1
|
Kutepova I, Kamil A, Wilson AR, Rehm CD. Declining trends in sweetness of the diet in the United Kingdom: 2008/9-2018/19. Front Nutr 2025; 12:1521501. [PMID: 40151348 PMCID: PMC11948284 DOI: 10.3389/fnut.2025.1521501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Sugar reduction is a major public health priority. Due to the assumed correlation between dietary sweetness and sugars intake, some organizations suggest minimizing dietary sweetness regardless of source. Data describing the trends/patterns in the sweetness of the diet may inform dietary recommendations. This cross-sectional study utilized dietary data from 2008/09 to 2018/19, including 15,655 individuals ≥1.5 year from the United Kingdom's National Diet and Nutrition Survey Rolling Program. Products sweetened with low-calorie sweeteners (LCS) were matched to their sugar-sweetened pair (e.g., regular cola vs. diet cola), which was used to estimate the sugar equivalents from LCS-sweetened products and estimate dietary level sweetness, defined as grams of approximate sugar equivalent (ASE) per day. Foods and beverages that underwent reformulation during the study period through the use of LCS were also identified. From 2008/9 through 2018/19, the ASE of the overall UK diet declined by about 10%. LCS products contributed 13% of ASE. There was evidence of a non-linear trend, with ASE levels relatively stable until 2014/15 and then declining. Overall, the decline in ASE was larger for beverages than foods (ASE values declined 20.7% for beverages vs. 4.4% for foods), although both decreased significantly (p-value < 0.01). Dietary sweetness has changed in the UK, due to a combination of consumer behavior, reformulations, policies, public health awareness programs, and media campaigns, emphasizing its multifactorial nature.
Collapse
Affiliation(s)
| | - Alison Kamil
- Life Sciences, PepsiCo R&D, Chicago, IL, United States
| | | | - Colin D. Rehm
- Life Sciences, PepsiCo R&D, Purchase, NY, United States
| |
Collapse
|
2
|
Hong QY, Huang Y, Yang J, Su LT, Dai ZR, Zhao CF. Food sweeteners: Angels or clowns for human health? Curr Res Food Sci 2025; 10:101032. [PMID: 40190385 PMCID: PMC11968289 DOI: 10.1016/j.crfs.2025.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
With the global prevalence of obesity and diabetes continuing to rise, metabolic diseases caused by excessive sugar intake have become a significant public health issue. In this context, various sweeteners as sugar substitutes have been widely used in the food industry. Sweeteners are highly favored for their good safety profile, cost-effectiveness, low-calorie properties, and potential blood sugar regulation effects, and their applications have extended to fields such as pharmaceuticals and daily chemicals. However, recent studies indicate that the impact mechanisms of sweeteners on human health are more complex than previously understood, and the long-term safety of their use has sparked widespread concern in both academia and the public. This review systematically examines relevant literature from the past three decades, employing evidence-based medicine methods for screening and meta-analysis, aiming to comprehensively assess the potential effects of sweeteners on human metabolic indicators (including blood glucose homeostasis and body fat composition) and cancer risk. The discussion will unfold in the following four sections: (1) Definition and classification of sweeteners; (2) Application areas of various sweeteners; (3) Beneficial effects of sweetener use on human health; (4) Adverse effects of sweetener use on health issues in different population groups. Current evidence suggests that the rational use of specific types of sweeteners within recommended dosage ranges can effectively improve blood glucose control, promote weight management, and play a positive role in maintaining oral health. However, excessive or long-term use of certain sweeteners may disrupt gut microbiota balance, affect glucose and lipid metabolism homeostasis, increase cardiovascular disease risk, and potentially be associated with the occurrence of certain malignant tumors. Notably, sweetener exposure during pregnancy may affect the fetus through mechanisms such as epigenetic modifications, necessitating special caution in sweetener selection for pregnant women. This review aims to provide clinicians, nutritionists, and food science professionals with the latest evidence-based medical evidence, guiding consumers to make informed sweetener choices by weighing health benefits against potential risks. It also offers scientific basis for formula optimization and product development in the food industry, thereby promoting public health.
Collapse
Affiliation(s)
- Qiao-Yun Hong
- School of Basic Medicine, Putian University, Putian, 351100, China
| | - Yan Huang
- School of Basic Medicine, Putian University, Putian, 351100, China
| | - Jie Yang
- School of Basic Medicine, Putian University, Putian, 351100, China
| | - Long-Teng Su
- School of Basic Medicine, Putian University, Putian, 351100, China
| | - Zhao-Ri Dai
- School of Basic Medicine, Putian University, Putian, 351100, China
| | - Cheng-Fei Zhao
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian, 351100, China
| |
Collapse
|
3
|
Celik Atalay E, Er Demirhan B, Sagdıcoglu Celep AG. Low-Calorie Sweeteners and Reproductive Health: Evidence and Debates. CURRENT NUTRITION & FOOD SCIENCE 2025; 21:309-332. [DOI: 10.2174/0115734013315621240802055207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025]
Abstract
The reduction in sugar consumption has led to increased use of low-calorie artificial
sweeteners. This coincides with an increase in infertility rates, suggesting that low-calorie artificial
sweeteners may negatively affect reproductive health. Low-calorie sweeteners may affect
oxidative stress, glucose regulation, and the microbiota, which are associated with reproductive
health. Therefore, a review was conducted to examine the effects of commonly used low-calorie
sweeteners on reproductive health through potential biological mechanisms. This review addresses
the effects of low-calorie sweeteners in a wide range of areas, such as infertility, pregnancy and
neonatal health, and early menarche. Recent studies have indicated potential adverse effects of artificial
sweeteners on reproductive health. Research has examined the potential impacts of artificial
sweeteners on various parameters, such as hormone levels, sperm quality, sperm motility, ovarian
function, and pregnancy outcomes. However, the findings of current studies are inconsistent, and
these disparate results may stem from metabolic differences among different types of artificial
sweeteners, variations in research methodologies, diversity in sample sizes, and fluctuations in
study populations. Therefore, further research is needed to comprehensively understand the effects
of artificial sweeteners on reproductive health.
Collapse
Affiliation(s)
- Ece Celik Atalay
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Buket Er Demirhan
- Department of
Pharmaceutical Basic Science, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
4
|
Okoro FO, Markus V. Artificial sweeteners and Type 2 Diabetes Mellitus: A review of current developments and future research directions. J Diabetes Complications 2025; 39:108954. [PMID: 39854925 DOI: 10.1016/j.jdiacomp.2025.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While artificial sweeteners are Generally Regarded as Safe (GRAS), the scientific community remains divided on their safety status. The previous assumption that artificial sweeteners are inert within the body is no longer valid. Artificial sweeteners, known for their high intense sweetness and low or zero calories, are extensively used today in food and beverage products as sugar substitutes and are sometimes recommended for weight management and Type 2 Diabetes Mellitus (T2DM) patients. The general omission of information about the concentration of artificial sweeteners on market product labels makes it challenging to determine the amounts of artificial sweeteners consumed by people. Despite regulatory authorization for their usage, such as from the United States Food and Drug Administration (FDA), concerns remain about their potential association with metabolic diseases, such as T2DM, which the artificial sweeteners were supposed to reduce. This review discusses the relationship between artificial sweetener consumption and the risk of developing T2DM. With the increasing number of recent scientific studies adding to the debate on this subject matter, we assessed recent literature and up-to-date evidence. Importantly, we highlight future research directions toward furthering knowledge in this field of study.
Collapse
Affiliation(s)
- Francisca Obianuju Okoro
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey
| | - Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey.
| |
Collapse
|
5
|
Wang X, Zhao J, Xu J, Li B, Liu X, Xie G, Duan X, Liu D. Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal. eLife 2024; 13:RP95427. [PMID: 39365738 PMCID: PMC11452176 DOI: 10.7554/elife.95427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoning Wang
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jinxiang Zhao
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- Suqian First HospitalSuqianChina
| | - Jiehuan Xu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bowen Li
- Medical School, Nantong UniversityNantongChina
| | - Xia Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Gangcai Xie
- Medical School, Nantong UniversityNantongChina
| | - Xuchu Duan
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Dong Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
6
|
Barrientos-Ávalos JR, Morel-Cerda EC, Félix-Téllez FA, Vidrio-Huerta BE, Aceves-Ayala AR, Flores-Rendón ÁR, Velarde-Ruiz Velasco JA. Gastrointestinal adverse effects of old and new antidiabetics: How do we deal with them in real life? REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:521-532. [PMID: 39455403 DOI: 10.1016/j.rgmxen.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Diabetes is a public health problem with an estimated worldwide prevalence of 10% and a prevalence of 12% in Mexico. The costs resulting from this chronic-degenerative disease are significant. Treatment for diabetes involves different medication groups, some of which can cause significant gastrointestinal adverse effects, such as dyspepsia, nausea, vomiting, bloating, diarrhea, and constipation. The medications most frequently associated with said adverse effects are metformin, acarbose, and GLP-1 agonists. Gastrointestinal adverse effects negatively impact the quality of life and management of patients with diabetes. The factors of visceral neuropathy, acute dysglycemia, dysbiosis, and intestinal bacterial overgrowth contribute to the gastrointestinal symptoms in patients with diabetes, making it necessary to consider multiple etiologic factors in the presence of gastrointestinal symptoms, and not exclusively attribute them to the use of antidiabetics. Personalized treatment, considering gastrointestinal comorbidity and the type of drug utilized, is essential for mitigating the adverse effects and improving the quality of life in patients with diabetes. The aim of the present narrative review was to describe the gastrointestinal adverse effects of the antidiabetic drugs, their pathophysiologic mechanisms, and the corresponding therapeutic measures.
Collapse
Affiliation(s)
- J R Barrientos-Ávalos
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Servicio de Endocrinología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - E C Morel-Cerda
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - F A Félix-Téllez
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - B E Vidrio-Huerta
- Servicio de Endocrinología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - A R Aceves-Ayala
- Servicio de Endocrinología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Á R Flores-Rendón
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Gobierno y Municipios del Estado de Baja California, Hospital Mexicali, Mexicali, Baja California, Mexico
| | - J A Velarde-Ruiz Velasco
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
7
|
Barrientos-Ávalos J, Morel-Cerda E, Félix-Téllez F, Vidrio-Huerta B, Aceves-Ayala A, Flores-Rendón Á, Velarde-Ruiz Velasco J. Efectos adversos gastrointestinales de viejos y nuevos antidiabéticos: ¿cómo los enfrentamos en la vida real? REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2024; 89:521-532. [DOI: 10.1016/j.rgmx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Zhang X, Lv J, Hui J, Wu A, Zhao L, Feng L, Deng L, Yu M, Liu F, Yao J, Lei X. Dietary saccharin sodium supplementation improves the production performance of dairy goats without residue in milk in summer. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:166-176. [PMID: 39263440 PMCID: PMC11389551 DOI: 10.1016/j.aninu.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 09/13/2024]
Abstract
The purpose of this study was to investigate the effects of dietary saccharin sodium supplementation on production performance, serum biochemical indicators, and rumen fermentation of dairy goats in summer. Twelve Guanzhong dairy goats with similar body weight, days in milk, and milk yield were randomly divided into two dietary treatments: (1) CON: basal diet; (2) SS: basal diet + 150 mg/kg saccharin sodium on the basis of dry matter. The experiment lasted 35 d, including 7 d for adaptation and 28 d for dietary treatments, sampling and data collection. Each dairy goat was housed individually in a clean separate pen with ad libitum access to diet and water. The goats fed SS diet had increased dry matter intake (DMI; P = 0.037), 4% fat corrected milk yield (P = 0.049), energy corrected milk yield (P = 0.037), milk protein yield (P = 0.031), and total solids yield (P = 0.036). Serum activity of aspartate aminotransferase (P = 0.047) and concentrations of 70-kDa heat shock protein (P = 0.090), malondialdehyde (P = 0.092), and total protein (P = 0.057) were lower in goats fed SS diet than those fed CON diet. Supplementation of saccharin sodium tended to increase activity of glutathione peroxidase in serum (P = 0.079). The concentrations of rumen total volatile fatty acid (P = 0.042) and butyrate (P = 0.038) were increased by saccharin sodium supplementation. Dietary supplementation of saccharin sodium increased the relative abundance of Lachnobacterium (P = 0.022), Pseudoramibacter (P = 0.022), Shuttleworthia (P = 0.025), and Syntrophococcus (P = 0.037), but reduced the relative abundance of Prevotella_1 (P = 0.037) and Lachnospiraceae_UCG_008 (P = 0.037) in rumen. Saccharin sodium was observed in feces and urine of goats fed diet supplemented with saccharin sodium, but saccharin sodium was undetectable in the milk of goats receiving SS diet. In conclusion, administration of saccharin sodium was effective in increasing fat and energy corrected milk yield by increasing DMI and improving rumen fermentation and antioxidant capacity of dairy goats in summer. In addition, saccharin sodium residue was undetectable in the milk.
Collapse
Affiliation(s)
- Xiongfei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jirong Lv
- Sichuan Provincial Animal Feeding Regulation Center, DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, China
| | - Jingtao Hui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lichao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Yu
- Sichuan Provincial Animal Feeding Regulation Center, DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, China
| | - Feng Liu
- Sichuan Provincial Animal Feeding Regulation Center, DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Mela DJ, Risso D. Does sweetness exposure drive 'sweet tooth'? Br J Nutr 2024; 131:1934-1944. [PMID: 38403648 DOI: 10.1017/s0007114524000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
It is widely believed that exposure to sweetened foods and beverages stimulates the liking and desire for sweetness. Here we provide an updated review of the empirical evidence from human research examining whether exposure to sweet foods or beverages influences subsequent general liking for sweetness (‘sweet tooth’), based on the conclusions of existing systematic reviews and more recent research identified from a structured search of literature. Prior reviews have concluded that the evidence for a relationship between sweet taste exposure and measures of sweet taste liking is equivocal, and more recent primary research generally does not support the view that exposure drives increased liking for sweetness, in adults or children. In intervention trials using a range of designs, acute exposure to sweetness usually has the opposite effect (reducing subsequent liking and desire for sweet taste), while sustained exposures have no significant effects or inconsistent effects. Recent longitudinal observational studies in infants and children also report no significant associations between exposures to sweet foods and beverages with measures of sweet taste preferences. Overall, while it is widely assumed that exposure to sweetness stimulates a greater liking and desire for sweetness, this is not borne out by the balance of empirical evidence. While new research may provide a more robust evidence base, there are also a number of methodological, biological and behavioural considerations that may underpin the apparent absence of a positive relationship between sweetness exposure and liking.
Collapse
|
10
|
Caprio M, Moriconi E, Camajani E, Feraco A, Marzolla V, Vitiello L, Proietti S, Armani A, Gorini S, Mammi C, Egeo G, Aurilia C, Fiorentini G, Tomino C, Barbanti P. Very-low-calorie ketogenic diet vs hypocaloric balanced diet in the prevention of high-frequency episodic migraine: the EMIKETO randomized, controlled trial. J Transl Med 2023; 21:692. [PMID: 37794395 PMCID: PMC10548576 DOI: 10.1186/s12967-023-04561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Migraine is the second world's cause of disability. Among non-pharmacological treatments, nutritional intervention, particularly ketogenic diet, represents one of the most promising approaches. METHODS This a prospective, single center, randomized, controlled study aimed at evaluating the efficacy of a very low-calorie ketogenic diet (VLCKD) compared to a hypocaloric balanced diet (HBD) in migraine prophylaxis in patients affected by high-frequency episodic migraine (HFEM) with a Body Mass Index (BMI) > 27 kg/m2. Fifty-seven patients were randomly assigned to a VLCKD (group 1) or HBD (group 2). Group 1 patients followed a VLCKD for 8 weeks, followed by a low calorie diet (LCD, weeks 9-12), and a HBD (weeks 13-24), whereas group 2 patients followed a HBD from week 0 to 24. Anthropometric indexes, urine and blood chemistry were assessed at enrollment, baseline, weeks 4, 8, 12, and 24. Migraine characteristics were evaluated at baseline, weeks 8, 12 and 24. Change in monthly migraine days (MMDs) at weeks 5-8 compared to baseline was the primary endpoint. Secondary endpoints encompassed changes in visual analogue scale (VAS), Headache Impact Test-6 (HIT-6) and Short Form Health Survey-36 (SF-36) scores. We also studied effects on circulating lymphocytes and markers of inflammation, changes in plasma aldosterone and renin levels before and after VLCKD or HBD treatment. RESULTS Reduction from baseline in MMDs was greater in VLCKD compared to HBD group at week 8 (p = 0.008), at week 12 (p = 0.007), when ketosis had been interrupted by carbohydrates reintroduction, and at week 24 (p = 0.042), when all patients were following the same dietary regimen. Quality of life scores (SF-36) were improved in VLCKD group at week 8 and 12, and were also improved in HBD group, but only at week 12. Weight-loss was significantly higher in VLCKD group at week 8 (p = 0.002) and week 12 (p = 0.020). At the end of the study weight loss was maintained in VLCKD group whereas a slight weight regain was observed in HBD group. Inflammatory indexes, namely C reactive protein (CRP), neutrophil to lymphocyte ratio (NLR) and total white blood cell count (WBC) were significantly reduced (p < 0.05) in VLCKD group at week 12. Aldosterone plasma level were significantly increased in both groups at week 8, particularly in VLCKD group. However, electrolytes and renin plasma levels were never altered throughout the study in both groups. CONCLUSIONS VLCKD is more effective than HBD in reducing MMD in patients with HFEM and represents an effective prophylaxis in patients with overweight/obesity. Trial registration ClinicalTrials.gov identifier: NCT04360148.
Collapse
Affiliation(s)
- Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| | - Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele, Rome, Italy
| | - Stefania Proietti
- Clinical and Molecular Epidemiology, IRCCS San Raffaele, Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
| | | | | | - Giulia Fiorentini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Headache and Pain Unit, IRCCS San Raffaele, Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele, Rome, Italy
| | - Piero Barbanti
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Headache and Pain Unit, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
11
|
Grilo MF, Taillie LS, Sylvetsky AC. The widespread presence of non-nutritive sweeteners challenges adherence to beverage guidance for children. Front Public Health 2023; 11:1221764. [PMID: 37663855 PMCID: PMC10472131 DOI: 10.3389/fpubh.2023.1221764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Mariana Fagundes Grilo
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
- Sumner M. Redstone Global Center for Prevention and Wellness, The George Washington University, Washington, DC, United States
| | - Lindsey Smith Taillie
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison C. Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| |
Collapse
|
12
|
Onyeaka H, Nwaiwu O, Obileke K, Miri T, Al‐Sharify ZT. Global nutritional challenges of reformulated food: A review. Food Sci Nutr 2023; 11:2483-2499. [PMID: 37324840 PMCID: PMC10261815 DOI: 10.1002/fsn3.3286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Food reformulation, the process of redesigning processed food products to make them healthier, is considered a crucial step in the fight against noncommunicable diseases. The reasons for reformulating food vary, with a common focus on reducing the levels of harmful substances, such as fats, sugars, and salts. Although this topic is broad, this review aims to shed light on the current challenges faced in the reformulation of food and to explore different approaches that can be taken to overcome these challenges. The review highlights the perception of consumer risk, the reasons for reformulating food, and the challenges involved. The review also emphasizes the importance of fortifying artisanal food processing and modifying microbial fermentation in order to meet the nutrient requirements of people in developing countries. The literature suggests that while the traditional reductionist approach remains relevant and yields quicker results, the food matrix approach, which involves engineering food microstructure, is a more complex process that may take longer to implement in developing economies. The findings of the review indicate that food reformulation policies are more likely to succeed if the private sector collaborates with or responds to the government regulatory process, and further research is conducted to establish newly developed reformulation concepts from different countries. In conclusion, food reformulation holds great promise in reducing the burden of noncommunicable diseases and improving the health of people around the world.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Ogueri Nwaiwu
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - KeChrist Obileke
- Faculty of Science and AgricultureUniversity of Fort HareAliceSouth Africa
| | - Taghi Miri
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Zainab T. Al‐Sharify
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
- Department of Environmental Engineering, College of EngineeringUniversity of Al‐MustansiriyaBaghdadIraq
| |
Collapse
|
13
|
Takehara CT, Nicoluci ÍG, Andrade TF, Arisseto-Bragotto AP. A comprehensive database of declared high-intensity sweeteners in Brazilian commercial products and updated exposure assessment. Food Res Int 2022; 161:111899. [DOI: 10.1016/j.foodres.2022.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
|
14
|
Li Y, Wang H, Zhang P, Popkin BM, Coyle DH, Ding J, Dong L, Zhang J, Du W, Pettigrew S. Nutritional Quality of Pre-Packaged Foods in China under Various Nutrient Profile Models. Nutrients 2022; 14:nu14132700. [PMID: 35807879 PMCID: PMC9268697 DOI: 10.3390/nu14132700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/02/2023] Open
Abstract
This study used various nutrient profile models (NPMs) to evaluate the nutritional quality of pre-packaged foods in China to inform future food policy development. Nutrition data for pre-packaged foods were collected through FoodSwitch China in 2017-2020. The analyses included 73,885 pre-packaged foods, including 8236 beverages and 65,649 foods. Processed foods (PFs) and ultra-processed foods (UPFs) accounted for 8222 (11.4%) and 47,003 (63.6%) of all products, respectively. Among the 55,425 PFs and UPFs, the overall proportion of products with an excessive quantity of at least one negative nutrient was 86.0% according to the Chilean NPM (2019), 83.3% for the Pan American Health Organization NPM (PAHO NPM), and 90.6% for the Western Pacific Region NPM for protecting children from food marketing (WPHO NPM), respectively. In all NPMs, 70.4% of PFs and UPFs were identified as containing an excessive quantity of at least one negative nutrient, with higher proportions of UPFs compared to PFs. Food groups exceeding nutrient thresholds in most NPMs included snack foods, meat and meat products, bread and bakery products, non-alcoholic beverages, confectionery, and convenience foods. In conclusion, PFs and UPFs accounted for three-fourths of pre-packaged foods in China, and the majority of PFs and UPFs exceeded the threshold for at least one negative nutrient under all three NPMs. Given the need to prevent obesity and other diet-related chronic diseases, efforts are warranted to improve the healthiness of foods in China through evidence-based food policy.
Collapse
Affiliation(s)
- Yuan Li
- The George Institute for Global Health, Beijing 100600, China; (Y.L.); (J.D.); (L.D.)
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (D.H.C.); (S.P.)
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 100050, China; (H.W.); (J.Z.); (W.D.)
| | - Puhong Zhang
- The George Institute for Global Health, Beijing 100600, China; (Y.L.); (J.D.); (L.D.)
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (D.H.C.); (S.P.)
- Correspondence: ; Tel.: +86-10-8280-0577
| | - Barry M. Popkin
- Department of Nutrition, Gillings School of Global Public Health, and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Daisy H. Coyle
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (D.H.C.); (S.P.)
| | - Jingmin Ding
- The George Institute for Global Health, Beijing 100600, China; (Y.L.); (J.D.); (L.D.)
| | - Le Dong
- The George Institute for Global Health, Beijing 100600, China; (Y.L.); (J.D.); (L.D.)
| | - Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 100050, China; (H.W.); (J.Z.); (W.D.)
| | - Wenwen Du
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 100050, China; (H.W.); (J.Z.); (W.D.)
| | - Simone Pettigrew
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (D.H.C.); (S.P.)
| |
Collapse
|
15
|
Nutritional Description of Foods with Low- and No-Calorie Sweeteners in Spain: The BADALI Project. Nutrients 2022; 14:nu14132686. [PMID: 35807866 PMCID: PMC9268128 DOI: 10.3390/nu14132686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
The use of low- and no-calorie sweeteners (LNCS) in foods has increased in recent years in response to the negative effects of free sugar on health. However, the health impact of LNCS is still unclear. Studies of the prevalence of LNCS in foods have been published previously, including in Spain. However, the use of health (HCs) and nutrition claims (NCs) to promote these foods and a full nutritional characterization are largely lacking. For this purpose, we used the BADALI database with 4218 foods present in the Spanish market. Our results show that 9.3% of foods have LNCS (including both intense and polyols). Sucralose and acesulfame K were the intense sweeteners most frequently used (52.4% and 48.2%, respectively), whereas maltitol was the preferred polyol (20.3%). Of all foods with LNCS, 30% also had added sugar. Many more foods with LNCS presented HCs and NCs than those without. Sugar was the nutrient most frequently claimed in NCs for LNCS-containing foods, whereas vitamins were for those without these sweeteners. NCs compliance with regulation was similar in both conditions (60.1% for foods without and 63.9% for foods with LNCS). As expected, foods with LNCS had less total sugar content and energy. Surprisingly, the nutrient profile of yogurts with LNCS changed completely: less total and saturated fat, whereas more proteins and sodium. Biscuits with LNCS contained more fibre. The results of our study reveal that the prevalence of LNCS is becoming high in some food types in Spain and that foods containing LNCS are more frequently promoted with HCs/NCs. In addition, it confirms the general reduction in energy and sugar content expected in foods with LNCS. Furthermore, it suggests a reformulation of products beyond sugar content.
Collapse
|
16
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Scapin T, Fernandes AC, Coyle DH, Pettigrew S, dos Santos Figueiredo L, Geraldo APG, da Costa Proença RP. Packaged foods containing non-nutritive sweeteners also have high added sugar content: a Brazilian survey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Sambra V, Vicuña IA, Priken KM, Luna SL, Allendes DA, Godoy PM, Novik V, Vega CA. Acute responses of stevia and d-tagatose intake on metabolic parameters and appetite/satiety in insulin resistance. Clin Nutr ESPEN 2022; 49:217-224. [DOI: 10.1016/j.clnesp.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
19
|
Alamri HS, Akiel MA, Alghassab TS, Alfhili MA, Alrfaei BM, Aljumaa M, Barhoumi T. Erythritol modulates the polarization of macrophages: Potential role of tumor necrosis factor-α and Akt pathway. J Food Biochem 2021; 46:e13960. [PMID: 34923647 DOI: 10.1111/jfbc.13960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Low-calorie sweeteners are substitutes for sugar and frequently used by patients with cardiometabolic diseases. Erythritol, a natural low-calorie sugar alcohol, was linked to cardiometabolic diseases in several recent metabolomics studies. However, the characterization of its role in disease development is lacking. Macrophage polarization orchestrates the immune response in various inflammatory conditions, most notably cardiometabolic disease. Therefore, the physiological effects of Erythritol on THP-1 macrophages were investigated. We observed an increased cellular abundance of proinflammatory M1 macrophages, characterized by CD11c, TNF-α, CD64, CD38, and HLA-DR markers and decreased anti-inflammatory M2 macrophages, characterized by mannose receptor CD206. The, Erythritol increased ROS generation, and the activation of the AKT pathway, cytosolic calcium overload, and cell cycle arrest at the G1 phase. Concomitantly, an increased population of necroptotic macrophages was observed. In conclusion, we provide evidence that Erythritol induced the proinflammatory phenotype in THP-1 macrophages and this was associated with an increased population of necroptotic macrophages. PRACTICAL APPLICATIONS: This assessment provides evidence of the effects of Erythritol on macrophages, particularly THP-1-derived macrophages. Our results support the role of Erythritol in driving the inflammation that is associated with cardiometabolic diseases and provide insights in the role of Erythritol as an inducer of necroptosis in THP-1 derived macrophages that could be associated the disease.
Collapse
Affiliation(s)
- Hassan S Alamri
- Department of Clinical Laboratory Sciences, Collage of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Maaged A Akiel
- Department of Clinical Laboratory Sciences, Collage of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Talal S Alghassab
- Department of Clinical Laboratory Sciences, Collage of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cell and Regenerative Medicine, King Abdullah International Medical Research Centre (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Maha Aljumaa
- Medical Core Facility and Research Platforms, King Abdullah International Medical Research Centre (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Medical Research Centre (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
|
21
|
Moriconi E, Camajani E, Fabbri A, Lenzi A, Caprio M. Very-Low-Calorie Ketogenic Diet as a Safe and Valuable Tool for Long-Term Glycemic Management in Patients with Obesity and Type 2 Diabetes. Nutrients 2021; 13:nu13030758. [PMID: 33652834 PMCID: PMC7996853 DOI: 10.3390/nu13030758] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity-related type 2 diabetes represents one of the most difficult challenges for the healthcare system. This retrospective study aims to determine the efficacy, safety and durability of a very-low-calorie ketogenic diet (VLCKD), compared to a standard low-calorie diet (LCD) on weight-loss, glycemic management, eating behavior and quality of life in patients with type 2 diabetes (T2DM) and obesity. Thirty patients with obesity and T2DM, aged between 35 and 75 years, who met the inclusion criteria and accepted to adhere to a VLCKD or a LCD nutritional program, were consecutively selected from our electronic database. Fifteen patients followed a structured VLCKD protocol, fifteen followed a classical LCD. At the beginning of the nutritional protocol, all patients were asked to stop any antidiabetic medications, with the exception of metformin. Data were collected at baseline and after 3 (T1) and 12 (T2) months. At T1 and T2, BMI was significantly reduced in the VLCKD group (p < 0.001), whereas it remained substantially unchanged in the LCD group. HbA1c was significantly reduced in the VLCKD group (p = 0.002), whereas a slight, although not significant, decrease was observed in the LCD group. Quality of life and eating behavior scores were improved in the VLCKD group, whereas no significant changes were reported in the LCD group, both at T1 and T2. At the end of the study, in the VLCKD group 26.6% of patients had stopped all antidiabetic medications, and 73.3% were taking only metformin, whereas 46.6% of LCD patients had to increase antidiabetic medications. The study confirms a valuable therapeutic effect of VLCKD in the long-term management of obesity and T2DM and its potential contribution to remission of the disease.
Collapse
Affiliation(s)
- Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
- PhD Programme in Endocrinological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Elisabetta Camajani
- PhD Programme in Endocrinological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Andrea Fabbri
- Division of Endocrinology, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Andrea Lenzi
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Mora MR, Dando R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 2021; 20:1554-1583. [PMID: 33580569 DOI: 10.1111/1541-4337.12703] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption.
Collapse
Affiliation(s)
- Margaux R Mora
- Department of Food Science, Cornell University, Ithaca, New York
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, New York
| |
Collapse
|
23
|
O'Connor D, Pang M, Castelnuovo G, Finlayson G, Blaak E, Gibbons C, Navas-Carretero S, Almiron-Roig E, Harrold J, Raben A, Martinez JA. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food Funct 2020; 12:442-465. [PMID: 33325948 DOI: 10.1039/d0fo02424d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous strategies have been investigated to overcome the excessive weight gain that accompanies a chronic positive energy balance. Most approaches focus on a reduction of energy intake and the improvement of lifestyle habits. The use of high intensity artificial sweeteners, also known as non-caloric sweeteners (NCS), as sugar substitutes in foods and beverages, is rapidly developing. NCS are commonly defined as molecules with a sweetness profile of 30 times higher or more that of sucrose, scarcely contributing to the individual's net energy intake as they are hardly metabolized. The purpose of this review is first, to assess the impact of NCS on eating behaviour, including subjective appetite, food intake, food reward and sensory stimulation; and secondly, to assess the metabolic impact of NCS on body weight regulation, glucose homeostasis and gut health. The evidence reviewed suggests that while some sweeteners have the potential to increase subjective appetite, these effects do not translate in changes in food intake. This is supported by a large body of empirical evidence advocating that the use of NCS facilitates weight management when used alongside other weight management strategies. On the other hand, although NCS are very unlikely to impair insulin metabolism and glycaemic control, some studies suggest that NCS could have putatively undesirable effects, through various indirect mechanisms, on body weight, glycemia, adipogenesis and the gut microbiota; however there is insufficient evidence to determine the degree of such effects. Overall, the available data suggests that NCS can be used to facilitate a reduction in dietary energy content without significant negative effects on food intake behaviour or body metabolism, which would support their potential role in the prevention of obesity as a complementary strategy to other weight management approaches. More research is needed to determine the impact of NCS on metabolic health, in particular gut microbiota.
Collapse
Affiliation(s)
- Dominic O'Connor
- Biopsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|