or positive modulation of FSH-induced responses, suggesting a high success rate of the multiplexed strategy. We then focused on the largest cluster identified (i.e., PRC1) that displayed positive modulation of FSH action. We demonstrated that PRC1 specifically binds to the human FSHR and human FSHR/FSH complex while potentiating FSH-induced cAMP production and Gs recruitment. We conclude that the improved selection strategy reported here is effective for rapidly identifying functionally active VHHs and could be adapted to target other challenging membrane receptors. This study also led to the identification of PRC1, the first potential positive modulator VHH reported for the human FSHR.
Collapse
Affiliation(s)
- Anielka Zehnaker
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Amandine Vallet
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Juliette Gourdon
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Caterina Sarti
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Vinesh Jugnarain
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Maya Haj Hassan
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Laetitia Mathias
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Camille Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Pauline Raynaud
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Thomas Boulo
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Linda Beauclair
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Yves Bigot
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Livio Casarini
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| | - Anne Poupon
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
- MAbSilico, 1 Impasse du Palais, 37000 Tours, France
| | - Benoît Piégu
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Frédéric Jean-Alphonse
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| | - Gilles Bruneau
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Éric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| |
Collapse
|
5
|
Sun S, Zhang K, Wang Y, Zhou Z, Wang L, Zhao H, Zhang Y. Pharmacodynamic structure of deer antler base protein and its mammary gland hyperplasia inhibition mechanism by mediating Raf-1/MEK/ERK signaling pathway activation. Food Funct 2023; 14:3319-3331. [PMID: 36939833 DOI: 10.1039/d2fo03568e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mammary gland hyperplasia (MGH) is a common mammary disease whose main pathogenesis is the disruption of estradiol (E2) and progesterone (P) secretion, thereby causing overproliferation of mammary epithelial cells and mammary gland tissue hyperplasia. Deer antler base is a traditional Chinese medicine that has been used for many years to treat MGH. However, its pharmacological mechanism and pharmacodynamic material basis are unclear. In this study, we for the first time used the graded salting method to classify deer antler base protein (CNCP) as CNCP-A, CNCP-B, and CNCP-C and explored the pharmacological mechanism of the anti-MGH properties of CNCP. We found that CNCP could regulate the hormonal levels of E2, P, and follicle stimulating hormone (FSH) and improve the histopathological condition. The potential mechanism might be related to the recombinant C-Raf proto oncogene serine/threonine protein kinase/mitogen-activated protein/extracellular regulated protein kinase (Raf-1/MEK/ERK) signaling pathway. By upregulating the protein expression of the follicle stimulating hormone receptor (FSHR), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) inhibited the activation of the downstream Raf-1/MEK/ERK signaling pathway, which in turn inhibited the proliferation of mammary epithelial cells. We analyzed the physicochemical properties of CNCP-A, CNCP-B, and CNCP-C and obtained CNCP-C-I by column chromatographic purification of the best pharmacophore protein CNCP. Using high-performance liquid gel filtration chromatography (HPGFC), we determined the molecular weight of CNCP-C-I and identified it by high-performance liquid tandem mass spectrometry (LC-MS/MS) to obtain the first match for a high confidence protein KRT1. This study provides a theoretical basis for the development of effective traditional Chinese medicines with low toxicity levels for the prevention and treatment of mammary gland diseases.
Collapse
Affiliation(s)
- Shiqing Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Kai Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Zijun Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| |
Collapse
|
6
|
RNA-seq identifies differentially expressed genes involved in csal1 overexpression in granulosa cells of prehierarchical follicles in Chinese Dagu hens. Poult Sci 2022; 102:102310. [PMID: 36442307 PMCID: PMC9706644 DOI: 10.1016/j.psj.2022.102310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The transcription factor csal1 is an important molecule that plays a critical regulatory function in ovarian follicle development, as confirmed by our previous data. However, the candidate genes of csal1 and its regulatory mechanism remain poorly understood in the granulosa cells (GCs) of chicken prehierarchical follicles (PFs). Six transcriptomes of csal1 and empty vector were analyzed in Chinese Dagu hens by RNA sequencing. Six cDNA libraries were constructed, with more than 42 million clean reads and 16,779 unigenes. Of these 16,779 unigenes, 2,762 differentially expressed genes (DEGs) were found in GCs, including 1,605 upregulated and 1,157 downregulated unigenes. Fourteen genes, including BMP5, TACR2, AMH, PLAG1, MYOD1, BOP1, SIPA1, NOTCH1, BCL2L1, SOX9, ADGRA2, WNT5A, SLC7A11, and GATAD2B, were related to GC proliferation and differentiation, hormone production, ovarian follicular development, regulation of reproductive processes, and signaling pathways in the PFs. Further analysis demonstrated the DEGs in GCs of ovarian follicles were enriched in neuroactive ligand-receptor interaction, cell adhesion molecules, and pathways related to cytochrome P450, indicating a critical function for csal1 in the generation of egg-laying features by controlling ovarian follicle development. For the first time, the current study represents the transcriptome analysis with ectopic csal1 expression. These findings provide significant evidence for investigating the molecular mechanism by which csal1 controls PF development in the hen ovary.
Collapse
|
7
|
Establishment of a Coilia nasus Gonadal Somatic Cell Line Capable of Sperm Induction In Vitro. BIOLOGY 2022; 11:biology11071049. [PMID: 36101428 PMCID: PMC9312022 DOI: 10.3390/biology11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022]
Abstract
Coilia nasus is an important economic anadromous migratory fish of the Yangtze River in China. In recent years, overfishing and the deterioration of the ecological environment almost led to the extinction of the wild resources of C.nasus. Thus, there is an urgent need to protect this endangered fish. Recently, cell lines derived from fish have proven a promising tool for studying important aspects of aquaculture. In this study, a stable C. nasus gonadal somatic cell line (CnCSC) was established and characterized. After over one year of cell culture (>80 passages), this cell line kept stable growth. RT-PCR results revealed that the CnGSC expressed some somatic cell markers such as clu, fshr, hsd3β, and sox9b instead of germ cell markers like dazl, piwi, and vasa. The strong phagocytic activity of CnGSC suggested that it contained a large number of Sertoli cells. Interestingly, CnGSC could induce medaka spermatogonial cells (SG3) to differentiate into elongated spermatids while co-cultured together. In conclusion, we established a C. nasus gonadal somatic cell line capable of sperm induction in vitro. This research provides scientific evidence for the long-term culture of a gonadal cell line from farmed fish, which would lay the foundation for exploring the regulatory mechanisms between germ cells and somatic cells in fish.
Collapse
|
8
|
Wang JM, Li ZF, Yang WX, Tan FQ. Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reprod Biol Endocrinol 2022; 20:97. [PMID: 35780146 PMCID: PMC9250200 DOI: 10.1186/s12958-022-00971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
9
|
Rivero-Müller A, Huhtaniemi I. Genetic variants of gonadotrophins and their receptors: Impact on the diagnosis and management of the infertile patient. Best Pract Res Clin Endocrinol Metab 2022; 36:101596. [PMID: 34802912 DOI: 10.1016/j.beem.2021.101596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This narrative review is concerned with genetic variants of the genes encoding gonadotrophin subunits and their receptors, as well as their implications into the diagnosis and treatment of infertility. We first review briefly the basics of molecular biology and biochemistry of gonadotrophin and gonadotrophin receptor structure and function, then describe the phenotypic effects of polymorphisms and mutations of these genes, followed by diagnostic aspects. We will then summarise the information that inactivating gonadotrophin receptor mutations have provided about the controversial topic of extragonadal gonadotrophin action. Finally, we will close with the current and future therapeutic approaches on patients with gonadotrophin and their receptor mutations.
Collapse
Affiliation(s)
- Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
10
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
11
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 2021; 22:ijms22063241. [PMID: 33810175 PMCID: PMC8005122 DOI: 10.3390/ijms22063241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein-protein interactions (PPI).
Collapse
|
13
|
Liu T, Huang Y, Lin H. Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 2021; 47:73. [PMID: 33693952 PMCID: PMC7952251 DOI: 10.3892/ijmm.2021.4906] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen-dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen-dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle-stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK). In addition, endocrine-disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Dias JA, Ulloa-Aguirre A. New Human Follitropin Preparations: How Glycan Structural Differences May Affect Biochemical and Biological Function and Clinical Effect. Front Endocrinol (Lausanne) 2021; 12:636038. [PMID: 33815292 PMCID: PMC8018285 DOI: 10.3389/fendo.2021.636038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
It is well accepted that pituitary follitropin is secreted into the circulation as a mixture of variants, which differ not in primary structure but rather at the level of glycosylation. These glycosidic forms vary in the number of glycosylation sites filled, complexity of glycosidic chains, and sialylation and sulfation. It is generally agreed that high sialylation, 2,3 sialic acid capping of terminal N-acetyl galactosamine or galactose leads to longer circulating half-life, by blocking binding of asialoglycoprotein receptor (ASGPR) in the liver. In contrast, 2,6 sialic acid found in humans does not prevent recognition of galactose and N-acetyl galactosamine by ASGPR. Few studies on clinical outcomes comparing differences in sialylation of follitropin found in commercially available preparations are available. Thus, there is a clear need for a consortium of open data to address this unmet need. Recently, FSH glycosylation, primarily on the β-subunit, which varies as women age, has emerged as a key modifier of follitropin action, with profound biological effects in vivo in animal models. To date, limited information of recombinant follitropin hormone preparations is available. Thus, most of the studies with FSH that is well characterized biochemically have been done in vitro, with engineered non gonadal host cells bearing recombinant receptors or in animal models. Since limited studies in human granulosa cells are available, a question is whether structural differences in glycosylation in commercially available follitropin affects biological function and clinical effect in humans. The presence of fucose, for example, has not been studied greatly even though, in the case of antibody therapy it has been shown to have a large effect on antibody targeting. This review on glycosidic variability of follitropin from the biochemical/structural point of view reflects on this question and presents an assessment in the context of available published data. If clinical differences are to be expected or not, the readers will have a better understanding of the evidence for and limitations of such expectations.
Collapse
Affiliation(s)
- James A. Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- *Correspondence: James A. Dias,
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición SZ., Mexico City, Mexico
| |
Collapse
|
15
|
Wang L, Xu X, Teng M, Zhao G, Lei A. Coping with DNA Double-Strand Breaks via ATM Signaling Pathway in Bovine Oocytes. Int J Mol Sci 2020; 21:ijms21238892. [PMID: 33255251 PMCID: PMC7727702 DOI: 10.3390/ijms21238892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
As a common injury almost all cells face, DNA damage in oocytes—especially double-strand breaks (DSBs), which occur naturally during the first meiosis phase (meiosis I) due to synaptic complex separation—affects the fertilization ability of oocytes, instead of causing cancer (as in somatic cells). The mechanism of oocytes to effectively repair DSB damage has not yet been clearly studied, especially considering medically induced DSBs superimposed on naturally occurring DSBs in meiosis I. It was found that maturation rates decreased or increased, respectively corresponding with overexpression or interference of p21 in bovine oocytes. At the same time, the maturation rate of bovine oocytes decreased with a gradual increase in Zeocin dose, and the p21 expression in those immature oocytes changed significantly with the gradual increase in Zeocin dose (same as increased DSB intensity). Same as p21, the variation trend of ATM expression was consistent with the gradual increase in Zeocin dose. Furthermore, the oocytes demonstrated tolerance to DSBs during meiosis I, while the maturation rates decreased when the damage exceeded a certain threshold; according to which, it may be that ATM regulates the p53–p21 pathway to affect the completion of meiosis. In addition, nonhomologous recombination and cumulus cells are potentially involved in the process by which oocytes respond to DSB damage.
Collapse
Affiliation(s)
- Lili Wang
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Xiaolei Xu
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Mingming Teng
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China;
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
- Correspondence: ; Tel./Fax: +86-029-87080068
| |
Collapse
|
16
|
The importance of follicle-stimulating hormone in the prepubertal and pubertal testis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, Crans DC. Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases 2020; 8:E35. [PMID: 32942611 PMCID: PMC7565105 DOI: 10.3390/diseases8030035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transduction by luteinizing hormone receptors (LHRs) and follicle-stimulating hormone receptors (FSHRs) is essential for the successful reproduction of human beings. Both receptors and the thyroid-stimulating hormone receptor are members of a subset of G-protein coupled receptors (GPCRs) described as the glycoprotein hormone receptors. Their ligands, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and a structurally related hormone produced in pregnancy, human chorionic gonadotropin (hCG), are large protein hormones that are extensively glycosylated. Although the primary physiologic functions of these receptors are in ovarian function and maintenance of pregnancy in human females and spermatogenesis in males, there are reports of LHRs or FSHRs involvement in disease processes both in the reproductive system and elsewhere. In this review, we evaluate the aggregation state of the structure of actively signaling LHRs or FSHRs, their functions in reproduction as well as summarizing disease processes related to receptor mutations affecting receptor function or expression in reproductive and non-reproductive tissues. We will also present novel strategies for either increasing or reducing the activity of LHRs signaling. Such approaches to modify signaling by glycoprotein receptors may prove advantageous in treating diseases relating to LHRs or FSHRs function in addition to furthering the identification of new strategies for modulating GPCR signaling.
Collapse
Affiliation(s)
- Duaa Althumairy
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Biological Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Xiaoping Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Nicholas Baez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - George Barisas
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA;
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| |
Collapse
|