1
|
Oyedokun PA, Akangbe MA, Akhigbe TM, Akhigbe RE. Regulatory Involvement of Kisspeptin in Energy Balance and Reproduction. Cell Biochem Biophys 2025; 83:247-261. [PMID: 39327386 DOI: 10.1007/s12013-024-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The hypothalamic-pituitary-gonadal axis, which regulates steroidogenesis and germ cell formation, closely regulates the reproduction process. Nonetheless, other chemical mediators, such as kisspeptin, influence this axis. Kisspeptin is a hypothalamic neuropeptide that modulates the function of this axis and also plays a central role in energy balance. The present study reviews the impact and associated mechanisms of kisspeptin on male and female reproduction based on available evidence in the literature. Kisspeptin and its neurons exert anorexigenic activity, thus maintaining adequate energy balance for optimal reproductive function. Also, they stimulate the release of GnRH, resulting in the optimal performance of gonadal physiological processes viz. production of steroid sex hormones and germ cells. However, studies linking kisspeptin to reproduction are yet scanty. Hence, studies exploring the upstream and downstream signaling pathways activated by kisspeptin concerning reproduction in an attempt to better understand the associated mechanisms of the regulatory activities of kisspeptin on reproduction are recommended. In addition, potential factors that may modulate kisspeptin activities may be useful in the management of infertility and perhaps, in the development of contraceptives for those who do not intend to achieve conception.
Collapse
Affiliation(s)
- P A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria.
| |
Collapse
|
2
|
Adnane M, Ahmed M, Chapwanya A. Advances in Molecular Biology and Immunology of Spermatozoa and Fertilization in Domestic Animals: Implications for Infertility and Assisted Reproduction. Curr Mol Med 2025; 25:167-186. [PMID: 39572916 DOI: 10.2174/0115665240306965240802075331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 04/11/2025]
Abstract
Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
| | - Moussa Ahmed
- Department of Animal Health, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret, 14000, Algeria
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
3
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
4
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
5
|
Chen J, Li Y, Zhang W, Wu Y, Zhao L, Huang X, Fang Y, Wang B. Molecular characterization and ontogenetic expression profiles of LPXRFa and its receptor in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2024; 345:114392. [PMID: 37858870 DOI: 10.1016/j.ygcen.2023.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Investigations concerning the LPXRFa system are rarely conducted in flatfish species. Here, we first identified and characterized lpxrfa and its cognate receptor lpxrfa-r genes in the Japanese flounder (Paralichthys olivaceus). The coding DNA sequence of lpxrfa was 579 bp in length, wich encoded a 192-aa preprohormone that can produce three mature LPXRFa peptides. The open reading frame (ORF) of lpxrfa-r was 1446 bp in size, and encoded a 481-aa LPXRFa-R protein that encompassed seven hydrophobic transmembrane domains. Subsequently, tissue distribution expression profiles of lpxrfa and lpxrfa-r transcripts were assayed by quantitative real-time PCR. The results indicated that expressions of lpxrfa transcripts were detected at the highest levels in the brain of both females and males, however, lpxrfa-r transcripts were remarkablely expressed in the brain tissue of female fish and in the testis tissue of male fish. Furthermore, transcript levels of lpxrfa and lpxrfa-r genes were investigated during early ontogenetic development, with the maximum expression levels at 30 days post-hatching. Overall, these data contribute to providing preliminary proof for the existence and structure of the LPXRFa system in Japanese flounder, and the study is just the foundation for researching physiological function of LPXRFa system in this species.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yuru Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanqing Wu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Limiao Zhao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
6
|
Pandey SP, Mohanty B. Role of the testicular capsule in seasonal modulation of the testis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:898-910. [PMID: 37528770 DOI: 10.1002/jez.2740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
While the seasonal testicular cycle has been well studied regarding internal components, no attention has been given to the testicular capsule (tunica albuginea and tunica serosa). This study elucidated the structure-function modulations of intra-testicular functions by its capsule in the finch red munia (Amandava amandava) during the annual testicular cycle. The birds were studied during breeding (preparatory and breeding) and nonbreeding (regressive and quiescent) reproductive phases using hematoxylin-eosin and acridine orange-ethidium bromide capsule staining, hormonal ELISA (LH and testosterone) and immunohistochemical expression of neuropeptides (GnRH, GnIH) and androgen receptor (AR). The thickness of the tunica albuginea was significantly increased with multiple myoid layers during the nonbreeding phases (p < 0.05). The thickness of the tunica serosa was not altered, although characteristics and distribution of squamous cells showed significant seasonal alterations. Immunoreactive (-ir) AR and GnIH cells were differentially localized on both layers of the capsule. Strong AR-ir cells on tunica serosa during breeding phases showed increased expression of the receptor; a significant increase in plasma LH and testosterone was also observed during the breeding cycle (p < 0.01). Contrarily, intense GnIH-ir cells on both the capsular layers peaked during testicular regression. Differential structural alterations of the testicular capsule provide mechanical support and help maintain internal homeostasis in tune with changing seasons. The seasonal expressions and alterations of reproduction-related receptors, hormones, and neuropeptides provide evidence for the potential regulatory roles of the capsule in the peripheral modulation of intratesticular functions.
Collapse
Affiliation(s)
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
7
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
9
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
10
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Gómez A, Muñoz-Cueto JA. Signaling pathways activated by sea bass gonadotropin-inhibitory hormone peptides in COS-7 cells transfected with their cognate receptor. Front Endocrinol (Lausanne) 2022; 13:982246. [PMID: 36051397 PMCID: PMC9424679 DOI: 10.3389/fendo.2022.982246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
- *Correspondence: José A. Muñoz-Cueto,
| |
Collapse
|
11
|
Wang B, Wang K, Tian Z, Cui A, Liu X, Jin Z, Liu X, Jiang Y, Xu Y. New evidence for SPX2 in regulating the brain-pituitary reproductive axis of half-smooth tongue sole ( Cynoglossus semilaevis). Front Endocrinol (Lausanne) 2022; 13:984797. [PMID: 35979437 PMCID: PMC9376245 DOI: 10.3389/fendo.2022.984797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spexin (SPX) is an evolutionarily conserved neuropeptide, which was first identified in human proteome by data mining. Two orthologs (SPX1 and SPX2) are present in some non-mammalian species, including teleosts. It has been demonstrated that SPX1 is involved in reproduction and food intake, whereas the functional role of SPX2 is still absent in any vertebrate. The aim of the current study was to evaluate the actions of intraperitoneal injection of endogenous SPX2 peptide on the expression levels of some key reproductive genes of the brain-pituitary axis in half-smooth tongue sole. Our data showed an inhibitory action of SPX2 on brain gnih, spx1, tac3 and pituitary gthα, lhβ mRNA levels. However, SPX2 had no significant effect on brain gnihr, gnrh2, gnrh3, kiss2, kiss2r, spx2 expression or pituitary gh expression. On the other hand, SPX2 induced an increase in pituitary fshβ expression. Taken together, our results provide initial evidence for the involvement of SPX2 in the regulation of reproduction in vertebrates, which is in accordance with previous studies on SPX1.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Kaijie Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Zhenfang Tian
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xin Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science , Dalian Ocean University, Dalian, China
| | - Zhixin Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yongjiang Xu,
| |
Collapse
|
12
|
Cheng L, Yang S, Si L, Wei M, Guo S, Chen Z, Wang S, Qiao Y. Direct effect of RFRP-3 microinjection into the lateral ventricle on the hypothalamic kisspeptin neurons in ovariectomized estrogen-primed rats. Exp Ther Med 2021; 23:24. [PMID: 34815776 PMCID: PMC8593914 DOI: 10.3892/etm.2021.10946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3) may be involved in the inhibition of kisspeptin, but there is no direct evidence that RFRP-3 can directly act on kisspeptin neurons. The present study aimed to investigate the role and mechanism of RFRP-3 and kisspeptin in the hypothalamic-pituitary reproductive axis. In order to detect the expression and localization of RFRP-3 and kisspeptin in dorsomedial hypothalamic nucleus, double immunofluorescence method combined with confocal microscopy were performed. RFRP-3 was injected into the lateral ventricle of ovariectomized estrogen primed rats. Blood and brain tissues were collected at 60-, 120-, 240- and 360-min. Serum levels of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were detected by ELISA. Kisspeptin expression in hypothalamus was detected by western blotting. Finally, surface plasmon resonance was used to verify whether RFRP-3 can directly interact with kisspeptin. Confocal images indicated that RFRP-3 and kisspeptin were co-expressed in the same neurons in the hypothalamus of ovariectomized estrogen-primed rats. Serum concentrations of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were demonstrated to be significantly reduced following microinjection of RFRP-3 into the lateral ventricle for 60, 120, 240 and 360 min compared with the corresponding saline groups. The expression levels of kisspeptin in hypothalamus were gradually decreased following microinjection of RFRP-3 into the lateral ventricle. In addition, the affinity constant (KD) of RFRP-3 binding to kisspeptin was 6.005x10-5 M, indicating that RFRP-3 bound directly to kisspeptin in the range of protein-protein binding strength (KD, 10-3-10-6 M). In conclusion, RFRP-3 may regulate the hypothalamic-pituitary reproductive axis by inhibiting the expression of hypothalamic kisspeptin and direct binding.
Collapse
Affiliation(s)
- Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Sen Guo
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Shusong Wang
- Hebei Provincial Key Laboratory of Reproductive Medicine, Family Planning Science and Technology Research Institute of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| | - Yuebing Qiao
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
13
|
Wang B, Zhang Y, Cui A, Xu Y, Jiang Y, Wang L, Liu X. LPXRFa and its receptor in yellowtail kingfish (Seriola lalandi): Molecular cloning, ontogenetic expression profiles, and stimulatory effects on growth hormone and gonadotropin gene expression. Gen Comp Endocrinol 2021; 312:113872. [PMID: 34324840 DOI: 10.1016/j.ygcen.2021.113872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Despite its functional significance in mammals and birds, the biological role of gonadotropin-inhibitory hormone (GnIH) in reproduction is still far from being fully understood in teleosts. In the current study, we have identified LPXRFa, the piscine ortholog of GnIH, and its cognate receptor (LPXRFa-R) in yellowtail kingfish (YTK), which is considered as a promising species for aquaculture industry worldwide. The YTK cDNA sequence of lpxrfa was 534 base pair (bp) in length and encoded a 178-amino acids (aa) preprohormone. The LPXRFa precursor comprised three putative peptide sequences that included -MPMRF, -MPQRF, or -LPERL motifs at the C-termini, respectively. The YTK lpxrfa-r cDNA sequence was composed of 1265 bp that gave rise to a LPXRFa-R of 420 aa, encompassing the characteristic seven hydrophobic transmembrane domains. In males, both lpxrfa and lpxrfa-r transcripts could be detected at high levels in the brain and testis. In females, a noteworthy expression of lpxrfa was observed in the brain and ovary, while the expression of lpxrfa-r was especially evident only in the brain. To study the ontogeny of LPXRFa system, transcript levels were also investigated during early life stages. Variable expression of the LPXRFa system was observed during all stages of YTK embryogenesis. The highest expression of lpxrfa and lpxrfa-r were noticed at 7 dph and 15 dph, respectively. Furthermore, LPXRFa peptides stimulated growth hormone (gh), luteinizing hormone (lhβ) and follicle-stimulating hormone (fshβ) gene expression from the pituitary. Taken together, our results provide initial evidence for the existence of the LPXRFa system in yellowtail kingfish and suggest its possible involvement at early development and reproductive functions.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Liang Wang
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
14
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
15
|
Babwah AV. The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Mol Cell Endocrinol 2020; 515:110886. [PMID: 32574585 DOI: 10.1016/j.mce.2020.110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the β-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.
Collapse
Affiliation(s)
- Andy V Babwah
- Department of Pediatrics, Laboratory of Human Growth and Reproductive Development, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Child Health Institute of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
16
|
Yi W, Lu Y, Zhong S, Zhang M, Sun L, Dong H, Wang M, Wei M, Xie H, Qu H, Peng R, Hong J, Yao Z, Tong Y, Wang W, Ma Q, Liu Z, Ma Y, Li S, Yin C, Liu J, Ma C, Wang X, Wu Q, Xue T. A single-cell transcriptome atlas of the aging human and macaque retina. Natl Sci Rev 2020; 8:nwaa179. [PMID: 34691611 PMCID: PMC8288367 DOI: 10.1093/nsr/nwaa179] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
The human retina is a complex neural tissue that detects light and sends visual information to the brain. However, the molecular and cellular processes that underlie aging primate retina remain unclear. Here, we provide a comprehensive transcriptomic atlas based on 119 520 single cells of the foveal and peripheral retina of humans and macaques covering different ages. The molecular features of retinal cells differed between the two species, suggesting distinct regional and species specializations of the human and macaque retinae. In addition, human retinal aging occurred in a region- and cell-type-specific manner. Aging of human retina exhibited a foveal to peripheral gradient. MYO9A− rods and a horizontal cell subtype were greatly reduced in aging retina, indicating their vulnerability to aging. Moreover, we generated a dataset showing the cell-type- and region-specific gene expression associated with 55 types of human retinal disease, which provides a foundation to understanding of the molecular and cellular mechanisms underlying human retinal diseases. Such datasets are valuable to understanding of the molecular characteristics of primate retina, as well as molecular regulation of aging progression and related diseases.
Collapse
Affiliation(s)
- Wenyang Yi
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Mei Zhang
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wei
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haohuan Xie
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongqiang Qu
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Rongmei Peng
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Jing Hong
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Ziqin Yao
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yunyun Tong
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqian Ma
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shouzhen Li
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chonghai Yin
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Tian Xue
- Eye Center at The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Lithium chloride enhances serotonin induced calcium activity in EGFP-GnIH neurons. Sci Rep 2020; 10:13876. [PMID: 32807874 PMCID: PMC7431857 DOI: 10.1038/s41598-020-70710-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
Neurons synthesizing gonadotropin-inhibitory hormone (GnIH) have been implicated in the control of reproduction, food intake and stress. Serotonin (5-HT) receptors have been shown in GnIH neurons; however, their functional role in the regulation of GnIH neurons remains to be elucidated. In this study, we measured intracellular calcium ion levels following 5-HT treatment to hypothalamic primary cultures of enhanced fluorescent green protein-tagged GnIH (EGFP-GnIH) neurons from Wistar rat pups of mixed sex. Three days after initial seeding of the primary cultures, the test groups were pre-treated with lithium chloride to selectively inhibit glycogen synthase kinase 3 beta to promote intracellular calcium levels, whereas the control groups received culture medium with no lithium chloride treatment. 24 h later, the cultures were incubated with rhodamine-2AM (rhod-2AM) calcium indicator dye for one hour prior to imaging. 5-HT was added to the culture dishes 5 min after commencement of imaging. Analysis of intracellular calcium levels in EGFP-GnIH neurons showed that pre-treatment with lithium chloride before 5-HT treatment resulted in significant increase in intracellular calcium levels, two times higher than the baseline. This suggests that lithium chloride enhances the responsiveness of GnIH neurons to 5-HT.
Collapse
|
18
|
Kagami R, Sato T, Ishii T, Araki E, Yamashita Y, Shibata H, Ishihara J, Hasegawa T. Central precocious puberty in a boy with pseudohypoparathyroidism type Ia due to a novel GNAS mutation. Clin Pediatr Endocrinol 2020; 29:89-90. [PMID: 32313379 PMCID: PMC7160456 DOI: 10.1297/cpe.29.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/25/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ryosuke Kagami
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Sato
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Araki
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan
| | - Yukio Yamashita
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan
| | - Hironori Shibata
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Jun Ishihara
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Ubuka T, Tsutsui K. Reproductive neuroendocrinology of mammalian gonadotropin-inhibitory hormone. Reprod Med Biol 2019; 18:225-233. [PMID: 31312100 PMCID: PMC6613023 DOI: 10.1002/rmb2.12272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gonadotropin-inhibitory hormone (GnIH) was discovered in the Japanese quail brain in 2000 as a hypothalamic neuropeptide that suppresses luteinizing hormone release from cultured quail anterior pituitary. METHODS The authors investigated the existence of mammalian orthologous peptides to GnIH and their physiological functions in the following 19 years of research. MAIN FINDINGS Mammals have orthologous peptide to GnIH, often described RFamide-related peptide, expressed in the hypothalamus and gonads. Mammalian GnIH may also suppress gonadotropin synthesis and release by suppressing gonadotropin-releasing hormone (GnRH) synthesis and release in addition to directly suppressing gonadotropin synthesis and release from the pituitary. Mammalian GnIH may also suppress kisspeptin, a stimulator of GnRH, release. Mammalian GnIH is also expressed in the testis and ovary and suppresses gametogenesis and sex steroid production acting in an autocrine/paracrine manner. Thus, mammalian GnIH may act at all levels of the hypothalamic-pituitary-gonadal axis to suppress reproduction. GnIH may be involved in the regulation of puberty, estrous or menstrual cycle, seasonal reproduction, and stress responses. CONCLUSION Studies suggest that mammalian GnIH is an important neuroendocrine suppressor of reproduction in mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| |
Collapse
|