1
|
Mani S, Srivastava V, Shandilya C, Kaushik A, Singh KK. Mitochondria: the epigenetic regulators of ovarian aging and longevity. Front Endocrinol (Lausanne) 2024; 15:1424826. [PMID: 39605943 PMCID: PMC11598335 DOI: 10.3389/fendo.2024.1424826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ovarian aging is a major health concern for women. Ovarian aging is associated with reduced health span and longevity. Mitochondrial dysfunction is one of the hallmarks of ovarian aging. In addition to providing oocytes with optimal energy, the mitochondria provide a co-substrate that drives epigenetic processes. Studies show epigenetic alterations, both nuclear and mitochondrial contribute to ovarian aging. Both, nuclear and mitochondrial genomes cross-talk with each other, resulting in two ways orchestrated anterograde and retrograde response that involves epigenetic changes in nuclear and mitochondrial compartments. Epigenetic alterations causing changes in metabolism impact ovarian function. Key mitochondrial co-substrate includes acetyl CoA, NAD+, ATP, and α-KG. Thus, enhancing mitochondrial function in aging ovaries may preserve ovarian function and can lead to ovarian longevity and reproductive and better health outcomes in women. This article describes the role of mitochondria-led epigenetics involved in ovarian aging and discusses strategies to restore epigenetic reprogramming in oocytes by preserving, protecting, or promoting mitochondrial function.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Vidushi Srivastava
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Chesta Shandilya
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Aditi Kaushik
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Women’s Reproductive Health, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Dutta S, Sengupta P, Mottola F, Das S, Hussain A, Ashour A, Rocco L, Govindasamy K, Rosas IM, Roychoudhury S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024; 13:1846. [PMID: 39594595 PMCID: PMC11593296 DOI: 10.3390/cells13221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA methylation, histone modification, chromatin restructuring, and the influence of these non-coding RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic development alteration. One of the primary factors contributing to changes in the key epigenetic regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes, aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated with an oxidative imbalance, providing future perspectives in the diagnosis and management of infertile couples.
Collapse
Affiliation(s)
- Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Ahmed Ashour
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Kadirvel Govindasamy
- ICAR-Agricultural Technology Application Research Institute, Guwahati 781017, India
| | | | | |
Collapse
|
3
|
Babaei K, Azimi Nezhad M, Sedigh Ziabari SN, Mirzajani E, Mozdarani H, Sharami SH, Farzadi S, Mirhafez SR, Naghdipour Mirsadeghi M, Norollahi SE, Saadatian Z, Samadani AA. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon 2024; 10:e35345. [PMID: 39165943 PMCID: PMC11333914 DOI: 10.1016/j.heliyon.2024.e35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Recurrent pregnancy loss (RPL), often known as spontaneous miscarriages occurring two or more times in a row, is a reproductive disease that affects certain couples. The cause of RPL is unknown in many cases, leading to difficulties in therapy and increased psychological suffering in couples. Toll-like receptors (TLR) have been identified as crucial regulators of inflammation in various human tissues. The occurrence of inflammation during parturition indicates that Toll-like receptor activity in tissues related to pregnancy may play a crucial role in the onset and continuation of normal function, as well as in various pregnancy complications like infection-related preterm. TLRs or their signaling molecules may serve as effective therapeutic targets for inhibiting premature activity. At the maternal-fetal interface, TLRs are found in both immune and non-immune cells, such as trophoblasts and decidual cells. TLR expression patterns are influenced by the phases of pregnancy. In this way, translational combinations like epigenetics, have indicated their impact on the TLRs.Importantly, abnormal DNA methylation patterns and histone alterations have an impressive performance in decreasing fertility by influencing gene expression and required molecular and cellular activities which are vital for a normal pregnancy and embryonic process. TLRs, play a central duty in the innate immune system and can regulate epigenetic elements by many different signaling pathways. The potential roles of TLRs in cells, epigenetics factors their ability to identify and react to infections, and their place in the innate immune system will all be covered in this narrative review essay.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi Nezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Nafise Sedigh Ziabari
- BSC of Midwifery, Reproductive Health Research Center, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Farzadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Taylor RN, Berga SL, Zou E, Washington J, Song S, Marzullo BJ, Bagchi IC, Bagchi MK, Yu J. Interleukin-1β induces and accelerates human endometrial stromal cell senescence and impairs decidualization via the c-Jun N-terminal kinase pathway. Cell Death Discov 2024; 10:288. [PMID: 38879630 PMCID: PMC11180092 DOI: 10.1038/s41420-024-02048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/19/2024] Open
Abstract
As the mean age of first-time mothers increases in the industrialized world, inquiries into causes of human reproductive senescence have followed. Rates of ovulatory dysfunction and oocyte aneuploidy parallel chronological age, but poor reproductive outcomes in women older than 35 years are also attributed to endometrial senescence. The current studies, using primary human endometrial stromal cell (ESC) cultures as an in vitro model for endometrial aging, characterize the proinflammatory cytokine, IL-1β-mediated and passage number-dependent effects on ESC phenotype. ESC senescence was accelerated by incubation with IL-1β, which was monitored by RNA sequencing, ELISA, immunocytochemistry and Western blotting. Senescence associated secreted phenotype (SASP) proteins, IL-1β, IL-6, IL-8, TNF-α, MMP3, CCL2, CCL5, and other senescence-associated biomarkers of DNA damage (p16, p21, HMGB1, phospho-γ-histone 2 A.X) were noted to increase directly in response to 0.1 nM IL-1β stimulation. Production of the corresponding SASP proteins increased further following extended cell passage. Using enzyme inhibitors and siRNA interference, these effects of IL-1β were found to be mediated via the c-Jun N-terminal kinase (JNK) signaling pathway. Hormone-induced ESC decidualization, classical morphological and biochemical endocrine responses to estradiol, progesterone and cAMP stimulation (prolactin, IGFBP-1, IL-11 and VEGF), were attenuated pari passu with prolonged ESC passaging. The kinetics of differentiation responses varied in a biomarker-specific manner, with IGFBP-1 and VEGF secretion showing the largest and smallest reductions, with respect to cell passage number. ESC hormone responsiveness was most robust when limited to the first six cell passages. Hence, investigation of ESC cultures as a decidualization model should respect this limitation of cell aging. The results support the hypotheses that "inflammaging" contributes to endometrial senescence, disruption of decidualization and impairment of fecundity. IL-1β and the JNK signaling pathway are pathogenetic targets amenable to pharmacological correction or mitigation with the potential to reduce endometrial stromal senescence and enhance uterine receptivity.
Collapse
Affiliation(s)
- Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eric Zou
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jacara Washington
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sunyangzi Song
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Brandon J Marzullo
- Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois, Urbana/Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Molecular and Integrative Physiology, University of Illinois, Urbana/Champaign, Urbana, IL, USA
| | - Jie Yu
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
7
|
Hossain MN, Gao Y, Hatfield MJ, de Avila JM, McClure MC, Du M. Cold exposure impacts DNA methylation patterns in cattle sperm. Front Genet 2024; 15:1346150. [PMID: 38444759 PMCID: PMC10912962 DOI: 10.3389/fgene.2024.1346150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear. To address, DNA methylation profiles of sperm collected during late spring and winter from the same bulls were analyzed using whole genome bisulfite sequencing (WGBS). Bismark (0.22.3) were used for mapping the WGBS reads and R Bioconductor package DSS was used for differential methylation analysis. Cold exposure induced 3,163 differentially methylated cytosines (DMCs) with methylation difference ≥10% and a q-value < 0.05. We identified 438 differentially methylated regions (DMRs) with q-value < 0.05, which overlapped with 186 unique genes. We also identified eight unique differentially methylated genes (DMGs) (Pax6, Macf1, Mest, Ubqln1, Smg9, Ctnnb1, Lsm4, and Peg10) involved in embryonic development, and nine unique DMGs (Prmt6, Nipal1, C21h15orf40, Slc37a3, Fam210a, Raly, Rgs3, Lmbr1, and Gan) involved in osteogenesis. Peg10 and Mest, two paternally expressed imprinted genes, exhibited >50% higher methylation. The differential methylation patterns of six distinct DMRs: Peg10, Smg9 and Mest related to embryonic development and Lmbr1, C21h15orf40 and Prtm6 related to osteogenesis, were assessed by methylation-specific PCR (MS-PCR), which confirmed the existence of variable methylation patterns in those locations across the two seasons. In summary, cold exposure induces differential DNA methylation patterns in genes that appear to affect embryonic development and osteogenesis in the offspring. Our findings suggest the importance of replicating the results of the current study with a larger sample size and exploring the potential of these changes in affecting offspring development.
Collapse
Affiliation(s)
- Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
- Department of Livestock Production and Management, Faculty of Veterinary, Animal, and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Michael J. Hatfield
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | | | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Dutta S, Sivakumar KK, Erwin JW, Stanley JA, Arosh JA, Taylor RJ, Banu SK. Alteration of epigenetic methyl and acetyl marks by postnatal chromium(VI) exposure causes apoptotic changes in the ovary of the F1 offspring. Reprod Toxicol 2024; 123:108492. [PMID: 37931768 DOI: 10.1016/j.reprotox.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Hexavalent chromium, Cr(VI), is a heavy metal endocrine disruptor used widely in various industries worldwide and is considered a reproductive toxicant. Our previous studies demonstrated that lactational exposure to Cr(VI) caused follicular atresia, disrupted steroid hormone biosynthesis and signaling, and delayed puberty. However, the underlying mechanism was unknown. The current study investigated the effects of Cr(VI) exposure (25 ppm) during postnatal days 1-21 via dam's milk on epigenetic alterations in the ovary of F1 offspring. Data indicated that Cr(VI) disrupted follicle development and caused apoptosis by increasing DNMT3a /3b and histone methyl marks (H3K27me3 and H3K9me3) along with decreasing histone acetylation marks (H3K9ac and H3K27ac). Our study demonstrates that exposure to Cr(VI) causes changes in the epigenetic marks, partially contributing to the transcriptional repression of genes regulating ovarian development, cell proliferation (PCNA), cell survival (BCL-XL and BCL-2), and activation of genes regulating apoptosis (AIF and cleaved caspase-3), resulting in follicular atresia. The current study suggests a role for epigenetics in Cr(VI)-induced ovotoxicity and infertility.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - John W Erwin
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Robert J Taylor
- Trace Element Research Laboratory, VIBS, CVMBS, Texas A& M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Banikazemi Z, Heidar Z, Rezaee A, Taghavi SP, Zadeh Modarres S, Asemi Z, Goleij P, Jahed F, Mazaheri E, Taghizadeh M. Long non-coding RNAs and female infertility: What do we know? Pathol Res Pract 2023; 250:154814. [PMID: 37757620 DOI: 10.1016/j.prp.2023.154814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ten percent of people who are of reproductive age experience infertility. Sometimes the most effective therapies, including technology for assisted reproduction, may lead to unsuccessful implantation. Because of the anticipated epigenetic alterations of in vitro as well as in vitro fertilization growth of embryos, these fertility techniques have also been linked to unfavorable pregnancy outcomes linked to infertility. In this regard, a variety of non-coding RNAs such as long noncoding RNAs (lncRNAs) act as epigenetic regulators in the various physiological and pathophysiological events such as infertility. LncRNAs have been made up of cytoplasmic and nuclear nucleotides; RNA polymerase II transcribes these, which are lengthier than 200 nt. LncRNAs perform critical roles in a number of biological procedures like nuclear transport, X chromosome inactivation, apoptosis, stem cell pluripotency, as well as genomic imprinting. A significant amount of lncRNAs were linked into a variety of biological procedures as high throughput sequencing technology advances, including the development of the testes, preserving spermatogonial stem cells' capacity for differentiation along with self-renewal, and controlling spermatocyte meiosis. All of them point to possible utility of lncRNAs to be biomarkers and treatment aims for female infertility. Herein, we summarize various lncRNAs that are involved in female infertility.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Heidar
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahrzad Zadeh Modarres
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Fatemeh Jahed
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Sulyok E, Farkas B, Bodis J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants (Basel) 2023; 12:1354. [PMID: 37507894 PMCID: PMC10376205 DOI: 10.3390/antiox12071354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Based on epidemiological observations Barker et al. put forward the hypothesis/concept that an adverse intrauterine environment (involving an insufficient nutrient supply, chronic hypoxia, stress, and toxic substances) is an important risk factor for the development of chronic diseases later in life. The fetus responds to the unfavorable environment with adaptive reactions, which ensure survival in the short run, but at the expense of initiating pathological processes leading to adult diseases. In this review, the major mechanisms (including telomere dysfunction, epigenetic modifications, and cardiovascular-renal-endocrine-metabolic reactions) will be outlined, with a particular emphasis on the role of oxidative stress in the fetal origin of adult diseases.
Collapse
Affiliation(s)
- Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Balint Farkas
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
11
|
Sgueglia G, Longobardi S, Valerio D, Campitiello MR, Colacurci N, Di Pietro C, Battaglia R, D'Hooghe T, Altucci L, Dell'Aversana C. The impact of epigenetic landscape on ovarian cells in infertile older women undergoing IVF procedures. Clin Epigenetics 2023; 15:76. [PMID: 37143127 PMCID: PMC10161563 DOI: 10.1186/s13148-023-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.
Collapse
Affiliation(s)
- Giulia Sgueglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy
| | | | - Domenico Valerio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Nicola Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- BIOGEM, Ariano Irpino, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| |
Collapse
|
12
|
Camacho JA, Welch B, Sprando RL, Hunt PR. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J Dev Biol 2023; 11:18. [PMID: 37218812 PMCID: PMC10204422 DOI: 10.3390/jdb11020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Exposures to arsenic and mercury are known to pose significant threats to human health; however, the effects specific to organic vs. inorganic forms are not fully understood. Caenorhabditis elegans' (C. elegans) transparent cuticle, along with the conservation of key genetic pathways regulating developmental and reproductive toxicology (DART)-related processes such as germ stem cell renewal and differentiation, meiosis, and embryonic tissue differentiation and growth, support this model's potential to address the need for quicker and more dependable testing methods for DART hazard identification. Organic and inorganic forms of mercury and arsenic had different effects on reproductive-related endpoints in C. elegans, with methylmercury (meHgCl) having effects at lower concentrations than mercury chloride (HgCl2), and sodium arsenite (NaAsO2) having effects at lower concentrations than dimethylarsinic acid (DMA). Progeny to adult ratio changes and germline apoptosis were seen at concentrations that also affected gravid adult gross morphology. For both forms of arsenic tested, germline histone regulation was altered at concentrations below those that affected progeny/adult ratios, while concentrations for these two endpoints were similar for the mercury compounds. These C. elegans findings are consistent with corresponding mammalian data, where available, suggesting that small animal model test systems may help to fill critical data gaps by contributing to weight of evidence assessments.
Collapse
Affiliation(s)
- Jessica A. Camacho
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | | | | | | |
Collapse
|
13
|
Kachhawaha AS, Mishra S, Tiwari AK. Epigenetic control of heredity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:25-60. [PMID: 37225323 DOI: 10.1016/bs.pmbts.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetics is the field of science that deals with the study of changes in gene function that do not involve changes in DNA sequence and are heritable while epigenetics inheritance is the process of transmission of epigenetic modifications to the next generation. It can be transient, intergenerational, or transgenerational. There are various epigenetic modifications involving mechanisms such as DNA methylation, histone modification, and noncoding RNA expression, all of which are inheritable. In this chapter, we summarize the information on epigenetic inheritance, its mechanism, inheritance studies on various organisms, factors affecting epigenetic modifications and their inheritance, and the role of epigenetic inheritance in the heritability of diseases.
Collapse
Affiliation(s)
- Akanksha Singh Kachhawaha
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Sarita Mishra
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
15
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
DeCherney AH, Brolinson M, Whiteley G, Legro RS, Santoro N. Is the "E" being removed from Reproductive Endocrinology to be replaced by a "G" for Genetics? Fertil Steril 2022; 118:1036-1043. [PMID: 36357198 DOI: 10.1016/j.fertnstert.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alan H DeCherney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marja Brolinson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Grace Whiteley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, Pennsylvania
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
17
|
Bodis J, Farkas B, Nagy B, Kovacs K, Sulyok E. The Role of L-Arginine-NO System in Female Reproduction: A Narrative Review. Int J Mol Sci 2022; 23:14908. [PMID: 36499238 PMCID: PMC9735906 DOI: 10.3390/ijms232314908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO) system in complex biological processes and numerous clinical conditions. Particular attention was made to reveal the association of l-arginine and methylarginines to outcome measures of women undergoing in vitro fertilization (IVF). This review attempts to summarize the expression and function of the essential elements of this system with particular reference to the different stages of female reproduction. A literature search was performed on the PubMed and Google Scholar systems. Publications were selected for evaluation according to the results presented in the Abstract. The regulatory role of NO during the period of folliculogenesis, oocyte maturation, fertilization, embryogenesis, implantation, placentation, pregnancy, and delivery was surveyed. The major aspects of cellular l-arginine uptake via cationic amino acid transporters (CATs), arginine catabolism by nitric oxide synthases (NOSs) to NO and l-citrulline and by arginase to ornithine, and polyamines are presented. The importance of NOS inhibition by methylated arginines and the redox-sensitive elements of the process of NO generation are also shown. The l-arginine-NO system plays a crucial role in all stages of female reproduction. Insufficiently low or excessively high rates of NO generation may have adverse influences on IVF outcome.
Collapse
Affiliation(s)
- Jozsef Bodis
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Balint Farkas
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Bernadett Nagy
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Kalman Kovacs
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| |
Collapse
|
18
|
Hua L, Chen W, Meng Y, Qin M, Yan Z, Yang R, Liu Q, Wei Y, Zhao Y, Yan L, Qiao J. The combination of DNA methylome and transcriptome revealed the intergenerational inheritance on the influence of advanced maternal age. Clin Transl Med 2022; 12:e990. [PMID: 36103411 PMCID: PMC9473489 DOI: 10.1002/ctm2.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The number of women delivering at advanced maternal age (AMA; > = 35) continuously increases in developed and high-income countries. Large cohort studies have associated AMA with increased risks of various pregnancy complications and adverse pregnancy outcomes, which raises great concerns about the adverse effect of AMA on the long-term health of offspring. Specific acquired characteristics of parents can be passed on to descendants through certain molecular mechanisms, yet the underlying connection between AMA-related alterations in parents and that in offspring remains largely uncharted. METHODS We profiled the DNA methylomes of paired parental peripheral bloods and cord bloods from 20 nuclear families, including 10 AMA and 10 Young, and additional transcriptomes of 10 paired maternal peripheral bloods and cord bloods. RESULTS We revealed that AMA induced aging-like changes in DNA methylome and gene expression in both parents and offspring. The expression changes in several genes, such as SLC28A3, were highly relevant to the disorder in DNA methylation. In addition, AMA-related differentially methylated regions (DMRs) identified in mother and offspring groups showed remarkable similarities in both genomic locations and biological functions, mainly involving neuron differentiation, metabolism, and histone modification pathways. AMA-related differentially expressed genes (DEGs) shared by mother and offspring groups were highly enriched in the processes of immune cell activation and mitotic nuclear division. We further uncovered developmental-dependent dynamics for the DNA methylation of intergenerationally correlated DMRs during pre-implantation embryonic development, as well as diverse gene expression patterns during gametogenesis and early embryonic development for those common AMA-related DEGs presenting intergenerational correlation, such as CD24. Moreover, some intergenerational DEGs, typified by HTRA3, also showed the same significant alterations in AMA MII oocyte or blastocyst. CONCLUSIONS Our results reveal potential intergenerational inheritance of both AMA-related DNA methylome and transcriptome and provide new insights to understand health problems in AMA offspring.
Collapse
Affiliation(s)
- Lingyue Hua
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Wei Chen
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Yan Meng
- Department of Obstetrics and GynecologyBeijing Jishuitan Hospital, Fourth Clinical College of Peking UniversityBeijingChina
| | - Meng Qin
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Zhiqiang Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Rui Yang
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Qiang Liu
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Yuan Wei
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Center for Healthcare Quality Management in ObstetricsBeijingChina
| | - Yangyu Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Center for Healthcare Quality Management in ObstetricsBeijingChina
| | - Liying Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Jie Qiao
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- Beijing Advanced Innovation Center for GenomicsBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
19
|
Cao Y, Zhu X, Zhen P, Tian Y, Ji D, Xue K, Yan W, Chai J, Liu H, Wang W. Cystathionine β‐synthase is required for oocyte quality by ensuring proper meiotic spindle assembly. Cell Prolif 2022; 55:e13322. [DOI: 10.1111/cpr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yan Cao
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Panpan Zhen
- Department of Pathology Beijing Luhe Hospital, Capital Medical University Beijing China
| | - Ying Tian
- Department of Histology and Embryology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Ke Xue
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Huirong Liu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases Capital Medical University Beijing China
| | - Wen Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases Capital Medical University Beijing China
| |
Collapse
|
20
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2022; 158:1-4. [PMID: 35751678 DOI: 10.1007/s00418-022-02125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
21
|
Roy S, Sinha N, Huang B, Cline-Fedewa H, Gleicher N, Wang J, Sen A. Jumonji Domain-containing Protein-3 (JMJD3/Kdm6b) Is Critical for Normal Ovarian Function and Female Fertility. Endocrinology 2022; 163:6565906. [PMID: 35396990 PMCID: PMC9070484 DOI: 10.1210/endocr/bqac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
In females, reproductive success is dependent on the expression of a number of genes regulated at different levels, one of which is through epigenetic modulation. How a specific epigenetic modification regulates gene expression and their downstream effect on ovarian function are important for understanding the female reproductive process. The trimethylation of histone3 at lysine27 (H3K27me3) is associated with gene repression. JMJD3 (or KDM6b), a jumonji domain-containing histone demethylase specifically catalyzes the demethylation of H3K27me3, that positively influences gene expression. This study reports that the expression of JMJD3 specifically in the ovarian granulosa cells (GCs) is critical for maintaining normal female fertility. Conditional deletion of Jmjd3 in the GCs results in a decreased number of total healthy follicles, disrupted estrous cycle, and increased follicular atresia culminating in subfertility and premature ovarian failure. At the molecular level, the depletion of Jmjd3 and RNA-seq analysis reveal that JMJD3 is essential for mitochondrial function. JMJD3-mediated reduction of H3K27me3 induces the expression of Lif (Leukemia inhibitory factor) and Ctnnb1 (β-catenin), that in turn regulate the expression of key mitochondrial genes critical for the electron transport chain. Moreover, mitochondrial DNA content is also significantly decreased in Jmjd3 null GCs. Additionally, we have uncovered that the expression of Jmjd3 in GCs decreases with age, both in mice and in humans. Thus, in summary, our studies highlight the critical role of JMJD3 in nuclear-mitochondrial genome coordination that is essential for maintaining normal ovarian function and female fertility and underscore a potential role of JMJD3 in female reproductive aging.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: Aritro Sen, PhD, Reproductive and Developmental Sciences Program, Department of Animal Sciences, 766 Service Rd, Interdisciplinary Science & Technology Building, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
23
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
24
|
Kouvidi E, Zachaki S, Tsarouha H, Pantou A, Manola KN, Kanavakis E, Mavrou A. Female Reproductive Ageing and Chromosomal Abnormalities in a Large Series of Women Undergoing IVF. Cytogenet Genome Res 2022; 161:551-555. [PMID: 35051945 DOI: 10.1159/000521655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Chromosomal abnormalities are often detected in women with reproductive problems. This study aimed to investigate the presence and type of chromosomal aberrations in peripheral blood of women undergoing in vitro fertilization (IVF) and their possible association with advanced maternal age (AMA). A total of 1,837 women undergoing IVF between 2016 and 2019 were enrolled in the study. Women were further divided in AMA (≥35 years) and younger women (<35 years). Chromosomal abnormalities were detected by peripheral blood karyotyping using standard cytogenetic techniques. Chromosomal abnormalities were detected in 13.5% of the enrolled women; 1.1% had autosomal abnormalities including reciprocal translocations, inversions, Robertsonian translocations, and a supernumerary marker chromosome, while 12.4% had X chromosome abnormalities. The frequency of chromosomal abnormalities was significantly higher in AMA women than in younger ones (17.4% vs. 3.9%, p < 0.05). Women of AMA exhibited X chromosome mosaicism with a frequency of 16.1%, and mosaic karyotypes with 2 and 3 aneuploid cell lines were more frequently detected. X chromosome mosaicism is the most common karyotypic aberration in women undergoing IVF and has 6-fold increased incidence in AMA women compared to younger ones. The present study verifies previous observations that low-level peripheral blood X chromosome mosaicism and the number of aneuploid cell lines observed in women of AMA could be an indication of aneuploidy and poor quality of oocytes contributing to infertility.
Collapse
Affiliation(s)
- Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Sophia Zachaki
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Haralampia Tsarouha
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Amelia Pantou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | | | - Emmanuel Kanavakis
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Ariadni Mavrou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| |
Collapse
|
25
|
Exploring the effects of birth order on human lifespan in Polish historical populations, 1738–1968. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.2478/anre-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
While the relationships between birth order and later outcomes in life, including health and wealth, have been the subject of investigation for several decades, little or no data exist regarding the relationship between birth order and life expectancy in the Polish population. The aim of this study was to explore the link between birth order and lifespan in Polish historical populations. We obtained 8523 records from a historical dataset that was established for parishioners from the borough of Bejsce, including 4463 males and 4060 females. These data pertain to the populations that lived over a long period in a group of localities for which parish registers were well preserved. The Mann-Whitney U test, the Kruskal-Wallis ANOVA and ANCOVA were run. The results strongly suggest that birth order affects male longevity. However, no such association was found for females. On balance, the hypothesis that first-born boys live longer because they are born to relatively younger parents has received some empirical support and deserves further study. We hypothesise that the effects of birth order on human health and lifespan might be overshadowed by other factors, including educational attainment, socioeconomic status and lifestyle.
Collapse
|
26
|
Pool KR, Chazal F, Smith JT, Blache D. Estrogenic Pastures: A Source of Endocrine Disruption in Sheep Reproduction. Front Endocrinol (Lausanne) 2022; 13:880861. [PMID: 35574027 PMCID: PMC9097266 DOI: 10.3389/fendo.2022.880861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phytoestrogens can impact on reproductive health due to their structural similarity to estradiol. Initially identified in sheep consuming estrogenic pasture, phytoestrogens are known to influence reproductive capacity in numerous species. Estrogenic pastures continue to persist in sheep production systems, yet there has been little headway in our understanding of the underlying mechanisms that link phytoestrogens with compromised reproduction in sheep. Here we review the known and postulated actions of phytoestrogens on reproduction, with particular focus on competitive binding with nuclear and non-nuclear estrogen receptors, modifications to the epigenome, and the downstream impacts on normal physiological function. The review examines the evidence that phytoestrogens cause reproductive dysfunction in both the sexes, and that outcomes depend on the developmental period when an individual is exposed to phytoestrogen.
Collapse
|
27
|
Tesarik J. Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue "Molecular Mechanisms of Human Oogenesis and Early Embryogenesis". Int J Mol Sci 2021; 22:ijms222413517. [PMID: 34948313 PMCID: PMC8705484 DOI: 10.3390/ijms222413517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jan Tesarik
- MarGen Clinic, Molecular Assisted Reproduction and Genetics, Camino de Ronda 2, 18006 Granada, Spain
| |
Collapse
|
28
|
Cao JM, Wang N, Hou SY, Qi X, Xiong W. Epigenetics effect on pathogenesis of thyroid-associated ophthalmopathy. Int J Ophthalmol 2021; 14:1441-1448. [PMID: 34540623 DOI: 10.18240/ijo.2021.09.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease. Recent studies have found the aberrant epigenetics in TAO, including DNA methylation, non-coding RNAs, and histone modification. Many genes have an aberrant level of methylation in TAO. For example, higher levels are found in CD14, MBP, ANGLE1, LYAR and lower levels in DRD4 and BOLL. Non-coding RNAs are involved in the immune response (miR-146a, miR-155, miR-96, miR-183), fibrosis regulation (miR-146a, miR-21, miR-29), adipogenesis (miR-27) and are thought to play roles in TAO. MicroRNA is also related to the clinical activity score (miR-Let7d-5p) and may be a predictor of glucocorticoid therapy (miR-224-5p). The quantities of H4 in TAO are increased compared with euthyroid control subjects, and the role of histone modifications in Graves' disease may lead to better understanding of its role in TAO. More studies are needed to explain the role of epigenetics in TAO and provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Jia-Min Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Nuo Wang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Shi-Ying Hou
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xin Qi
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
29
|
Fu L, Luo YX, Liu Y, Liu H, Li HZ, Yu Y. Potential of Mitochondrial Genome Editing for Human Fertility Health. Front Genet 2021; 12:673951. [PMID: 34354734 PMCID: PMC8329452 DOI: 10.3389/fgene.2021.673951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes vital proteins and RNAs for the normal functioning of the mitochondria. Mutations in mtDNA leading to mitochondrial dysfunction are relevant to a large spectrum of diseases, including fertility disorders. Since mtDNA undergoes rather complex processes during gametogenesis and fertilization, clarification of the changes and functions of mtDNA and its essential impact on gamete quality and fertility during this process is of great significance. Thanks to the emergence and rapid development of gene editing technology, breakthroughs have been made in mitochondrial genome editing (MGE), offering great potential for the treatment of mtDNA-related diseases. In this review, we summarize the features of mitochondria and their unique genome, emphasizing their inheritance patterns; illustrate the role of mtDNA in gametogenesis and fertilization; and discuss potential therapies based on MGE as well as the outlook in this field.
Collapse
Affiliation(s)
- Lin Fu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, FICS, Shenzhen, China
| | - Hui Liu
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hong-Zhen Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Bódis J, Sulyok E, Várnagy Á, Prémusz V, Gödöny K, Makai A, Szenczi Á, Varjas T. Expression of mRNAs for pro-and anti-apoptotic factors in granulosa cells and follicular fluid of women undergoing in vitro fertilization. A pilot study. BMC Pregnancy Childbirth 2021; 21:399. [PMID: 34030662 PMCID: PMC8142473 DOI: 10.1186/s12884-021-03834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background This observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF). Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3 ± 5.8 years, body mass index: 24.02 ± 3.12 kg/m2, duration of infertility: 4.2 ± 2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r = 0.393, p = 0.029), but the day of embryo transfer was negatively associated with GC LHR (r = − 0.414, p = 0.020) and GC FSHR transcripts (r = − 0.535, p = 0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs. Conclusion Our study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.
Collapse
Affiliation(s)
- József Bódis
- ELKH-PTE Human Reproduction Scientific Research Group, University of Pécs, Édesanyák u. 17., Pécs, H-7624, Hungary
| | - Endre Sulyok
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty u. 4., Pécs, H-7621, Hungary.
| | - Ákos Várnagy
- ELKH-PTE Human Reproduction Scientific Research Group, University of Pécs, Édesanyák u. 17., Pécs, H-7624, Hungary.,Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák u. 17., Pécs, H-7624, Hungary
| | - Viktória Prémusz
- ELKH-PTE Human Reproduction Scientific Research Group, University of Pécs, Édesanyák u. 17., Pécs, H-7624, Hungary.,Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty u. 4., Pécs, H-7621, Hungary
| | - Krisztina Gödöny
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák u. 17., Pécs, H-7624, Hungary
| | - Alexandra Makai
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty u. 4., Pécs, H-7621, Hungary
| | - Ágnes Szenczi
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti u. 12., Pécs, H-7621, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti u. 12., Pécs, H-7621, Hungary
| |
Collapse
|
31
|
Comizzoli P, Ottinger MA. Understanding Reproductive Aging in Wildlife to Improve Animal Conservation and Human Reproductive Health. Front Cell Dev Biol 2021; 9:680471. [PMID: 34095152 PMCID: PMC8170016 DOI: 10.3389/fcell.2021.680471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to humans and laboratory animals, reproductive aging is observed in wild species-from small invertebrates to large mammals. Aging issues are also prevalent in rare and endangered species under human care as their life expectancy is longer than in the wild. The objectives of this review are to (1) present conserved as well as distinctive traits of reproductive aging in different wild animal species (2) highlight the value of comparative studies to address aging issues in conservation breeding as well as in human reproductive medicine, and (3) suggest next steps forward in that research area. From social insects to mega-vertebrates, reproductive aging studies as well as observations in the wild or in breeding centers often remain at the physiological or organismal scale (senescence) rather than at the germ cell level. Overall, multiple traits are conserved across very different species (depletion of the ovarian reserve or no decline in testicular functions), but unique features also exist (endless reproductive life or unaltered quality of germ cells). There is a broad consensus about the need to fill research gaps because many cellular and molecular processes during reproductive aging remain undescribed. More research in male aging is particularly needed across all species. Furthermore, studies on reproductive aging of target species in their natural habitat (sentinel species) are crucial to define more accurate reproductive indicators relevant to other species, including humans, sharing the same environment. Wild species can significantly contribute to our general knowledge of a crucial phenomenon and provide new approaches to extend the reproductive lifespan.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
32
|
Llonch S, Barragán M, Nieto P, Mallol A, Elosua‐Bayes M, Lorden P, Ruiz S, Zambelli F, Heyn H, Vassena R, Payer B. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 2021; 20:e13360. [PMID: 33908703 PMCID: PMC8135014 DOI: 10.1111/acel.13360] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Female fertility is inversely correlated with maternal age due to a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, however, the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown germinal vesicle stage (GV) and in vitro matured (IVM‐MII) oocytes from women of varying reproductive age. First, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM‐MII) with 4445 and 324 putative marker genes, respectively. Furthermore, we identified genes for which transcript representation either progressively increased or decreased with age. Our results indicate that the transcriptome is more affected by age in IVM‐MII oocytes (1219 genes) than in GV oocytes (596 genes). In particular, we found that transcripts of genes involved in chromosome segregation and RNA splicing significantly increased representation with age, while genes related to mitochondrial activity showed a lower representation. Gene regulatory network analysis facilitated the identification of potential upstream master regulators of the genes involved in those biological functions. Our analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM‐MII stages. Nonetheless, hundreds of genes displayed altered transcript representation, particularly in IVM‐MII oocytes, which might contribute to the age‐related quality decline in human oocytes.
Collapse
Affiliation(s)
- Sílvia Llonch
- Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Paula Nieto
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Anna Mallol
- Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Marc Elosua‐Bayes
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Patricia Lorden
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Sara Ruiz
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Holger Heyn
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Bernhard Payer
- Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| |
Collapse
|
33
|
Kordowitzki P, Haghani A, Zoller JA, Li CZ, Raj K, Spangler ML, Horvath S. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. Aging Cell 2021; 20:e13349. [PMID: 33797841 PMCID: PMC8135012 DOI: 10.1111/acel.13349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/05/2021] [Accepted: 03/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cattle are an attractive animal model of fertility in women due to their high degree of similarity relative to follicle selection, embryo cleavage, blastocyst formation, and gestation length. To facilitate future studies of the epigenetic underpinnings of aging effects in the female reproductive axis, several DNA methylation-based biomarkers of aging (epigenetic clocks) for bovine oocytes are presented. One such clock was germane to only oocytes, while a dual-tissue clock was highly predictive of age in both oocytes and blood. Dual species clocks that apply to both humans and cattle were also developed and evaluated. These epigenetic clocks can be used to accurately estimate the biological age of oocytes. Both epigenetic clock studies and epigenome-wide association studies revealed that blood and oocytes differ substantially with respect to aging and the underlying epigenetic signatures that potentially influence the aging process. The rate of epigenetic aging was found to be slower in oocytes compared to blood; however, oocytes appeared to begin at an older epigenetic age. The epigenetic clocks for oocytes are expected to address questions in the field of reproductive aging, including the central question: how to slow aging of oocytes.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of SciencesOlsztynPoland
- Institute for Veterinary MedicineNicolaus Copernicus UniversityTorunPoland
| | - Amin Haghani
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| | - Ken Raj
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental HazardsPublic Health EnglandDidcotUK
| | | | - Steve Horvath
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
34
|
Katagiri Y, Tamaki Y. Genetic counseling prior to assisted reproductive technology. Reprod Med Biol 2021; 20:133-143. [PMID: 33850446 PMCID: PMC8022097 DOI: 10.1002/rmb2.12361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Reproductive medicine deals with fertility and is closely related to heredity. In reproductive medicine, it is necessary to provide genetic information for the patients prior to assisted reproductive technology (ART). Japan Society for Reproductive Medicine (JSRM) requires doctors involved in reproductive medicine to have standard knowledge of reproductive genetics and knowledge of reproductive medicine, which is covered in their publication, "required knowledge of reproductive medicine." METHODS With the aim of providing straightforward explanations to patients in the clinical situation at pre-ART counseling, we provide the following five topics, such as (a) risk of birth defects in children born with ART, (b) chromosomal abnormalities, (c) Y chromosome microdeletions (YCMs), (d) possible chromosomal abnormal pregnancy in oligospermatozoa requiring ICSI (intracytoplasmic sperm injection), and (e) epigenetic alterations. MAIN FINDINGS The frequency of chromosome abnormalities in infertile patients is 0.595%-0.64%. YCMs are observed in 2%-10% of severe oligospermic men. High incidence of spermatozoa with chromosomal abnormalities has been reported in advanced oligospermia and asthenozoospermia that require ICSI. Some epigenetic alterations were reported in the children born with ART. CONCLUSION Certain genetic knowledge is important for professionals involved in reproductive medicine, even if they are not genetic experts.
Collapse
Affiliation(s)
- Yukiko Katagiri
- Department of Obstetrics and GynecologyFaculty of MedicineToho UniversityTokyoJapan
- Division of Clinical GeneticsToho University Omori Medical CenterTokyoJapan
- Reproduction CenterToho University Omori Medical CenterTokyoJapan
| | - Yuko Tamaki
- Department of Obstetrics and GynecologyFaculty of MedicineToho UniversityTokyoJapan
- Division of Clinical GeneticsToho University Omori Medical CenterTokyoJapan
- Reproduction CenterToho University Omori Medical CenterTokyoJapan
| |
Collapse
|
35
|
Funeshima N, Miura R, Katoh T, Yaginuma H, Kitou T, Yoshimura I, Konda K, Hamano S, Shirasuna K. Metabolomic profiles of plasma and uterine luminal fluids from healthy and repeat breeder Holstein cows. BMC Vet Res 2021; 17:54. [PMID: 33509174 PMCID: PMC7842029 DOI: 10.1186/s12917-021-02755-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Repeat breeding is a critical reproductive disorder in cattle. The problem of repeat breeder cattle remains largely unmanageable due to a lack of informative biomarkers. Here, we utilized metabolomic profiling in an attempt to identify metabolites in the blood plasma and uterine luminal fluids. We collected blood and uterine fluid from repeat breeder and healthy cows on day 7 of the estrous cycle. Results Metabolomic analysis identified 17 plasma metabolites detected at concentrations that distinguished between the two groups, including decreased various bile acids among the repeat breeders. However, no metabolites that varied significantly were detected in the uterine luminal fluids between two groups. Among the plasma samples, kynurenine was identified as undergoing the most significant variation. Kynurenine is a metabolite produced from tryptophan via the actions of indoleamine 2,3-dioxygenase (IDO). As IDO is key for maternal immune tolerance and induced in response to interferon tau (IFNT, ruminant maternal recognition of pregnancy factor), we examined the responsiveness to IFNT on peripheral blood mononuclear cells (PBMC) isolated from healthy and repeat breeder cows. The mRNA expression of IFNT-response makers (ISG15 and MX2) were significantly increased by IFNT treatment in a dose-dependent manner in both groups. Although treatment with IFNT promoted the expression of IDO in PBMCs from both groups, it did so at a substantially reduced rate among the repeat breeder cows, suggesting that decreased levels of kynurenine may relate to the reduced IDO expression in repeat breeder cows. Conclusions These findings provide valuable information towards the identification of critical biomarkers for repeat breeding syndrome in cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02755-7.
Collapse
Affiliation(s)
- Natsumi Funeshima
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan
| | - Ryotaro Miura
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Taiga Katoh
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan
| | - Hikari Yaginuma
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Shinagawa, Tokyo, 135-0041, Japan
| | - Takeshi Kitou
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Shinagawa, Tokyo, 135-0041, Japan
| | - Itaru Yoshimura
- Fuji Animal Research Farm, Nippon Veterinary and Life Science University, Kawaguchiko, Yamanashi, 401-3338, Japan
| | - Kunitoshi Konda
- Kanagawa Prefectural Livestock Industry Technology Center, Ebina, Kanagawa, 243-0417, Japan
| | - Seizo Hamano
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Maebashi, Gunma, 371-0121, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan.
| |
Collapse
|
36
|
Vazquez BN, Vaquero A, Schindler K. Sirtuins in female meiosis and in reproductive longevity. Mol Reprod Dev 2020; 87:1175-1187. [PMID: 33184962 PMCID: PMC7775317 DOI: 10.1002/mrd.23437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/01/2020] [Indexed: 01/03/2023]
Abstract
Transmission of genetic material through high-quality gametes to progeny requires accurate homologous chromosome recombination and segregation during meiosis. A failure to accomplish these processes can have major consequences in reproductive health, including infertility, and development disorders in offspring. Sirtuins, a family of NAD+ -dependent protein deacetylases and ADP-ribosyltransferases, play key roles in genome maintenance, metabolism, and aging. In recent years, Sirtuins have emerged as regulators of several reproductive processes and interventions aiming to target Sirtuin activity are of great interest in the reproductive biology field. Sirtuins are pivotal to protect germ cells against oxidative stress, a major determinant influencing ovarian aging and the quality of gametes. Sirtuins also safeguard the integrity of the genome through epigenetic programs required for regulating gene repression, DNA repair, and chromosome segregation, among others. Although these functions are relatively well characterized in many somatic tissues, how they contribute to reproductive functions is not well understood. This review summarizes our current knowledge on the role of Sirtuins in female reproductive systems and discusses the underlying molecular pathways. In addition, we highlight the importance of Sirtuins as antiaging factors in the ovary and summarize current preclinical efforts to identify treatments to extend female reproductive longevity.
Collapse
Affiliation(s)
- Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Catalonia, Spain
- Department de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Catalonia, Spain
| | - Karen Schindler
- Human Genetics Institute of New Jersey (HGINJ), Department of Genetics, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| |
Collapse
|
37
|
The Epigenetics of the Endocannabinoid System. Int J Mol Sci 2020; 21:ijms21031113. [PMID: 32046164 PMCID: PMC7037698 DOI: 10.3390/ijms21031113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ES) is a cell-signalling system widely distributed in biological tissues that includes endogenous ligands, receptors, and biosynthetic and hydrolysing machineries. The impairment of the ES has been associated to several pathological conditions like behavioural, neurological, or metabolic disorders and infertility, suggesting that the modulation of this system may be critical for the maintenance of health status and disease treatment. Lifestyle and environmental factors can exert long-term effects on gene expression without any change in the nucleotide sequence of DNA, affecting health maintenance and influencing both disease load and resistance. This potentially reversible "epigenetic" modulation of gene expression occurs through the chemical modification of DNA and histone protein tails or the specific production of regulatory non-coding RNA (ncRNA). Recent findings demonstrate the epigenetic modulation of the ES in biological tissues; in the same way, endocannabinoids, phytocannabinoids, and cannabinoid receptor agonists and antagonists induce widespread or gene-specific epigenetic changes with the possibility of trans-generational epigenetic inheritance in the offspring explained by the transmission of deregulated epigenetic marks in the gametes. Therefore, this review provides an update on the epigenetics of the ES, with particular attention on the emerging role in reproduction and fertility.
Collapse
|
38
|
Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:789. [PMID: 32042805 DOI: 10.21037/atm.2019.12.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oocyte quality is one of the most important factors involving in female reproduction. The number of compromised oocytes will increase with maternal age, while mitochondrial dysfunction has implicated in age-related poor oocyte. Together with the successful application of ooplasmic transfer (OT) and the critical role of mitochondria in the oocyte, functional mitochondria transfer may be a feasible strategy to improve oocyte quality. However, limitation on ethics and laws are strictly and optimal condition or methods to exert transferring need to be further explored. Therefore, the role of oocyte mitochondria and the effective molecular involving in oocyte quality will be hot topics in next few years. In this review, we summarize the potential mechanism of mitochondria in oocyte and embryo development and discuss the next step for mitochondrial transfer therapy.
Collapse
Affiliation(s)
- Lingbin Qi
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Xian Chen
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen 518045, China
| | - Jian Wang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Bo Lv
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Junhui Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Bin Ni
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Zhigang Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China.,Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|