1
|
Heller K, Doukas P, Uhl C, Gombert A. Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms. J Clin Med 2025; 14:3071. [PMID: 40364103 PMCID: PMC12072766 DOI: 10.3390/jcm14093071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Aortic aneurysms (AAs), the dilation or widening of the aorta, lead to dissection or rupture with high morbidity and mortality if untreated. AA displays gender disparities in its prevalence, progression and outcomes, with women having worse outcomes and faster aneurysm growth. However, current guidelines do not address gender dimorphism, emphasizing the urgent need for personalized treatment strategies and further research. Perivascular adipose tissue (PVAT), a unique type of fat surrounding blood vessels, plays a critical role in maintaining vasomotor tone and vascular homeostasis, with dysfunction associated with chronic inflammation and vessel-wall remodeling. Indeed, PVAT dysfunction promotes the development of aortic aneurysms, with hormonal and biomechanical factors exacerbating the pathological vascular microenvironment. The sexually dimorphic characteristics of PVAT include morphological, immunological, and hormonally mediated differences. Thus, targeting PVAT-mediated mechanisms may be a promising option for the (gender-specific) therapeutic management of cardiovascular pathologies. This review examines the emerging importance of PVAT in vascular health, its potential therapeutic implications for AA, and identifies gaps in the current state of research.
Collapse
Affiliation(s)
- Katja Heller
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (P.D.); (C.U.); (A.G.)
| | | | | | | |
Collapse
|
2
|
Lu F, Lin Y, Zhou J, Chen Z, Liu Y, Zhong M, Wang L. Obesity and the obesity paradox in abdominal aortic aneurysm. Front Endocrinol (Lausanne) 2024; 15:1410369. [PMID: 39055063 PMCID: PMC11269098 DOI: 10.3389/fendo.2024.1410369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity, characterized by its complexity and heterogeneity, has emerged as a significant public health concern. Its association with increased incidence and mortality of cardiovascular diseases stems not only from its complications and comorbidities but also from the endocrine effects of adipose tissue. Abdominal aortic aneurysm (AAA), a chronic inflammatory condition, has been closely linked to obesity. Intriguingly, mild obesity appears to confer a protective effect against AAA mortality, whereas severe obesity and being underweight do not, giving rise to the concept of the "obesity paradox". This review aims to provide an overview of obesity and its paradoxical relationship with AAA, elucidate its underlying mechanisms, and discuss the importance of preoperative weight loss in severely obese patients with AAA.
Collapse
Affiliation(s)
- Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jianshun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yingying Liu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Zecca F, Faa G, Sanfilippo R, Saba L. How to improve epidemiological trustworthiness concerning abdominal aortic aneurysms. Vascular 2024:17085381241257747. [PMID: 38842081 DOI: 10.1177/17085381241257747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research on degenerative abdominal aortic aneurysms (AAA) is hampered by complex pathophysiology, sub-optimal pre-clinical models, and lack of effective medical therapies. In addition, trustworthiness of existing epidemiological data is impaired by elements of ambiguity, inaccuracy, and inconsistency. Our aim is to foster debate concerning the trustworthiness of AAA epidemiological data and to discuss potential solutions. METHODS We searched the literature from the last five decades for relevant epidemiological data concerning AAA development, rupture, and repair. We then discussed the main issues burdening existing AAA epidemiological figures and proposed suggestions potentially beneficial to AAA diagnosis, prognostication, and management. RESULTS Recent data suggest a heterogeneous scenario concerning AAA epidemiology with rates markedly varying by country and study cohorts. Overall, AAA prevalence seems to be decreasing worldwide while mortality is apparently increasing regardless of recent improvements in aortic-repair techniques. Prevalence and mortality are decreasing in high-income countries, whereas low-income countries show an increase in both. However, several pieces of information are missing or outdated, thus systematic renewal is necessary. Current AAA definition and surgical criteria do not consider inter-individual variability of baseline aortic size, further decreasing their reliability. CONCLUSIONS Switching from flat aortic-size thresholds to relative aortic indices would improve epidemiological trustworthiness regarding AAAs. Aortometry standardization focusing on simplicity, univocity, and accuracy is crucial. A patient-tailored approach integrating clinical data, multi-adjusted indices, and imaging parameters is desirable. Several novel imaging modalities boast promising profiles for investigating the aortic wall. New contrast agents, computational analyses, and artificial intelligence-powered software could provide further improvements.
Collapse
Affiliation(s)
- Fabio Zecca
- Department of Radiology, University Hospital "D. Casula", Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, University Hospital "D. Casula", Cagliari, Italy
| | - Roberto Sanfilippo
- Department of Vascular Surgery, University Hospital "D. Casula", Cagliari, Italy
| | - Luca Saba
- Department of Radiology, University Hospital "D. Casula", Cagliari, Italy
| |
Collapse
|
4
|
Rodrigues-Diez R, Ballesteros-Martinez C, Moreno-Carriles RM, Nistal F, Díaz Del Campo LS, Cachofeiro V, Dalli J, García-Redondo AB, Redondo JM, Salaices M, Briones AM. Resolvin D2 prevents vascular remodeling, hypercontractility and endothelial dysfunction in obese hypertensive mice through modulation of vascular and proinflammatory factors. Biomed Pharmacother 2024; 174:116564. [PMID: 38608525 DOI: 10.1016/j.biopha.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.
Collapse
MESH Headings
- Animals
- Male
- Humans
- Docosahexaenoic Acids/pharmacology
- Hypertension/metabolism
- Hypertension/drug therapy
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/metabolism
- Vascular Remodeling/drug effects
- Mice
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Diet, High-Fat/adverse effects
- Angiotensin II
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/drug therapy
- Inflammation Mediators/metabolism
- Mice, Obese
- Vasoconstriction/drug effects
- Inflammation/pathology
- Inflammation/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | | | - Francisco Nistal
- CIBER de Enfermedades Cardiovasculares, Spain; Cirugía Cardiovascular. Hospital Universitario "Marqués de Valdecilla", IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Lucía S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Juan M Redondo
- CIBER de Enfermedades Cardiovasculares, Spain; Grupo de Regulación Génica en remodelado cardiovascular e inflamación, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Cell-cell communication & inflammation unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
5
|
Mori K, Okuma H, Nakamura S, Uchinuma H, Kaga S, Nakajima H, Ogawa Y, Tsuchiya K. Melanocortin-4 receptor in macrophages attenuated angiotensin II-induced abdominal aortic aneurysm in mice. Sci Rep 2023; 13:19768. [PMID: 37957201 PMCID: PMC10643430 DOI: 10.1038/s41598-023-46831-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is recognized as an independent risk factor for abdominal aortic aneurysm (AAA). While mutations in the melanocortin-4 receptor (MC4R) gene is the most common cause of obesity caused by mutations in a single gene, the link between MC4R function and vascular disease has still remained unclear. Here, by using melanocortin-4 receptor (MC4R) deficient mice, we confirmed MC4R deficiency promotes AAA and atherosclerosis. We demonstrated the contribution of two novel factors towards vascular vulnerability in this model: leptin signaling in vascular smooth muscle cells (VSMCs) and loss of MC4R signaling in macrophages. Leptin was shown to promote vascular vulnerability via PI3K-dependent upregulation of Spp1 expression in VSMC. Additionally, Ang II-induced AAA incidence was significantly reduced when MC4R gene expression was myeloid cell-specifically rescued in MC4R deficient (MC4RTB/TB) mice. Ex vivo analysis showed a suppression in NF-κB activity in bone marrow-derived macrophages from LysM(+);MC4RTB/TB mice compared to LysM(-);MC4RTB/TB mice, which exaggerates with endogenous MC4R ligand treatment; α-MSH. These results suggest that MC4R signaling in macrophages attenuates AAA by inhibiting NF-κB activity and subsequent vascular inflammation.
Collapse
Affiliation(s)
- Kentaro Mori
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan.
| | - Hideyuki Okuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Suguru Nakamura
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hiroyuki Uchinuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shigeaki Kaga
- Department of Surgery II, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Nakajima
- Department of Surgery II, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoichiro Tsuchiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan.
| |
Collapse
|
6
|
Huang CL, Huang YN, Yao L, Li JP, Zhang ZH, Huang ZQ, Chen SX, Zhang YL, Wang JF, Chen YX, Liu ZY. Thoracic perivascular adipose tissue inhibits VSMC apoptosis and aortic aneurysm formation in mice via the secretome of browning adipocytes. Acta Pharmacol Sin 2023; 44:345-355. [PMID: 35945313 PMCID: PMC9889802 DOI: 10.1038/s41401-022-00959-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a dangerous vascular disease without any effective drug therapies so far. Emerging evidence suggests the phenotypic differences in perivascular adipose tissue (PVAT) between regions of the aorta are implicated in the development of atherosclerosis evidenced by the abdominal aorta more vulnerable to atherosclerosis than the thoracic aorta in large animals and humans. The prevalence of thoracic aortic aneurysms (TAA) is much less than that of abdominal aortic aneurysms (AAA). In this study we investigated the effect of thoracic PVAT (T-PVAT) transplantation on aortic aneurysm formation and the impact of T-PVAT on vascular smooth muscle cells. Calcium phosphate-induced mouse AAA model was established. T-PVAT (20 mg) was implanted around the abdominal aorta of recipient mice after removal of endogenous abdominal PVAT (A-PVAT) and calcium phosphate treatment. Mice were sacrificed two weeks after the surgery and the maximum external diameter of infrarenal aorta was measured. We found that T-PVAT displayed a more BAT-like phenotype than A-PVAT; transplantation of T-PVAT significantly attenuated calcium phosphate-induced abdominal aortic dilation and elastic degradation as compared to sham control or A-PVAT transplantation. In addition, T-PVAT transplantation largely preserved smooth muscle cell content in the abdominal aortic wall. Co-culture of T-PVAT with vascular smooth muscle cells (VSMCs) significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. RNA sequencing analysis showed that T-PVAT was enriched by browning adipocytes and anti-apoptotic secretory proteins. We further verified that the secretome of mature adipocytes isolated from T-PVAT significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. Using proteomic and bioinformatic analyses we identified cartilage oligomeric matrix protein (COMP) as a secreted protein significantly increased in T-PVAT. Recombinant COMP protein significantly inhibited VSMC apoptosis. We conclude that T-PVAT exerts anti-apoptosis effect on VSMCs and attenuates AAA formation, which is possibly attributed to the secretome of browning adipocytes.
Collapse
Affiliation(s)
- Chun-Ling Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu-Na Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lei Yao
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun-Ping Li
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeng-Hui Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhao-Qi Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Si-Xu Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu-Ling Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing-Feng Wang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yang-Xin Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zhao-Yu Liu
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Picatoste B, Cerro-Pardo I, Blanco-Colio LM, Martín-Ventura JL. Protection of diabetes in aortic abdominal aneurysm: Are antidiabetics the real effectors? Front Cardiovasc Med 2023; 10:1112430. [PMID: 37034348 PMCID: PMC10076877 DOI: 10.3389/fcvm.2023.1112430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aortic aneurysms, including abdominal aortic aneurysms (AAAs), is the second most prevalent aortic disease and represents an important cause of death worldwide. AAA is a permanent dilation of the aorta on its infrarenal portion, pathologically associated with oxidative stress, proteolysis, vascular smooth muscle cell loss, immune-inflammation, and extracellular matrix remodeling and degradation. Most epidemiological studies have shown a potential protective role of diabetes mellitus (DM) on the prevalence and incidence of AAA. The effect of DM on AAA might be explained mainly by two factors: hyperglycemia [or other DM-related factors such as insulin resistance (IR)] and/or by the effect of prescribed DM drugs, which may have a direct or indirect effect on the formation and progression of AAAs. However, recent studies further support that the protective role of DM in AAA may be attributable to antidiabetic therapies (i.e.: metformin or SGLT-2 inhibitors). This review summarizes current literature on the relationship between DM and the incidence, progression, and rupture of AAAs, and discusses the potential cellular and molecular pathways that may be involved in its vascular effects. Besides, we provide a summary of current antidiabetic therapies which use could be beneficial for AAA.
Collapse
Affiliation(s)
- Belén Picatoste
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedicine Department, Alfonso X El Sabio University, Madrid, Spain
- Correspondence: Belén Picatoste ,
| | - Isabel Cerro-Pardo
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Medicine Department, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Wang X, He B, Deng Y, Liu J, Zhang Z, Sun W, Gao Y, Liu X, Zhen Y, Ye Z, Liu P, Wen J. Identification of a biomarker and immune infiltration in perivascular adipose tissue of abdominal aortic aneurysm. Front Physiol 2022; 13:977910. [PMID: 36187757 PMCID: PMC9523244 DOI: 10.3389/fphys.2022.977910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) refers to unusual permanent dilation of the abdominal aorta, and gradual AAA expansion can lead to fatal rupture. However, we lack clear understanding of the pathogenesis of this disease. The effect of perivascular adipose tissue (PVAT) on vascular functional status has attracted increasing attention. Here, we try to identify the potential mechanisms linking AAA and PVAT. Methods: We downloaded dataset GSE119717, including 30 dilated AAA PVAT samples and 30 non-dilated aorta PVAT samples from AAA cases, from Gene Expression Omnibus to identify differentially expressed genes (DEGs). We performed pathway enrichment analysis by Metascape, ClueGo and DAVID to annotate PVAT functional status according to the DEGs. A protein-protein interaction network, the support vector machine (SVM)-recursive feature elimination and the least absolute shrinkage and selection operator regression model were constructed to identify feature genes. Immune infiltration analysis was explored by CIBERSORT. And the correlation between feature gene and immune cells was also calculated. Finally, we used the angiotensin II (Ang II)-ApoE−/− mouse model of AAA to verify the effect of feature gene expression by confirming protein expression using immunohistochemistry and western blot. Results: We identified 22 DEGs, including 21 upregulated genes and 1 downregulated gene. The DEGs were mainly enriched in neutrophil chemotaxis and IL-17 signaling pathway. FOS was identified as a good diagnostic feature gene (AUC = 0.964). Immune infiltration analysis showed a higher level of T cells follicular helper, activated NK cells, Monocytes, activated Mast cells in AAA group. And FOS was correlated with immune cells. Immunohistochemistry and western blot confirmed higher FOS expression in PVAT of the AAA mouse model compared to control group. Conclusion: The differentially expressed genes and pathways identified in this study provide further understanding of how PVAT affects AAA development. FOS was identified as the diagnostic gene. There was an obvious difference in immune cells infiltration between normal and AAA groups.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bin He
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yisen Deng
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zhaohua Zhang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| | - Jianyan Wen
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| |
Collapse
|
9
|
The Role of Obesity, Inflammation and Sphingolipids in the Development of an Abdominal Aortic Aneurysm. Nutrients 2022; 14:nu14122438. [PMID: 35745168 PMCID: PMC9229568 DOI: 10.3390/nu14122438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.
Collapse
|