1
|
de Moraes RCS, Viana TAF, Pereira JKG, da Costa PCT, Duarte DB, Toscano LDLT, de Araújo Lima MF, Galdino MKC, de Souza JR, de Oliveira Júnior FA, de Arruda Neta ADCP, de Brito Alves JL, Baccin Martins VJ. Lower Cortisol and Dehydroepiandrosterone Sulfate and Higher Food Addiction in Childhood Obesity: Associations With Stress and Dietary Parameters. J Endocr Soc 2025; 9:bvaf011. [PMID: 39931045 PMCID: PMC11808062 DOI: 10.1210/jendso/bvaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 02/13/2025] Open
Abstract
Context Obesity has been associated with changes in cortisol and dehydroepiandrosterone (DHEA) sulfate concentrations and increased stress levels and food addiction. Objectives We explored changes in morning salivary cortisol and DHEA in childhood obesity and their associations with body composition, metabolic profile, food addiction, food consumption, and stress in a cross-sectional study. Methods Children aged 7 to 12 years of both sexes were allocated into 2 groups according to body mass index-for-age: control group (n = 60) or obesity group (n = 98). Anthropometric, body composition, serum glucose, insulin, lipid profile, and DHEA were measured. Saliva was collected at different times to measure morning salivary cortisol concentrations. Food addiction, food consumption, and stress were assessed using questionnaires. Results Lower DHEA [1.04 (0.87-1.25) ng/mL vs 1.65 (1.30-2.07) ng/mL, P = .002] and salivary cortisol (6:00 Am: 1.17 ± 0.89 vs 1.45 ± 0.82 nmol/L, 6:30 Am: 1.53 ± 0.68 vs 1.83 ± 0.70 nmol/L, 7:30 Am: 0.72 ± 0.99 vs 1.31 ± 0.94 nmol/L, P-value of time < 0.001 and P-value of group = .002) were observed in children with obesity compared to the control. DHEA correlated negatively with waist circumference (r = -0.20, P < .05), body mass index-for-age(BMI-Z) (r = -0.21, P < .01), and weight (r = -0.25, P < .01). DHEA showed a positive correlation with the cortisol area under the curve (r = 0.29, P = .002). Food addiction was positively correlated with waist circumference (r = 0.21, P < .01), BMI-Z (r = 0.22, P < .01), body weight (r = 0.20, P < .05), total energy intake (r = 0.20, P < .05), and lipids (r = 0.24, P < .01). Conclusion Children with obesity showed lower concentrations of salivary cortisol and DHEA and higher food addiction compared to control children. These changes may contribute to the development of chronic diseases over time.
Collapse
Affiliation(s)
| | | | | | | | - Davyson Barbosa Duarte
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Academic Center of Vitória, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco 55608-680, Brazil
| | | | | | | | - Joelma Rodrigues de Souza
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | | | | | | | | |
Collapse
|
2
|
Mohamad NV, Razali NSC, Shamsuddin NAM. Dehydroepiandrosterone and Bone Health: Mechanisms and Insights. Biomedicines 2024; 12:2780. [PMID: 39767687 PMCID: PMC11673555 DOI: 10.3390/biomedicines12122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dehydroepiandrosterone (DHEA), a steroid hormone produced by the adrenal glands, plays a key role in various physiological processes, including bone health. Its age-related decline is linked to reduced bone density, though the mechanisms by which DHEA affects bone metabolism remain complex. This review summarises the diverse effects of DHEA on bone metabolism and density, highlighting its therapeutic potential; Methods: A literature search on the effects of DHEA on bone-related parameters was conducted from PubMed and Scopus using a specific search string, and after removing duplicates and irrelevant articles, 36 relevant full-text studies were included; Results: DHEA promotes osteoblast differentiation and proliferation, regulates the RANKL/OPG ratio, and inhibits osteoclastogenesis and bone resorption. Its osteogenic effects are mediated through multiple signalling pathways. In ovariectomised rat models, DHEA enhances trabecular bone volume, stimulates osteoblast proliferation, and increases oestradiol production and aromatase activity. In elderly individuals with low androgen levels, DHEA supplementation increases sulphated DHEA and oestradiol levels and improves bone mineral density, particularly in the ultra-distal radius of women and the femoral neck of men. However, the clinical use of DHEA remains debated due to inconsistent study results. Its effects on bone health may vary based on factors such as age, gender, and health conditions, emphasising the need for further research to clarify its mechanisms and optimise its use; Conclusions: In conclusion, while DHEA shows potential as a modulator of bone health, comprehensive clinical trials are required to assess its efficacy and safety, particularly in at-risk populations.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur-Syahirah Che Razali
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Nur-Amira Mohd Shamsuddin
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
3
|
Ji W, Li G, Hu Y, Zhang W, Wang J, Jiang F, Zhang Y, Wu F, Wei X, Li Y, Gao X, Manza P, Volkow ND, Wang GJ, Zhang Y. Associations Among Birth Weight, Adrenarche, Brain Morphometry, and Cognitive Function in Preterm Children Ages 9 to 11 Years. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:871-881. [PMID: 38417787 PMCID: PMC11349931 DOI: 10.1016/j.bpsc.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Preterm infants with low birth weight are at heightened risk of developmental sequelae, including neurological and cognitive dysfunction that can persist into adolescence or adulthood. In addition, preterm birth and low birth weight can provoke changes in endocrine and metabolic processes that likely impact brain health throughout development. However, few studies have examined associations among birth weight, pubertal endocrine processes, and long-term neurological and cognitive development. METHODS We investigated the associations between birth weight and brain morphometry, cognitive function, and onset of adrenarche assessed 9 to 11 years later in 3571 preterm and full-term children using the ABCD (Adolescent Brain Cognitive Development) Study dataset. RESULTS The preterm children showed lower birth weight and early adrenarche, as expected. Birth weight was positively associated with cognitive function (all Cohen's d > 0.154, p < .005), global brain volumes (all Cohen's d > 0.170, p < .008), and regional volumes in frontal, temporal, and parietal cortices in preterm and full-term children (all Cohen's d > 0.170, p < .0007); cortical volume in the lateral orbitofrontal cortex partially mediated the effect of low birth weight on cognitive function in preterm children. In addition, adrenal score and cortical volume in the lateral orbitofrontal cortex mediated the associations between birth weight and cognitive function only in preterm children. CONCLUSIONS These findings highlight the impact of low birth weight on long-term brain structural and cognitive function development and show important associations with early onset of adrenarche during the puberty. This understanding may help with prevention and treatment.
Collapse
Affiliation(s)
- Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xiaorong Wei
- Kindergarten affiliated to Air Force Medical University, Xi'an, Shaanxi, China
| | - Yuefeng Li
- Department of Neonatology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, China
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Brown ER, Gettler LT, Rosenbaum S. Effects of social environments on male primate HPG and HPA axis developmental programming. Dev Psychobiol 2024; 66:e22491. [PMID: 38698633 DOI: 10.1002/dev.22491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.
Collapse
Affiliation(s)
- Ella R Brown
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Augsburger P, Liimatta J, Flück CE. Update on Adrenarche-Still a Mystery. J Clin Endocrinol Metab 2024; 109:1403-1422. [PMID: 38181424 DOI: 10.1210/clinem/dgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT Adrenarche marks the timepoint of human adrenal development when the cortex starts secreting androgens in increasing amounts, in healthy children at age 8-9 years, with premature adrenarche (PA) earlier. Because the molecular regulation and significance of adrenarche are unknown, this prepubertal event is characterized descriptively, and PA is a diagnosis by exclusion with unclear long-term consequences. EVIDENCE ACQUISITION We searched the literature of the past 5 years, including original articles, reviews, and meta-analyses from PubMed, ScienceDirect, Web of Science, Embase, and Scopus, using search terms adrenarche, pubarche, DHEAS, steroidogenesis, adrenal, and zona reticularis. EVIDENCE SYNTHESIS Numerous studies addressed different topics of adrenarche and PA. Although basic studies on human adrenal development, zonation, and zona reticularis function enhanced our knowledge, the exact mechanism leading to adrenarche remains unsolved. Many regulators seem involved. A promising marker of adrenarche (11-ketotestosterone) was found in the 11-oxy androgen pathway. By current definition, the prevalence of PA can be as high as 9% to 23% in girls and 2% to 10% in boys, but only a subset of these children might face related adverse health outcomes. CONCLUSION New criteria for defining adrenarche and PA are needed to identify children at risk for later disease and to spare children with a normal variation. Further research is therefore required to understand adrenarche. Prospective, long-term studies should characterize prenatal or early postnatal developmental pathways that modulate trajectories of birth size, early postnatal growth, childhood overweight/obesity, adrenarche and puberty onset, and lead to abnormal sexual maturation, fertility, and other adverse outcomes.
Collapse
Affiliation(s)
- Philipp Augsburger
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jani Liimatta
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, 70029 Kuopio, Finland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
6
|
Wu J, Chen J, Huang R, Zhu H, Che L, Lin Y, Chang Y, Shen G, Feng J. Metabolic characteristics and pathogenesis of precocious puberty in girls: the role of perfluorinated compounds. BMC Med 2023; 21:323. [PMID: 37626398 PMCID: PMC10463894 DOI: 10.1186/s12916-023-03032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Precocious puberty (PP) in girls is traditionally defined as the onset of breast development before the age of 8 years. The specific biomarkers of premature thelarche (PT) and central precocious puberty (CPP) girls are uncertain, and little is known about their metabolic characteristics driven by perfluorinated compounds (PFCs) and clinical phenotype. This study aimed to screen specific biomarkers of PT and CPP and elucidate their underlying pathogenesis. The relationships of clinical phenotype-serum PFCs-metabolic characteristics were also explored to reveal the relationship between PFCs and the occurrence and development of PT and CPP. METHODS Nuclear magnetic resonance (NMR)-based cross-metabolomics strategy was performed on serum from 146 PP (including 30 CPP, 40 PT, and 76 unspecified PP) girls and 64 healthy girls (including 36 prepubertal and 28 adolescent). Specific biomarkers were screened by the uni- and multivariate statistical analyses. The relationships between serum PFCs and clinical phenotype were performed by correlation analysis and weighted gene co-expression network analysis to explore the link of clinical phenotype-PFCs-metabolic characteristics in PT and CPP. RESULTS The disordered trend of pyruvate and butyrate metabolisms (metabolites mapped as formate, ethanol, and 3-hydroxybutyrate) were shared and kept almost consistent in PT and CPP. Eight and eleven specific biomarkers were screened for PT and CPP, respectively. The area under curve of specific biomarker combination was 0.721 in CPP vs. prepubertal, 0.972 in PT vs. prepubertal, 0.646 in CPP vs. prepubertal integrated adolescent, and 0.822 in PT vs. prepubertal integrated adolescent, respectively. Perfluoro-n-heptanoic acid and perfluoro-n-hexanoic acid were statistically different between PT and CPP. Estradiol and prolactin were significantly correlated with PFCs in CPP and PT. Clinical phenotypes and PFCs drive the metabolic characteristics and cause metabolic disturbances in CPP and PT. CONCLUSIONS The elevation of formate, ethanol, and 3-hydroxybutyrate may serve as the early diagnostic indicator for PP in girls. But the stratification of PP still needs to be further determined based on the specific biomarkers. Specific biomarkers of CPP and PT exhibited good sensitivity and can facilitate the classification diagnosis of CPP and PT. PFC exposure is associated with endocrine homeostasis imbalance. PFC exposure and/or endocrine disturbance directly or indirectly drive metabolic changes and form overall metabolic network perturbations in CPP and PT.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Siming District, 422 Siming South Road, Xiamen, 361005, Fujian, China
| | - Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Rong Huang
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Hongwei Zhu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233000, China
| | - Lin Che
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, China
| | - Yanyan Lin
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Siming District, 422 Siming South Road, Xiamen, 361005, Fujian, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Siming District, 422 Siming South Road, Xiamen, 361005, Fujian, China.
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Siming District, 422 Siming South Road, Xiamen, 361005, Fujian, China
| |
Collapse
|
7
|
Jee YH, Jumani S, Mericq V. The Association of Accelerated Early Growth, Timing of Puberty, and Metabolic Consequences in Children. J Clin Endocrinol Metab 2023; 108:e663-e670. [PMID: 37029976 PMCID: PMC10686698 DOI: 10.1210/clinem/dgad202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Accelerated early growth and early timing of puberty or pubertal variant have been noticed as risk factors for metabolic syndrome, more frequently observed in children born small for gestational age (SGA) or children with premature adrenarche (PA). Children with SGA, especially if they make an accelerated catch-up growth in early life, carry a higher risk for long-term metabolic consequences, such as type 2 diabetes, insulin resistance, and cardiovascular diseases. Furthermore, multiple studies support that these children, either born SGA or with a history of PA, may have earlier pubertal timing, which is also associated with various metabolic risks. This review aims to summarize the recent studies investigating the association between early infantile growth, the timing of puberty, and metabolic risks to expand our knowledge and gain more insight into the underlying pathophysiology.
Collapse
Affiliation(s)
- Youn Hee Jee
- Section on Growth, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
- Division of Endocrinology and Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20012, USA
| | - Sanjay Jumani
- Section on Growth, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Veronica Mericq
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago 13101, Chile
| |
Collapse
|
8
|
Urlacher SS. The energetics of childhood: Current knowledge and insights into human variation, evolution, and health. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 36866969 DOI: 10.1002/ajpa.24719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
How organisms capture and ultimately use metabolic energy-a limiting resource of life-has profound implications for understanding evolutionary legacies and current patterns of phenotypic variation, adaptation, and health. Energetics research among humans has a rich history in biological anthropology and beyond. The energetics of childhood, however, remains relatively underexplored. This shortcoming is notable given the accepted importance of childhood in the evolution of the unique human life history pattern as well as the known sensitivity of childhood development to local environments and lived experiences. In this review, I have three objectives: (1) To overview current knowledge regarding how children acquire and use energy, highlighting work among diverse human populations and pointing to recent advances and remaining areas of uncertainty; (2) To discuss key applications of this knowledge for understanding human variation, evolution, and health; (3) To recommend future avenues for research. A growing body of evidence supports a model of trade-offs and constraint in childhood energy expenditure. This model, combined with advancements on topics such as the energetics of immune activity, the brain, and the gut, provides insights into the evolution of extended human subadulthood and the nature of variation in childhood development, lifetime phenotype, and health.
Collapse
Affiliation(s)
- Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, Texas, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| |
Collapse
|
9
|
Wu J, Wen L, Chen J, Chang Y, Huang R, Lin Y, Shen G, Feng J. Discover boy specific-biomarkers and reveal gender-related metabolic differences in central precocious puberty. J Steroid Biochem Mol Biol 2023; 231:106305. [PMID: 36997004 DOI: 10.1016/j.jsbmb.2023.106305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The incidence of central precocious puberty (CPP) in boys is rising, but lack of effective molecular biomarkers often leads to delayed treatment and thus the terrible clinical complications in adulthood. This study aims to identify the specific-biomarkers of CPP boys and understand the gender-related differences in metabolic characteristics of CPP. The specific-biomarkers of CPP boys were identified from serum and their combination was optimized by cross-metabolomics combined with linear discriminant analysis effect size analysis after age correction. The differences in metabolic characteristics between boys and girls with CPP were explored by cross-metabolomics and weighted gene co-expression network analysis. Results show that CPP activated in advance the HPG axis and induced gender-related clinical phenotypes. Seven serum metabolites were identified as specific-biomarkers of CPP boys, including acetoacetate, aspartate, choline, creatinine, myo-inositol, N,N-dimethylglycine and N-Acetyl-glycoprotein. The combination of aspartate, choline, myo-inositol and creatinine achieved an optimized diagnosis, where AUC is 0.949, prediction accuracy for CPP boys is 91.1%, and the average accuracy is 0.865. The metabolic disorders of CPP boys mainly involve in glycerophospholipid metabolism, and synthesis and degradation of ketone bodies. Betaine, glutamine, isoleucine, lactate, leucine, lysine, pyruvate, α-&β-glucose were identified as gender-related biomarkers for CPP, and they are mainly involved in glycolysis/gluconeogenesis, pyruvate metabolism, and alanine, aspartate and glutamate metabolism. Biomarkers combination provides a promising diagnostic potential for CPP boy with a favorite sensitivity and specificity. In addition, the differences of metabolic characteristics between boys and girls with CPP will contribute to the development of individualized clinical treatments in CPP.
Collapse
|
10
|
Helfrecht C, Wang H, Dira SJ, DeAvila D, Meehan CL. DHEAS and nutritional status among Sidama, Ngandu, and Aka children: Effects of cortisol and implications for adrenarche. Am J Hum Biol 2023:e23881. [PMID: 36802115 DOI: 10.1002/ajhb.23881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/28/2023] [Accepted: 02/05/2023] [Indexed: 02/21/2023] Open
Abstract
OBJECTIVE Adrenarche, the biological event marked by rising production of dehydroepiandrosterone and its sulfate (DHEAS), may represent a sensitive period in child development, with important implications for adolescence and beyond. Nutritional status, particularly BMI and/or adiposity, has long been hypothesized as a factor in DHEAS production but findings are inconsistent, and few studies have examined this among non-industrialized societies. In addition, cortisol has not been included in these models. We here evaluate effects of height- (HAZ), weight- (WAZ), and BMI- (BMIZ) for-age on DHEAS concentrations among Sidama agropastoralist, Ngandu horticulturalist, and Aka hunter-gatherer children. METHODS Heights and weights were collected from 206 children aged 2-18 years old. HAZ, WAZ, and BMIZ were calculated using CDC standards. DHEAS and cortisol assays were used to determine biomarker concentrations in hair. Generalized linear modeling was used to examine effects of nutritional status on DHEAS concentrations, as well as cortisol, controlling for age, sex, and population. RESULTS Despite the prevalence of low HAZ and WAZ scores, the majority (77%) of children had BMI z-scores >-2.0 SD. Nutritional status has no significant effect on DHEAS concentrations, controlling for age, sex, and population. Cortisol, however, is a significant predictor of DHEAS concentrations. CONCLUSIONS Our findings do not support a relationship between nutritional status and DHEAS. Instead, results suggest an important role for stress and ecology in DHEAS concentrations across childhood. Specifically, effects of environment via cortisol may be influential to patterning of DHEAS. Future work should investigate local ecological stressors and their relationship to adrenarche.
Collapse
Affiliation(s)
- Courtney Helfrecht
- Department of Anthropology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Hui Wang
- Institute for Rural Health Research, University of Alabama, Tuscaloosa, Alabama, USA
| | - Samuel J Dira
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - David DeAvila
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington, USA
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
Takeshita RS, Edler MK, Meindl RS, Sherwood CC, Hopkins WD, Raghanti MA. Age, adrenal steroids, and cognitive functioning in captive chimpanzees ( Pan troglodytes). PeerJ 2022; 10:e14323. [PMID: 36389417 PMCID: PMC9653054 DOI: 10.7717/peerj.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Dehydroepiandrosterone-sulfate is the most abundant circulating androgen in humans and other catarrhines. It is involved in several biological functions, such as testosterone production, glucocorticoid antagonist actions, neurogenesis and neuroplasticty. Although the role of dehydroepiandrosterone-sulfate (DHEAS) in cognition remains elusive, the DHEAS/cortisol ratio has been positively associated with a slower cognitive age-decline and improved mood in humans. Whether this relationship is found in nonhuman primates remains unknown. Methods We measured DHEAS and cortisol levels in serum of 107 adult chimpanzees to investigate the relationship between DHEAS levels and age. A subset of 21 chimpanzees was used to test the potential associations between DHEAS, cortisol, and DHEAS/cortisol ratio in cognitive function, taking into account age, sex, and their interactions. We tested for cognitive function using the primate cognitive test battery (PCTB) and principal component analyses to categorize cognition into three components: spatial relationship tasks, tool use and social communication tasks, and auditory-visual sensory perception tasks. Results DHEAS levels, but not the DHEAS/cortisol ratio, declined with age in chimpanzees. Our analyses for spatial relationships tasks revealed a significant, positive correlation with the DHEAS/cortisol ratio. Tool use and social communication had a negative relationship with age. Our data show that the DHEAS/cortisol ratio, but not DHEAS individually, is a promising predictor of spatial cognition in chimpanzees.
Collapse
Affiliation(s)
- Rafaela S.C. Takeshita
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Melissa K. Edler
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Richard S. Meindl
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - William D. Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Mary Ann Raghanti
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
12
|
Lalli E, Figueiredo BC. Prolactin as an adrenocorticotropic hormone: Prolactin signalling is a conserved key regulator of sexually dimorphic adrenal gland function in health and disease. Bioessays 2022; 44:e2200109. [PMID: 36000778 DOI: 10.1002/bies.202200109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
A large number of previous reports described an effect of the pituitary hormone prolactin (PRL) on steroid hormone production by the adrenal cortex. However, those studies remained anecdotal and were never converted into a conceptual and mechanistic framework, let alone being translated into clinical care. In the light of our recently published landmark study where we described PRL signalling as a pivotal regulator of the sexually dimorphic adrenal phenotype in mouse and of adrenal androgen production in humans, we present here the overarching hypothesis that PRL signalling increases the activity of Steroidogenic Factor-1 (SF-1/NR5A1), a transcription factor that has an essential role in adrenal gland development and function, to regulate adrenal cortex growth and hormonal production in physiological and pathological conditions. PRL can then be considered as a bona fide adrenocorticotropic hormone synergizing with ACTH in the endocrine control of adrenal cortex function.
Collapse
Affiliation(s)
- Enzo Lalli
- EXPOGEN-CANCER CNRS International Research Project, 660 route des Lucioles, Sophia Antipolis, Valbonne, 06560, France.,Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Pelé Pequeno Principe Research Institute, Curitiba, PR, Brazil
| | - Bonald C Figueiredo
- EXPOGEN-CANCER CNRS International Research Project, 660 route des Lucioles, Sophia Antipolis, Valbonne, 06560, France.,Pelé Pequeno Principe Research Institute, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Abstract
Adrenarche is the maturational increase in adrenal androgen production that normally begins in early childhood. It results from changes in the secretory response to adrenocorticotropin (ACTH) that are best indexed by dehydroepiandrosterone sulfate (DHEAS) rise. These changes are related to the development of the zona reticularis (ZR) and its unique gene/enzyme expression pattern of low 3ß-hydroxysteroid dehydrogenase type 2 with high cytochrome b5A, sulfotransferase 2A1, and 17ß-hydroxysteroid dehydrogenase type 5. Recently 11-ketotestosterone was identified as an important bioactive adrenarchal androgen. Birth weight, body growth, obesity, and prolactin are related to ZR development. Adrenarchal androgens normally contribute to the onset of sexual pubic hair (pubarche) and sebaceous and apocrine gland development. Premature adrenarche causes ≥90% of premature pubarche (PP). Its cause is unknown. Affected children have a significantly increased growth rate with proportionate bone age advancement that typically does not compromise growth potential. Serum DHEAS and testosterone levels increase to levels normal for early female puberty. It is associated with mildly increased risks for obesity, insulin resistance, and possibly mood disorder and polycystic ovary syndrome. Between 5% and 10% of PP is due to virilizing disorders, which are usually characterized by more rapid advancement of pubarche and compromise of adult height potential than premature adrenarche. Most cases are due to nonclassic congenital adrenal hyperplasia. Algorithms are presented for the differential diagnosis of PP. This review highlights recent advances in molecular genetic and developmental biologic understanding of ZR development and insights into adrenarche emanating from mass spectrometric steroid assays.
Collapse
Affiliation(s)
- Robert L Rosenfield
- University of Chicago Pritzker School of Medicine, Section of Adult and Pediatric Endocrinology, Metabolism, and Diabetes, Chicago, IL, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Validation of a Dehydroepiandrosterone-Sulfate Assay in Three Platyrrhine Primates (Alouatta caraya, Aotus azarae infulatus, and Sapajus apella). INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00239-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Pawłowski B, Żelaźniewicz A. The evolution of perennially enlarged breasts in women: a critical review and a novel hypothesis. Biol Rev Camb Philos Soc 2021; 96:2794-2809. [PMID: 34254729 DOI: 10.1111/brv.12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
The possession of permanent, adipose breasts in women is a uniquely human trait that develops during puberty, well in advance of the first pregnancy. The adaptive role and developmental pattern of this breast morphology, unusual among primates, remains an unresolved conundrum. The evolutionary origins of this trait have been the focus of many hypotheses, which variously suggest that breasts are a product of sexual selection or of natural selection due to their putative role in assisting in nursing or as a thermoregulatory organ. Alternative hypotheses assume that permanent breasts are a by-product of other evolutionary changes. We review and evaluate these hypotheses in the light of recent literature on breast morphology, physiology, phylogeny, ontogeny, sex differences, and genetics in order to highlight their strengths and flaws and to propose a coherent perspective and a new hypothesis on the evolutionary origins of perennially enlarged breasts in women. We propose that breasts appeared as early as Homo ergaster, originally as a by-product of other coincident evolutionary processes of adaptive significance. These included an increase in subcutaneous fat tissue (SFT) in response to the demands of thermoregulatory and energy storage, and of the ontogenetic development of the evolving brain. An increase in SFT triggered an increase in oestradiol levels (E2). An increase in meat in the diet of early Homo allowed for further hormonal changes, such as greater dehydroepiandrosterone (DHEA/S) synthesis, which were crucial for brain evolution. DHEA/S is also easily converted to E2 in E2-sensitive body parts, such as breasts and gluteofemoral regions, causing fat accumulation in these regions, enabling the evolution of perennially enlarged breasts. Furthermore, it is also plausible that after enlarged breasts appeared, they were co-opted for other functions, such as attracting mates and indicating biological condition. Finally, we argue that the multifold adaptive benefits of SFT increase and hormonal changes outweighed the possible costs of perennially enlarged breasts, enabling their further development.
Collapse
Affiliation(s)
- Bogusław Pawłowski
- Department of Human Biology, University of Wrocław, ul. Przybyszewskiego 63, Wrocław, 51-148, Poland
| | - Agnieszka Żelaźniewicz
- Department of Human Biology, University of Wrocław, ul. Przybyszewskiego 63, Wrocław, 51-148, Poland
| |
Collapse
|
16
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
17
|
The Enigma of the Adrenarche: Identifying the Early Life Mechanisms and Possible Role in Postnatal Brain Development. Int J Mol Sci 2021; 22:ijms22094296. [PMID: 33919014 PMCID: PMC8122518 DOI: 10.3390/ijms22094296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) and its sulfated metabolite (DHEAS) are dynamically regulated before birth and the onset of puberty. Yet, the origins and purpose of increasing DHEA[S] in postnatal development remain elusive. Here, we draw attention to this pre-pubertal surge from the adrenal gland—the adrenarche—and discuss whether this is the result of intra-adrenal gene expression specifically affecting the zona reticularis (ZR), if the ZR is influenced by the hypothalamic-pituitary axis, and the possible role of spino-sympathetic innervation in prompting increased ZR activity. We also discuss whether neural DHEA[S] synthesis is coordinately regulated with the developing adrenal gland. We propose that DHEA[S] is crucial in the brain maturation of humans prior to and during puberty, and suggest that the function of the adrenarche is to modulate, adapt and rewire the pre-adolescent brain for new and ever-changing social challenges. The etiology of DHEA[S] synthesis, neurodevelopment and recently described 11-keto and 11-oxygenated androgens are difficult to investigate in humans owing to: (i) ethical restrictions on mechanistic studies, (ii) the inability to predict which individuals will develop specific mental characteristics, and (iii) the difficulty of conducting retrospective studies based on perinatal complications. We discuss new opportunities for animal studies to overcome these important issues.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Adrenarche is the pubertal maturation of the innermost zone of the adrenal cortex, the zona reticularis. The onset of adrenarche occurs between 6 and 8 years of age when dehydroepiandrosterone sulfate (DHEAS) concentrations increase. This review provides an update on adrenal steroidogenesis and the differential diagnosis of premature development of pubic hair. RECENT FINDINGS The complexity of adrenal steroidogenesis has increased with recognition of the alternative 'backdoor pathway' and the 11-oxo-androgens pathways. Traditionally, sulfated steroids such as DHEAS have been considered to be inactive metabolites. Recent data suggest that intracellular sulfated steroids may function as tissue-specific intracrine hormones particularly in the tissues expressing steroid sulfatases such as ovaries, testes, and placenta. SUMMARY The physiologic mechanisms governing the onset of adrenarche remain unclear. To date, no validated regulatory feedback mechanism has been identified for adrenal C19 steroid secretion. Available data indicate that for most children, premature adrenarche is a benign variation of development and a diagnosis of exclusion. Patients with premature adrenarche tend to have higher BMI values. Yet, despite greater knowledge about C19 steroids and zona reticularis function, much remains to be learned about adrenarche.
Collapse
|
19
|
Keestra SM, Bentley GR, Núñez-de la Mora A, Houghton LC, Wilson H, Vázquez-Vázquez A, Cooper GD, Dickinson F, Griffiths P, Bogin BA, Varela-Silva MI. The timing of adrenarche in Maya girls, Merida, Mexico. Am J Hum Biol 2020; 33:e23465. [PMID: 32643208 PMCID: PMC8264844 DOI: 10.1002/ajhb.23465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Background Adrenarche involves maturation of the hypothalamic‐pituitary‐adrenal axis and increased production of dehydroepiandrosterone and its sulfate ester, dehydroepiandrosterone‐sulfate (DHEA‐S). It occurs at ages 6 to 8 in industrialized populations, marking the transition from childhood to juvenility and cognitive development at middle childhood. Studies in subsistence level populations indicate a later age (8‐9) for adrenarche, but only two such studies currently exist for comparison. Aims To investigate adrenarcheal age among Maya girls and its association with body composition and dietary variables. We hypothesized adrenarche would occur earlier given the current dual burden of nutrition in Mexico. Materials and Methods 25 Maya girls aged 7 to 9 from Merida, Mexico using ELISAs to measure salivary DHEA‐S, standard anthropometry for height, weight, and skinfolds, bioelectrical impedance for body composition variables, as well as a food frequency questionnaire for dietary information. Results Our hypothesis was rejected—adrenarche occurred close to 9 years. While no measures of body composition were significantly associated with adrenarcheal status, girls eating meat and dairy products more frequently had significantly higher DHEA‐S levels. Discussion Like other populations living in ecologically challenging environments, adrenarche occurred relatively late among Maya girls. Adrenarche has been linked to measures of body composition, particularly, the adiposity or body mass index rebound, but no relevant anthropometric measures were associated, possibly because of the small sample. Conclusion Further studies are required to illuminate how adrenarcheal variation relates to developmental plasticity, body composition, pubertal progression, and animal product consumption in other transitional populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Federico Dickinson
- Department of Human Ecology, Centre for Research and Advanced Studies of the National Polytechnic Institute Cinvestav (Merida), Mexico
| | - Paula Griffiths
- School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Barry A Bogin
- School of Sport, Exercise and Health Sciences, Loughborough University, UK.,UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA), USA
| | | |
Collapse
|