1
|
Ahmad S, Akmal H, Jabeen F, Shahzad K. Exposure to bisphenol S induces organ toxicity by disrupting oxidative and antioxidant defense system and blood physiology in Labeo rohita (Hamilton, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:52. [PMID: 39982559 DOI: 10.1007/s10695-025-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Bisphenol S is an emerging pollutant that is contaminating aquatic ecosystems and causing detrimental effects on aquatic organisms, especially fish. Therefore, the study was designed to evaluate the toxicity of bisphenol S (BPS) through genotoxic, biochemical, histopathological, and oxidative damage in the liver, gills, and kidneys of Labeo rohita fish. Fish were exposed to three different concentrations (400 µg/L, 800 µg/L, and 1000 µg/L) of BPS for 21 days. A significant (p ≤ 0.05) decline in antioxidant enzymatic activity of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and peroxidase (POD) was observed in all tissues, whereas elevation in oxidative contents (TBARS and ROS) was observed. Comet analysis showed elevated olive tail moment and % of DNA damage. Light microscopy revealed several anomalies including cluster nuclei formation, damaged parenchyma cells, sinusoidal spaces, and melanomacrophage in the kidney, sinusoidal spaces, dilated hepatic vein, pyknotic nuclei, melanomacrophage, and cell necrosis in the liver and bone cell deformities, lamellar aneurysm, hyperplasia, and curved secondary gill lamellae in gills. Results of hematobiochemical analysis revealed a significant (p ≤ 0.05) increment in hematocrit, WBCs, cholesterol, blood glucose, triglycerides, AST, ALT, T3, TSH, T4, urea, and creatinine, whereas decline in RBCs, MCH, hemoglobin, proteins levels was observed. The results of the current study demonstrate that BPS has detrimental effects on the kidneys, gills, and liver. It interferes with normal functioning by inhibiting enzymatic activity, causing DNA damage, and disrupting the normal structure of vital organs. These effects make BPS toxic to fish, even at low concentrations.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Hasnain Akmal
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, 37251, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan.
| |
Collapse
|
2
|
Yi K, Chen W, Zhou X, Xie C, Zhong C, Zhu J. Bisphenol S exposure promotes stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway. ENVIRONMENTAL RESEARCH 2025; 264:120293. [PMID: 39505130 DOI: 10.1016/j.envres.2024.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear. Cancer stem cells (CSCs) have a crucial role in breast cancer initiation, metastasis, and recurrence. Here, we proposed that BPS, equivalent to the human internal exposure and the environmental concentrations, enhanced CSC-like properties by upregulating sphere formation, self-renewal, the percentage of CD44+/CD24- cells, and the expression of CSC markers. Moreover, BPS promoted the migration, invasion, and epithelial-mesenchymal transition (EMT) in TNBC cells. Mechanistically, BPS activated the Sonic Hedgehog (SHH) signaling pathway in TNBC cells. Molecular docking analysis further showed that BPS upregulated SHH signaling pathway via directly binding Gli1 protein. Furthermore, inhibitor of SHH pathway or Gli1 siRNA attenuated the promoting effects of BPS on stemness, invasion, and migration of TNBC cells. In summary, our data firstly provide evidence that environmentally relevant BPS concentration treatment significantly enhanced TNBC malignant phenotype by activating the Sonic Hedgehog/Gli1 signaling pathway, raising high concerns about the potential population biology hazards of BPS.
Collapse
Affiliation(s)
- Kefan Yi
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
van Boxel J, Khargi RRJ, Nijmeijer SM, Heinzelmann MT, Pereira DDC, Lamoree MH, van Duursen MBM. Effects of polystyrene micro- and nanoplastics on androgen- and estrogen receptor activity and steroidogenesis in vitro. Toxicol In Vitro 2024; 101:105938. [PMID: 39243830 DOI: 10.1016/j.tiv.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
While many plastic additives show endocrine disrupting properties, this has not been studied for micro- and nanoplastics (MNPs) particles despite their ubiquitous presence in humans. The objective of this study was to determine the effects of various sizes and concentrations of polystyrene (PS)-MNPs (50-10,000 nm, 0.01-100 μg/mL) on estrogen- and androgen receptor (ER and AR) activity and steroidogenesis in vitro. Fluorescent (F)PS-MNPs of ≤1000 nm were internalized in VM7 and H295R cells and FPS-MNPs ≤200 nm in AR-ecoscreen cells. H295R cells displayed the highest uptake and particles were closer to the nucleus than other cell types. None of the sizes and concentrations PS-MNPs tested affected ER or AR activity. In H295R cells, PS-MNPs caused some statistically significant changes in hormone levels, though these showed no apparent concentration or size-dependent patterns. Additionally, PS-MNPs caused a decrease in estriol (E3) with a maximum of 37.5 % (100 μg/mL, 50 nm) and an increase in gene expression of oxidative stress markers GPX1 (1.26-fold) and SOD1 (1.23-fold). Taken together, our data show limited endocrine-disrupting properties of PS-MNPs in vitro. Nevertheless the importance of E3 in the placenta warrants further studies in the potential effects of MNPs during pregnancy.
Collapse
Affiliation(s)
- Jeske van Boxel
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
| | - Rani R J Khargi
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Sandra M Nijmeijer
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Manuel T Heinzelmann
- Amsterdam Institute for Life and Environment, section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Daniel Da Costa Pereira
- Division of Molecular and Computational Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
4
|
Charkiewicz AE, Omeljaniuk WJ, Nikliński J. Bisphenol A-What Do We Know? A Global or Local Approach at the Public Health Risk Level. Int J Mol Sci 2024; 25:6229. [PMID: 38892416 PMCID: PMC11172700 DOI: 10.3390/ijms25116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
BPA has demonstrated enormous multisystem and multi-organ toxicity shown mainly in animal models. Meanwhile, the effects of its exposure in humans still require years of observation, research, and answers to many questions. Even minimal and short-term exposure contributes to disorders or various types of dysfunction. It is released directly or indirectly into the environment at every stage of the product life cycle, demonstrating its ease of penetration into the body. The ubiquity and general prevalence of BPA influenced the main objective of the study, which was to assess the toxicity and health effects of BPA and its derivatives based on the available literature. In addition, the guidelines of various international institutions or regions of the world in terms of its reduction in individual products were checked. Bisphenol A is the most widely known chemical and perhaps even the most studied by virtually all international or national organizations, but nonetheless, it is still controversial. In general, the level of BPA biomonitoring is still too high and poses a potential threat to public health. It is beginning to be widely argued that future toxicity studies should focus on molecular biology and the assessment of human exposure to BPA, as well as its substitutes. The effects of its exposure still require years of observation, extensive research, and answers to many questions. It is necessary to continue to deepen the knowledge and interest of many organizations, companies, and consumers around the world in order to make rational purchases as well as future choices, not only consumer ones.
Collapse
Affiliation(s)
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Sharin T, Leinen LJ, Schreiber D, Swenson VA, Emsley SA, Trammell EJ, Videau P, Crump D, Gaylor MO. Description of Solvent-Extractable Chemicals in Thermal Receipts and Toxicological Assessment of Bisphenol S and Diphenyl Sulfone. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:63. [PMID: 38615298 DOI: 10.1007/s00128-024-03871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2024]
Abstract
Research on thermal receipts has previously focused on the toxic effects of dermal exposure from the most publicized developers (e.g., bisphenol A (BPA) and bisphenol S (BPS)), while no studies have reported on the other solvent-extractable compounds therein. Diphenyl sulfone (DPS) is a sensitizer added to thermal receipts, but little is known about DPS concentrations in receipts or potential toxicity. Here, we quantified BPA, BPS, and DPS concentrations and tentatively identified the solvent-extractable compounds of thermal receipts collected from three South Dakota (USA) cities during 2016-2017. An immortalized chicken hepatic cell line, cultured as 3D spheroids, was used to screen effects of DPS, BPS, and 17ß estradiol (E2; 0.1-1000 µM) on cell viability and gene expression changes. These chemicals elicited limited cytotoxicity with LC50 values ranging from 113 to 143 µM, and induced dysregulation in genes associated with lipid and bile acid homeostasis. Taken together, this study generated novel information on solvent-extractable chemicals from thermal receipts and toxicity data for DPS.
Collapse
Affiliation(s)
- Tasnia Sharin
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - David Schreiber
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - E Jamie Trammell
- Environmental Science and Policy Program, Southern Oregon University, Ashland, OR, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA.
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA.
- Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
6
|
Volz SN, Poulsen R, Hansen M, Holbech H. Bisphenol A alters retinal morphology, visually guided behavior, and thyroid hormone levels in zebrafish larvae. CHEMOSPHERE 2024; 348:140776. [PMID: 38000552 DOI: 10.1016/j.chemosphere.2023.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Rikke Poulsen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Martin Hansen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
7
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
8
|
Wang T, Hosseinzadeh M, Cuccagna A, Alakenova R, Casademunt P, Reyes Rovatti A, López-Rubio A, Porte C. Comparative toxicity of conventional versus compostable plastic consumer products: An in-vitro assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132123. [PMID: 37499498 DOI: 10.1016/j.jhazmat.2023.132123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study investigates the toxicity of methanolic extracts obtained from compostable plastics (BPs) and conventional plastics (both virgin and recycled). Additionally, it explores the potential influence of plastic photodegradation and composting on toxic responses using a battery of in vitro assays conducted in PLHC-1 cells. The extracts of BPs, but not those of conventional plastics, induced a significant decrease in cell viability (<70%) in PLHC-1 cells after 24 h of exposure. Toxicity was enhanced by either photodegradation or composting of BPs. Extracts of conventional plastics, and particularly those of recycled plastics, induced 7-ethoxyresorufin-O-deethylase (EROD) activity and micronucleus formation in exposed cells, indicating the presence of significant amounts of CYP1A inducers and genotoxic compounds in the extracts, which was enhanced by photodegradation. These findings highlight the importance of investigating the effects of degradation mechanisms such as sunlight and composting on the toxicity of BPs. It is also crucial to investigate the composition of newly developed formulations for BPs, as they may be more harmful than conventional ones.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain.
| | - Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alice Cuccagna
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Rakhat Alakenova
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Paula Casademunt
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Alcira Reyes Rovatti
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Yoo MH, Lee AR, Kim W, Yu WJ, Lee BS. Bisphenol A is more potent than bisphenol S in influencing the physiological and pathological functions of lungs via inducing lung fibrosis and stimulating metastasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115479. [PMID: 37716066 DOI: 10.1016/j.ecoenv.2023.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Bisphenol A (BPA) is widely used in the production of plastics, food containers, and receipt ink globally. However, research has identified it as an endocrine disruptor, affecting the hormonal balance in living organisms. Bisphenol S (BPS), one of the alternative substances, was developed, but its effects on human health and the underlying mechanisms remain unclarified. Specifically, research on the effects of oral exposure to bisphenol on the lungs is lacking. We examined the potential differences in toxicity between these compounds in lung cells in vitro and in vivo. Our toxicity mechanism studies on MRC5 and A549 cells exposed to BPA or BPS revealed that BPA induced actin filament abnormalities and activated epithelial-mesenchymal transition (EMT). This finding suggests an increased potential for lung fibrosis and metastasis in lung cancer. However, given that BPS was not detected at the administered dose and under the specific experimental conditions, the probability of these occurrences is considered minimal. Additionally, animal experiments confirmed that oral exposure to BPA activates EMT in the lungs. Our study provides evidence that prolonged oral exposure to BPA can lead to EMT activation in lung tissue, similar to that observed in cell experiments, suggesting the potential to induce lung fibrosis. This research emphasizes the importance of regulating the use of BPA to mitigate its associated pulmonary toxicity. Furthermore, it is significant that within the parameters of our experimental conditions, BPS did not exhibit the toxicological pathways clearly evident in BPA.
Collapse
Affiliation(s)
- Min Heui Yoo
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, 141 Gajeon-ro, Yuseong-gu, Daejeon, Republic of Korea.
| | - A-Ram Lee
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, 141 Gajeon-ro, Yuseong-gu, Daejeon, Republic of Korea; LegoChem Biosciences, 10 Gukjegwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Woojin Kim
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, 141 Gajeon-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Wook-Joon Yu
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, 141 Gajeon-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Byoung-Seok Lee
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, 141 Gajeon-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Maloney E, Villeneuve D, Jensen K, Blackwell B, Kahl M, Poole S, Vitense K, Feifarek D, Patlewicz G, Dean K, Tilton C, Randolph E, Cavallin J, LaLone C, Blatz D, Schaupp C, Ankley G. Evaluation of Complex Mixture Toxicity in the Milwaukee Estuary (WI, USA) Using Whole-Mixture and Component-Based Evaluation Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1229-1256. [PMID: 36715369 PMCID: PMC10775314 DOI: 10.1002/etc.5571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 01/22/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.
Collapse
Affiliation(s)
| | - D.L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K.M. Jensen
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - B.R. Blackwell
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - M.D. Kahl
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - S.T. Poole
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K. Vitense
- Scientific Computing and Data Curation Division, US EPA,
Duluth, MN, USA
| | - D.J. Feifarek
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G. Patlewicz
- Centre for Computational Toxicology and Exposure, US EPA,
Research Triangle Park, NC, USA
| | - K. Dean
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Tilton
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - E.C. Randolph
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - J.E. Cavallin
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C.A. LaLone
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - D. Blatz
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Schaupp
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G.T. Ankley
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| |
Collapse
|
11
|
Ali MM, Fatima A, Nawaz S, Rehman A, Javed M, Nadeem A. Cytotoxic and genotoxic evaluation of bisphenol S on onion root tips by Allium cepa and comet tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88803-88811. [PMID: 35836054 DOI: 10.1007/s11356-022-21888-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) is an analog of bisphenol A, which is used as substitute of BPA in many products like airport luggage tags, baby bottles, plastics, and epoxy resins etc. Bisphenol S can cause toxic effects in different organisms, i.e., mice, rat, zebrafish, and C.elegans, etc. Bisphenol S is also known as "endocrine disruptor" due to its ability to mimic the endocrine receptors. So, the aim of this study was to evaluate the cytotoxic and genotoxic effects of bisphenol S on meristematic cells present in onion root tips through Allium cepa (A.cepa) and comet tests. Root growth inhibition was evaluated by root growth inhibition assay. Mitotic index (MI) and chromosomal aberrations (CAs) were assessed by A.cepa assay. DNA damage was evaluated by comet assay. Root growth of A.cepa was inhibited due to bisphenol S. LC50 value calculated by root growth inhibition assay for bisphenol S was (2.6±0.63, 50 μg/ml). Mitotic index was reduced, and chromosomal aberrations were observed, i.e., stickiness, polyploidy, and disturbed ana-telophase in anaphase and telophase stages of mitosis. In case of comet assay, DNA damage was increased in statistically significant manner (p ≤ 0.05). It was concluded that bisphenol S constitutes cytotoxic and genotoxic effects on A. cepa root meristematic cells. Moreover, it is suggested to explore more toxicity studies of bisphenol S at molecular level.
Collapse
Affiliation(s)
- Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Areej Fatima
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Abdul Rehman
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Maryam Javed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore, 54000, Pakistan
| |
Collapse
|
12
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Phytotoxicity and accumulation of BPS to Pistia stratiotes under the influence of microplastics. CHEMOSPHERE 2022; 307:135854. [PMID: 35952788 DOI: 10.1016/j.chemosphere.2022.135854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) is a contaminant of emerging concern, its exposure and phytotoxicity towards plants, however, is scarce. This study aimed at revealing the BPS translocation in plants and phytotoxicity in the presence of Polystyrene (PS) microplastics. Results found that BPS and PS showed no effect on plant growth, indicating the tolerance of plants towards BPS and PS co-contamination. In addition, plants enriched BPS from soil, and a major part of absorbed BPS was accumulated in roots, as supported by the higher BCF value in roots compared with leaves. Besides, the low TF (<1) suggested the capacity of plants to accumulate BPS in roots, and less translocation to leaves. PS negatively affected the translocation of BPS in plants. PS with large size (5 μm) also increased the distribution of BPS in organelles. Exposure risk assessment suggested low concern of BPS carried in plants to human health. This study underlines the bioaccumulation of BPS in plants, and the effects of PS in the translocation process.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Chen M, Yue Y, Bao X, Yu H, Tan Y, Tong B, Kumkhong S, Yu Y. Microplastics as Contaminants in Water Bodies and Their Threat to the Aquatic Animals: A Mini-Review. Animals (Basel) 2022; 12:2864. [PMID: 36290251 PMCID: PMC9597832 DOI: 10.3390/ani12202864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/30/2024] Open
Abstract
Microplastics (MPs), which are particles with a diameter of less than 5 mm, have been extensively studied due to their serious global pollution. Typically, MPs in water originate from terrestrial input. A number of studies have reported the presence of MPs as a stressor in water environments worldwide, and their potential threat to the aquatic animals, affecting the growth, oxidative stress responses, body composition, histopathology, intestinal flora, and immune and reproduction systems. During the plastic degradation process, a large variety of toxic substances are released. MPs have been proposed to be the carriers of toxic chemicals and harmful microorganisms. A study of the literature on MP pollution and stress on the aquatic animals associated with MPs was carried out.
Collapse
Affiliation(s)
- Mingshi Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuhua Yue
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xiaoxue Bao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuansheng Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Binbin Tong
- Sinopharm Group Dezhong (Foshan) Pharmaceutical Co., Ltd., Foshan 528225, China
| | - Suksan Kumkhong
- Department of Animal Science, Faculty of Science and Technology, Muban Chombueng Rajabhat University, 46 Moo 3, Chombueng, Ratchaburi 70150, Thailand
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
14
|
Yılmaz C, Khorsheed WM, Babat CF. In vitro and in silico evaluation of inhibitory effects of bisphenol derivatives on acetylcholinesterase of electric eel (Electrophorus electricus L.). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109416. [PMID: 35843445 DOI: 10.1016/j.cbpc.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
The inhibitory effects of bisphenol A (BPA) and bisphenol S (BPS), which are common pollutants, especially in marine and freshwater, on the electric eel acetylcholinesterase (AChE) activity were studied in vitro and in silico. Both produced full non-competitive inhibition, but the Ki value of BPA was half that of BPS. Molecular docking analyses revealed that both interact with residues W286, F297, Y337, F338 in the PAS and ABS regions in the middle and entrance of the active site gorge, and that BPS also has hydrogen bond with S203 of the catalytic triad. The surge at IC50 values of both compounds with an inflection point at pH: 8.2 suggested that Y124 and/or Y337 in the narrow gorge are primary structural factors in binding. Less effective inhibition of BPS, especially at 25-30 °C, the temperature at which enzyme activity peaks, was attributed to the conformation of the narrow gorge. Homology analyses for AChE initially revealed a significant degree of identity, particularly in the alpha/beta hydrolase domain, which also comprises the active site, with sequences from seven distinct teleost species of various environments. Finally, it was discovered for the first time that BPS, like BPA, is a significant inhibitor of AChE, and this was confirmed by in vitro and in silico analyses done at various pH and temperature levels. It was concluded that this effect might also apply to AChE of most other bony fish.
Collapse
Affiliation(s)
- Can Yılmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080 Tuşba, Van, Turkey.
| | - Waleed Mohammed Khorsheed
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080 Tuşba, Van, Turkey
| | - Ceylan Fidan Babat
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080 Tuşba, Van, Turkey
| |
Collapse
|
15
|
Gairin E, Dussenne M, Mercader M, Berthe C, Reynaud M, Metian M, Mills SC, Lenfant P, Besseau L, Bertucci F, Lecchini D. Harbours as unique environmental sites of multiple anthropogenic stressors on fish hormonal systems. Mol Cell Endocrinol 2022; 555:111727. [PMID: 35863654 DOI: 10.1016/j.mce.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.
Collapse
Affiliation(s)
- Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan.
| | - Mélanie Dussenne
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan
| | - Cécile Berthe
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Mathieu Reynaud
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, MC, 98000, Principality of Monaco, Monaco
| | - Suzanne C Mills
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Philippe Lenfant
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 58 Avenue Paul Alduy, F-66860, Perpignan, France
| | - Laurence Besseau
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liège, 4000, Liege, Belgium
| | - David Lecchini
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| |
Collapse
|
16
|
Ďurovcová I, Kyzek S, Fabová J, Makuková J, Gálová E, Ševčovičová A. Genotoxic potential of bisphenol A: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119346. [PMID: 35489531 DOI: 10.1016/j.envpol.2022.119346] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms - estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Collapse
Affiliation(s)
- Ivana Ďurovcová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Fabová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Makuková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
17
|
Methylmercury, Trace Metals, Organotins and Their Effects on the Qatari Mangrove Shrimp, Palaemon khori. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Qatari mangroves of Al-Khor are being increasingly exposed to a wide variety of anthropogenic pollutants due to land reclamation and urban expansion. In this study, we evaluated the lethal and genotoxic effects of methylmercury, trace metals, and organotins, assessing mortality and aneuploidy levels (abnormal number of chromosomes) in the endemic shrimp Palaemon khori under laboratory conditions. In the experimental design, two different concentrations were used for each family of contaminant (single or combined): an environmental concentration equivalent to the maximum value reported in the environment and a value ten times higher, for a period of eight weeks. Survival decreased significantly when pollutants were administrated in combination, even at environmental concentrations (as shown by Cox proportional hazards ratios): similar levels of mortality would be reached by individual type of pollutants only at ten times the environmental concentration. This critical result, under controlled lab conditions, highlights the importance of monitoring mixtures of contaminant types over single ones in the marine environment. Aneuploidy was reported in all treatments and control ranging from 5% to 19% at week four and from 7% to 21% at week eight. All treatments presented significantly higher aneuploidy levels when compared to the control. However, no significant difference was observed between the two time periods, even though 30% of the treatments could not be assessed at week eight, as not enough animals were still alive. In conclusion, the use of endemic species should be considered a valuable tool to determine local perturbations, representing a regional bioindicator of multiple environmental stressors from the initial stages of contamination.
Collapse
|
18
|
Brandolese A, Kleij AW. Catalyst Engineering Empowers the Creation of Biomass-Derived Polyesters and Polycarbonates. Acc Chem Res 2022; 55:1634-1645. [PMID: 35648973 DOI: 10.1021/acs.accounts.2c00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusThe introduction of circular principles in chemical manufacturing will drastically change the way everyday plastics are produced, thereby affecting several aspects of the respective value chains in terms of raw feedstock, recyclability, and cost. The ultimate aim is to ensure a paradigm shift toward plastic-based (consumer) materials that overall can offer a more attractive and sustainable carbon footprint, which is an important requisite from a societal, political, and eventually economical point of view. To realize this important milestone, it is vitally important to control the polymerization processes associated with the creation of novel sustainable materials. In this respect, we realized that expanding the portfolio of biomass-derived monomers may indeed create an impetus for atom circularity; however, the often sterically congested nature of biomass-derived monomers minimizes the ability of previously developed catalysts to activate and transform these precursors. Our motivation was thus spurred by an apparent lack of catalysts suitable for addressing the conversion of such biomonomers, as we realized the potential that new catalytic processes could have to advance and contribute to the development of sustainable materials produced from polycarbonates and polyesters. These two classes of polymers represent crucial ingredients of important and large-scale consumer products and are therefore ideal fits for implementing new catalytic protocols that enable a gradual transition to plastic materials with an improved carbon footprint.When we started our research expedition, the field was dominated by metal catalysts that incorporated preferred, and in some cases even privileged, ligand backbones (such as salens) able to mediate both ring-opening and ring-opening copolymerization manifolds. One major drawback of these aforementioned catalysts is their rather rigid nature, a feature that reduces their ability to act as adaptive systems, especially in cases where bulky monomers are involved. While our initial focus was on the utilization of sustainable metal salen complexes (M = Zn, Fe) for the activation of small cyclic ethers, which are privileged monomers for polyester and polycarbonate production, we were rapidly confronted with severe limitations related to their inability to activate a wider range of complex epoxides and oxetanes, which was imparted by the planar coordination geometry of the salen ligand in most of its applied metal complexes. In our quest to find a catalytically more effective metal complex with the ability to electronically and sterically tune its substrate-binding and substrate-activation potential, we identified aminotriphenolates as structurally versatile, easily accessible, and scalable ligands for various earth-abundant metal cations. Moreover, the ligand backbone allows for switchable coordination environments around the metal centers, thus offering the necessary adaptation in substrate activation events.This Account describes how Al(III)- and Fe(III)-centered aminotriphenolates have conquered a prominent position as catalyst components in the synthesis of new biobased polyester and polycarbonate architectures, thereby changing the landscape of previously difficult to convert biomonomers, and expanding the chemical space of biobased functional polymers. With the ever-increasing influence of legislation and the restrictions placed on the use of fossil-fuel-based feedstock, the polymer industry needs viable alternatives to design materials that are greener, cost-effective, and allow for the exploration and optimization of their recycling and properties.
Collapse
Affiliation(s)
- Arianna Brandolese
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda dels Països Catalans 16, Tarragona 43007, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda dels Països Catalans 16, Tarragona 43007, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
19
|
Xing J, Zhang S, Zhang M, Hou J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109275. [PMID: 35077873 DOI: 10.1016/j.cbpc.2022.109275] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic organic compound that is mainly used in the production of polymer materials polycarbonate and epoxy resin. Widespread use and irregular processing methods have led to BPA being detected globally, raising concerns about its environmental and health effects. This review outlines an overview of the presence and removal of BPA in the environment and consumer products. We also summarized the endocrine-disrupting toxicity of BPA, and the relatively less summarized neurotoxicity, cytotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity. Human exposure data show that humans have been exposed to low concentrations of BPA for a long time, future research should focus on the long-term exposure and the migration of BPA from consumer products to humans and the possible health risks associated with human exposure to BPA. Exploring economical and effective methods to reduce and remove BPA from the environment is imperative. The development of safe, functional and reproducible BPA analogs and the study of its degradation products can be the focus of subsequent research.
Collapse
Affiliation(s)
- Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
20
|
Mączka W, Grabarczyk M, Wińska K. Can Antioxidants Reduce the Toxicity of Bisphenol? Antioxidants (Basel) 2022; 11:antiox11020413. [PMID: 35204295 PMCID: PMC8869647 DOI: 10.3390/antiox11020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
BPA is still the subject of extensive research due to its widespread use, despite its significant toxicity resulting not only from its negative impact on the endocrine system but also from disrupting the organism’s oxidative homeostasis. At the molecular level, bisphenol A (BPA) causes an increased production of ROS and hence a change in the redox balance, mitochondrial dysfunction, and modulation of cell signaling pathways. Importantly, these changes accumulate in animals and humans, and BPA toxicity may be aggravated by poor diet, metabolic disorders, and coexisting diseases. Accordingly, approaches using antioxidants to counteract the negative effects of BPA are being considered. The preliminary results that are described in this paper are promising, however, it should be emphasized that further studies are required to determine the optimal dosage and treatment regimen to counteract BPA toxicity. It also seems necessary to have a more holistic approach showing, on the one hand, the influence of BPA on the overall human metabolism and, on the other hand, the influence of antioxidants in doses that are acceptable with the diet on BPA toxicity. This is due in part to the fact that in many cases, the positive effect of antioxidants in in vitro studies is not confirmed by clinical studies. For this reason, further research into the molecular mechanisms of BPA activity is also recommended.
Collapse
|
21
|
Kaptaner B, Yılmaz C, Aykut H, Doğan E, Fidan C, Bostancı M, Yıldız F. Bisphenol S leads to cytotoxicity-induced antioxidant responses and oxidative stress in isolated rainbow trout (Oncorhyncus mykiss) hepatocytes. Mol Biol Rep 2021; 48:7657-7666. [PMID: 34643919 DOI: 10.1007/s11033-021-06771-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bisphenol S (BPS) is a chemical compound that is utilized in the plastic industry as an alternative to bisphenol A (BPA). The toxic effects of BPS in fish is less known and limited. Therefore, in the present study, the influence of BPS on rainbow trout (Oncorhyncus mykiss) hepatocytes in vitro was investigated. METHODS AND RESULTS For this purpose the fish hepatocytes were isolated, and then the cultured cells were treated with increasing concentrations of BPS (0, 15.63, 31.25, 62.50, 125, 250, and 500 µM) for 24 h. The cytotoxic impact of BPS was determined in the culture media using lactate dehydrogenase assay and then, the antioxidant defence indicators were assayed. The results showed that concentration-dependent increases were observed in the percentage of cytotoxicity. The superoxide dismutase activity was reduced, while the catalase and glutathione peroxidase activity increased with all of the BPS concentrations. The glutathione S-transferase (GST) activity significantly increased after a BPS concentration of 31.25 µM or higher, while GST Theta 1-1 activity was decreased by the same concentrations of BPS. The reduced glutathione content significantly decreased with a BPS concentration of 31.25 µM or higher, and the malondialdehyde content increased after BPS concentrations of 125, 250, and 500 µM. CONCLUSIONS The findings determined herein suggested that BPS causes cytotoxicity in fish hepatocytes and can lead to oxidative stress, resulting hepatotoxic in fish. Thus, the utilization of BPS instead of BPA as safe alternative in industry should be re-evaluated in the future for environmental health.
Collapse
Affiliation(s)
- Burak Kaptaner
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey.
| | - Can Yılmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Handan Aykut
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Emine Doğan
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Ceylan Fidan
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Müşerref Bostancı
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Fatoş Yıldız
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| |
Collapse
|
22
|
Yu H, Song M, Hu K, Wang Y, Fan R, Yang Z, Glatt H, Braeuning A, Liu Y. Influence of Bisphenol Compounds at Nanomolar Concentrations on Chromosome Damage Induced by Metabolically Activated Carcinogens in HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10001-10011. [PMID: 34241998 DOI: 10.1021/acs.est.1c02189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bisphenol (BP) compounds are endocrine-disrupting organic pollutants. BPs may increase the messenger RNA (mRNA) transcripts of nuclear receptors (NRs) regulating the expression of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes. Their impact on the genotoxicity of metabolically activated carcinogens, however, remains unknown. In this study, effects of the bisphenols A, F, S, and AF on the expression of the aryl hydrocarbon receptor (AhR), the pregnane X receptor (PXR), the constitutive androstane receptor, and individual xenobiotic-metabolizing CYP enzymes in a human hepatoma (HepG2) cell line were investigated, along with in silico binding studies of BPs to each receptor. The results indicated that each BP at 1 to 100 nM concentrations increased the mRNA transcripts and protein levels of AhR, PXR, CYP1A1, 1A2, 1B1, 2E1, and 3A4. The predicted affinities of the BPs for binding AhR were comparable to those of potent agonists. Pretreatment of HepG2 cells with each BP potentiated the induction of micronuclei by benzo[a]pyrene, aflatoxin B1, benzene, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; this effect was abolished/reduced by inhibitors of NRs and/or CYPs. Our study suggests that BPs at human exposure levels may aggravate chromosome damage by several impactful carcinogens in human cells by inducing relevant CYP enzymes, mostly via NR modulation.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Ruifang Fan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal D-14558, Germany
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin D-10589, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin D-10589, Germany
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| |
Collapse
|