1
|
Tomić K, Kostevšek N, Romeo S, Bassanini I. Neuropeptide Y receptors 1 and 2 as molecular targets in prostate and breast cancer therapy. Biomed Pharmacother 2025; 187:118117. [PMID: 40319656 DOI: 10.1016/j.biopha.2025.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025] Open
Abstract
Recent advances have revealed the overexpression of Neuropeptide Y (NPY) receptors in multiple cancers, positioning them as attractive molecular targets for cancer diagnostics and therapeutics. Despite this, a comprehensive roadmap for the rational development of anticancer agents targeting NPY receptors remains lacking. Therefore, we present the characteristics of NPY receptor subtypes, their abundance, and the correlation of their expression in different cancer types. It was found that NPY receptor subtypes 1 and 2 were extensively studied, especially in connection with breast and prostate cancer. Many tumors express NPYR, but only breast cancer tissue shows a significant difference in NPYR subtype expression levels between tumor and normal tissues, and, therefore, can represent a promising target. In the context of anticancer therapy, this review provides key findings from the use of wild-type and synthetic NPY analogs. We highlight the critical residues in the NPY sequence that play a critical role in interactions with receptors and provide the recent literature findings on NPY analogues as efficient and specific cancer-targeting agents. Potential solutions to improve NPY analogs' stability are provided, such as sequence modifications of linear peptides, peptide stapling, and conjugation for drug delivery systems. In general, NPY treatment can not be used efficiently as a single therapy but as a combinatorial therapy with anticancer drugs to improve the specificity of the treatment via high-affinity binding to the cancer cells and sensitizing them to chemotherapy.
Collapse
Affiliation(s)
- Katarina Tomić
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana 1000, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana 1000, Slovenia.
| | - Sergio Romeo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, Milan, Italy; Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, Milan, Italy
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, Milan, Italy
| |
Collapse
|
2
|
Zhang H, Jia F, Shi R, Gao S, Zhao W, Zhao S, Ma J. Protein molecular structures of USP53, NPY2R, and DCTN1-AS1 and impact on tumors: Analysis of prognostic biomarkers for diffuse large B-cell lymphoma. Int J Biol Macromol 2025; 297:139910. [PMID: 39818376 DOI: 10.1016/j.ijbiomac.2025.139910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models. The data showed that when USP53 was overexpressed, there was a notable enhancement in both the proliferation and invasion capabilities of tumor cells, indicating its potential role in promoting cancer aggressiveness. Conversely, the knockout of USP53 resulted in a significant reduction of these capabilities, highlighting its importance in tumor cell behavior. Similarly, the overexpression of NPY2R correlated with an increased apoptosis rate among tumor cells, suggesting that this protein may play a role in regulating cell survival. On the other hand, the knockout of DCTN1-AS1 markedly diminished the metastatic ability of the tumor cells, emphasizing its potential involvement in cancer spread. Furthermore, the analysis of clinical data provided compelling evidence that high levels of USP53 and NPY2R expression are closely linked to a poor prognosis for patients, suggesting that these proteins could serve as negative prognostic indicators. In contrast, low levels of DCTN1-AS1 expression were found to predict a poor response to treatment, further underscoring its importance in the context of therapy outcomes.
Collapse
Affiliation(s)
- Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fan Jia
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Runze Shi
- Department of the Second Ward of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shiqi Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Wenhui Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Shu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Jianli Ma
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
3
|
Budzyński J, Czarnecki D, Ziółkowski M, Szukay B, Mysiak N, Staniewska A, Michalska M, Żekanowska E, Tojek K. Higher Preoperative Serum Neuropeptide Y Concentration May Be Associated with a Better Prognosis After Surgery for Colorectal Cancer. Nutrients 2024; 16:3825. [PMID: 39599612 PMCID: PMC11597490 DOI: 10.3390/nu16223825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The early identification of patients at risk of peri-procedural complications and poor prognosis is particularly important. We conducted our study to determine whether serum orexigenic neuropeptide Y (NPY) concentration is associated with nutritional status and prognosis among patients undergoing surgery for colorectal cancer (CRC). MATERIALS AND METHODS A cohort study with a 3-month follow-up was conducted with 84 consecutive inpatients who underwent elective surgery in one center between 2016 and 2019 for primary CRC. The clinical characteristics and nutritional status of all patients were assessed. In long-term follow-ups (median; IQR: 1322; 930-1788 days; average 3.6 years), the patients' survival status was also checked during a telephone consultation. RESULTS Before CRC surgery, patients with serum NPY concentrations equal to or higher than the median value (661.70 pg/mL) had higher scores in their Mini Nutritional Assessment, Barthel, and Instrumental Activities of Daily Living (IADL) questionnaires, greater handgrip strength, a lower score in the Patient-Generated Subjective Global Assessment, and almost a three-times lower risk of perioperative complications, as well as higher Barthel and IADL scores and larger calf circumference at the 3-month follow-up visit in comparison to individuals with lower serum NPY concentrations. A higher serum NPY concentration was predictive of a low Nutritional Risk Screening 2002 score at the 3-month visit, and this was also found to have significantly influenced the patients' survival during the 1200 days after CRC surgery. CONCLUSIONS A higher preoperative serum NPY concentration may be related to lower nutritional risk, more favorable patient nutritional and functional status, and better survival, but further studies are required.
Collapse
Affiliation(s)
- Jacek Budzyński
- Department of Vascular and Internal Diseases, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-168 Bydgoszcz, Poland; (B.S.); (N.M.); (A.S.)
| | - Damian Czarnecki
- Department of Preventive Nursing, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland; (D.C.); (M.Z.)
| | - Marcin Ziółkowski
- Department of Preventive Nursing, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland; (D.C.); (M.Z.)
| | - Beata Szukay
- Department of Vascular and Internal Diseases, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-168 Bydgoszcz, Poland; (B.S.); (N.M.); (A.S.)
| | - Natalia Mysiak
- Department of Vascular and Internal Diseases, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-168 Bydgoszcz, Poland; (B.S.); (N.M.); (A.S.)
| | - Agata Staniewska
- Department of Vascular and Internal Diseases, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-168 Bydgoszcz, Poland; (B.S.); (N.M.); (A.S.)
| | - Małgorzata Michalska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (M.M.); (E.Ż.)
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (M.M.); (E.Ż.)
| | - Krzysztof Tojek
- Department of General and Minimally Invasive Surgery, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Rizvi SFA, Zhang H, Fang Q. Engineering peptide drug therapeutics through chemical conjugation and implication in clinics. Med Res Rev 2024; 44:2420-2471. [PMID: 38704826 DOI: 10.1002/med.22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
The development of peptide drugs has made tremendous progress in the past few decades because of the advancements in modification chemistry and analytical technologies. The novel-designed peptide drugs have been modified through various biochemical methods with improved diagnostic, therapeutic, and drug-delivery strategies. Researchers found it a helping hand to overcome the inherent limitations of peptides and bring continued advancements in their applications. Furthermore, the emergence of peptide-drug conjugates (PDCs)-utilizes target-oriented peptide moieties as a vehicle for cytotoxic payloads via conjugation with cleavable chemical agents, resulting in the key foundation of the new era of targeted peptide drugs. This review summarizes the various classifications of peptide drugs, suitable chemical modification strategies to improve the ADME (adsorption, distribution, metabolism, and excretion) features of peptide drugs, and recent (2015-early 2024) progress/achievements in peptide-based drug delivery systems as well as their fruitful implication in preclinical and clinical studies. Furthermore, we also summarized the brief description of other types of PDCs, including peptide-MOF conjugates and peptide-UCNP conjugates. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development and progress toward a bright future of novel peptide drugs.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Zhang QA, Luo WS, Li J, Zhang QW, Guo Q, Chen J, Liang ZQ. Integrative Analysis of Acupuncture Targets and Immune Genes in Diabetes, Diabetic Peripheral Neuropathy, and Adjunct Therapy of Cancer. J Multidiscip Healthc 2024; 17:4939-4962. [PMID: 39492981 PMCID: PMC11529286 DOI: 10.2147/jmdh.s483940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Acupuncture may help treat diabetes mellitus (DM), diabetic peripheral neuropathy (DPN), and adjunct therapy for cancer, but the biological mechanisms and immune-related genes involved are unclear; this study aims to clarify these aspects. Methods Comprehensive gene expression analysis revealed differentially expressed genes (DEGs) among DM, DPN, and control samples. Key genes from WGCNA were intersected with DEGs and acupuncture targets. Inflammatory responses, immune processes, signaling pathways, immune cell infiltration, and microRNA-gene interactions were studied. Hub immune-related genes' dysregulation was analyzed for copy number variation and gene methylation. A pan-cancer nomogram model was created to predict survival based on various factors, linking hub genes to cancer properties. Results Our analysis found 3,217 and 2,191 DEGs in DM/control and DPN/DM comparisons, respectively, and identified 1,830 potential acupuncture targets. We pinpointed 21 key genes in DM and 43 in DPN, involved in inflammatory responses, immune processes, CAMKK2, and cAMP signaling pathways. Distinct immune cell infiltration patterns, including M0 and M2 macrophages, neutrophils, and follicular helper T cells, were noted. Further analysis revealed microRNAs and TF genes interacting with immune hub genes in both conditions. Dysregulation of eight hub immune-related genes was linked to copy number variation and gene methylation, correlating with cancer prognosis. Co-occurrence of single nucleotide variations and oncogenic mutations was observed in these genes. The pan-cancer nomogram model showed strong prognostic capabilities, and a significant association was found between the eight genes and cancer properties like angiogenesis, EMT, and cell cycle progression. Discussion Our findings underscore the pivotal roles of MAPK3, IL1RN, SOD2, CTSD, ESR1, SLC1A1, NPY, and CCR2 in the immune response mediated by acupuncture in the context of DM, DPN, and adjunct therapy for cancer.
Collapse
Affiliation(s)
- Quan-Ai Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Wang-Sheng Luo
- Department of Cardiology, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qi-Wen Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qin Guo
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jian Chen
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan, People’s Republic of China
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Ferreira AH, Real CC, Malafaia O. Heterobivalent Dual-Target Peptide for Integrin-α vβ 3 and Neuropeptide Y Receptors on Breast Tumor. Pharmaceuticals (Basel) 2024; 17:1328. [PMID: 39458969 PMCID: PMC11510292 DOI: 10.3390/ph17101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Heterodimer peptides targeting more than one receptor can be advantageous, as tumors can simultaneously express more than one receptor type. For human breast cancer, a promising biological target is tumor angiogenesis through αvβ3 integrin expression. Another promising target is Neuropeptide Y receptors, considering Y1R is overexpressed in 90% of human breast tumors. This article details the development and preclinical evaluation, both in vitro and in vivo, of a novel heterodimer peptide dual-receptor-targeting probe, [99mTc]HYNIC-cRGDfk-NPY, designed for imaging breast tumors. Methods: Female BALB/c healthy mice were used to perform biodistrubution studies and female SCID mice were subcutaneously injected with MCF-7 and MDA-MB-231 tumor cells. [99mTc]HYNIC-cRGDfk-NPY was intravenously administered to the mice, followed by ex vivo biodistribution studies and small-animal SPECT/CT imaging. Nonspecific tracer uptake in both models was determined by coinjecting an excess of unlabeled HYNIC-cRGDfk-NPY (100 µg) along with the radiolabeled tracer. Results: Imaging and biodistribution data demonstrate good uptake to estrogen receptor-positive (MCF-7) and triple-negative (MDA-MB-231) tumor models. The in vivo tumor uptakes of radiolabeled conjugate were 9.30 ± 3.25% and 4.93 ± 1.01% for MCF-7 and MDA-MB231, respectively. The tumor/muscle ratios were 5.65 ± 0.94 for the MCF-7 model and 7.78 ± 3.20 for MDA-MB231. Conclusions: [99mTc]HYNIC-cRGDfk-NPY demonstrated rapid blood clearance, renal excretion, and in vivo tumor uptake, highlighting its potential as a tumor imaging agent.
Collapse
Affiliation(s)
- Aryel H. Ferreira
- MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
- Nuclear and Energy Research Institute, Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear—São Paulo (IPEN-CNEN/SP), São Paulo 05508-000, Brazil
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Osvaldo Malafaia
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
| |
Collapse
|
7
|
Mejía-Barradas CM, Amador-Martínez A, Lara-Padilla E, Cárdenas-Rodríguez N, Ignacio-Mejía I, Martínez-López V, Ibañez-Cervantes G, Picado-Garcia ODJ, Domínguez B, Bandala C. Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer. Cancers (Basel) 2024; 16:2891. [PMID: 39199661 PMCID: PMC11352457 DOI: 10.3390/cancers16162891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Breast cancer (BCa) is related to chronic stress and can reduce the bone mineral density (BMD) through neurochemicals related to beta-adrenergic receptor (ADRB) 1 and 2. Selective beta blockers (sBBs) and nonselective beta blockers (nsBBs) are used to treat systemic arterial hypertension (SAH) and may have osteoprotective effects, as they inhibit ADRBs. To evaluate the effects of sBBs and nsBBs on the BMD of Mexican patients with BCa. A retrospective study was conducted. We included 191 Mexican women with BCa without SAH and with SAH treated with nsBBs, sBBs, and diuretics. BMD was evaluated using a bone density scan (DEX scan). A greater average BMD (p < 0.05) was observed in patients with prior treatment with both nsBBs and sBBs (0.54 ± 0.94 and -0.44 ± 1.22, respectively) compared to patients treated with diuretics or without SAH (-1.73 ± 0.83 and -1.22 ± 0.98, respectively). Regarding the diagnosis of osteoporosis/osteopenia, no cases were observed in patients treated with nsBBs, whereas 5.6% of the patients treated with sBBs presented osteopenia. A total of 23.1% and 10.6% patients managed with diuretics or without treatment presented with osteoporosis and 61.5% and 48% patients managed with loop diuretics and without treatment presented with osteopenia, respectively (p < 0.05). Treatment with nsBBs is a promising option for the prevention and management of osteoporosis/osteopenia in Mexican patients with BCa; however, further prospective studies are needed.
Collapse
Affiliation(s)
- César Miguel Mejía-Barradas
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| | - Ana Amador-Martínez
- Departamento de Radiología e Imagen, Centro Médico ABC, Mexico City 01120, Mexico;
| | - Eleazar Lara-Padilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| | | | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados en Sanidad, Universidad Del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gabriela Ibañez-Cervantes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | | | - Brayan Domínguez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| |
Collapse
|
8
|
Gilbert SJ, Jones R, Egan BJ, Bonnet CS, Evans SL, Mason DJ. Investigating mechanical and inflammatory pathological mechanisms in osteoarthritis using MSC-derived osteocyte-like cells in 3D. Front Endocrinol (Lausanne) 2024; 15:1359052. [PMID: 39157681 PMCID: PMC11328832 DOI: 10.3389/fendo.2024.1359052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Changes to bone physiology play a central role in the development of osteoarthritis with the mechanosensing osteocyte releasing factors that drive disease progression. This study developed a humanised in vitro model to detect osteocyte responses to either interleukin-6, a driver of degeneration and bone remodelling in animal and human joint injury, or mechanical loading, to mimic osteoarthritis stimuli in joints. Methods Human MSC cells (Y201) were differentiated in 3-dimensional type I collagen gels in osteogenic media and osteocyte phenotype assessed by RTqPCR and immunostaining. Gels were subjected to a single pathophysiological load or stimulated with interleukin-6 with unloaded or unstimulated cells as controls. RNA was extracted 1-hour post-load and assessed by RNAseq. Markers of pain, bone remodelling, and inflammation were quantified by RT-qPCR and ELISA. Results Y201 cells embedded within 3D collagen gels assumed dendritic morphology and expressed mature osteocytes markers. Mechanical loading of the osteocyte model regulated 7564 genes (Padj p<0.05, 3026 down, 4538 up). 93% of the osteocyte transcriptome signature was expressed in the model with 38% of these genes mechanically regulated. Mechanically loaded osteocytes regulated 26% of gene ontology pathways linked to OA pain, 40% reflecting bone remodelling and 27% representing inflammation. Load regulated genes associated with osteopetrosis, osteoporosis and osteoarthritis. 42% of effector genes in a genome-wide association study meta-analysis were mechanically regulated by osteocytes with 10 genes representing potential druggable targets. Interleukin-6 stimulation of osteocytes at concentrations reported in human synovial fluids from patients with OA or following knee injury, regulated similar readouts to mechanical loading including markers of pain, bone remodelling, and inflammation. Discussion We have developed a reproducible model of human osteocyte like cells that express >90% of the genes in the osteocyte transcriptome signature. Mechanical loading and inflammatory stimulation regulated genes and proteins implicated in osteoarthritis symptoms of pain as well as inflammation and degeneration underlying disease progression. Nearly half of the genes classified as 'effectors' in GWAS were mechanically regulated in this model. This model will be useful in identifying new mechanisms underlying bone and joint pathologies and testing drugs targeting those mechanisms.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Jones
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben J. Egan
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cleo Selina Bonnet
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sam L. Evans
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Deborah J. Mason
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Rizvi SF, Zhang L, Zhang H, Fang Q. Peptide-Drug Conjugates: Design, Chemistry, and Drug Delivery System as a Novel Cancer Theranostic. ACS Pharmacol Transl Sci 2024; 7:309-334. [PMID: 38357281 PMCID: PMC10863443 DOI: 10.1021/acsptsci.3c00269] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
The emergence of peptide-drug conjugates (PDCs) that utilize target-oriented peptide moieties as carriers of cytotoxic payloads, interconnected with various cleavable/noncleavable linkers, resulted in the key-foundation of the new era of targeted therapeutics. They are capable of retaining the integrity of conjugates in the blood circulatory system as well as releasing the drugs at the tumor microenvironment. Other valuable advantages are specificity and selectivity toward targeted-receptors, higher penetration ability, and drug-loading capacity, making them a suitable candidate to play their vital role as promising carrier agents. In this review, we summarized the types of cell-targeting (CTPs) and cell-penetrating peptides (CPPs) that have broad applications in the advancement of targeted drug-delivery systems (DDS). Moreover, the techniques to overcome the limitations of peptide-chemistry for their extensive implementation to construct the PDCs. Besides this, the diversified breakthrough of linker chemistry, and ample knowledge of various cytotoxic payloads used in PDCs in recent years, as well as the mechanism of action of PDCs was critically discussed. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development, also their progression toward a bright future for PDCs as novel theranostics in clinical practice.
Collapse
Affiliation(s)
- Syed Faheem
Askari Rizvi
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 54000, Punjab Pakistan
| | - Linjie Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Haixia Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Quan Fang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| |
Collapse
|
10
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
11
|
Kang H, Park C, Choi YK, Bae J, Kwon S, Kim J, Choi C, Seok C, Im W, Choi HJ. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023; 31:44-57.e6. [PMID: 36525977 DOI: 10.1016/j.str.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over β-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.
Collapse
Affiliation(s)
- Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehee Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Jin Y, Qiu X, He Z, Wang J, Sa R, Chen L. ERBB2 as a prognostic biomarker correlates with immune infiltrates in papillary thyroid cancer. Front Genet 2022; 13:966365. [PMID: 36437939 PMCID: PMC9682178 DOI: 10.3389/fgene.2022.966365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor receptor 2 (ERBB2) is commonly over-expressed in advanced or metastatic tissues of papillary thyroid cancer (PTC) with poor prognosis, while it remains unknown whether ERBB2 plays a role in the progression of PTC. Thus, we analyzed the data derived from online repositories, including TCGA, KEGG, GO, GeneMANIA, and STRING, to explore the relationship between ERBB2 expression and prognosis, tumor phenotypes of interest, and immune infiltrates in PTC. Compared to normal thyroid tissue, ERBB2 was up-regulated in PTC samples (p < 0.001); In comparison with the group with low expression of ERBB2, the group with high expression of ERBB2 had poorer progression-free interval in stage III/IV patients (p = 0.008) and patients aged >45 years (p = 0.019). The up-regulated ERBB2 was associated with iodine metabolism dysfunction, proliferation, metastasis, angiogenesis, and drug resistance. The expression of ERBB2 negatively correlated with enrichment scores of B cells (r = −0.176, p < 0.001), CD8+ T cells (r = −0.160, p < 0.001), cytotoxic cells (r = −0.219, p < 0.001), NK CD56dim cells (r = −0.218, p < 0.001), plasmacytoid dendritic cells (r = −0.267, p < 0.001), T cells (r = −0.164, p < 0.001), T follicular helper cells (r = −0.111, p = 0.012), gamma delta T cells (r = −0.105, p = 0.017), and regulatory T cells (r = −0.125, p = 0.005). In conclusion, ERBB2 may serve as a prognostic biomarker and an immunotherapeutic target in PTC, deserving further exploration.
Collapse
|
13
|
Sánchez MF, Dietz MS, Müller U, Weghuber J, Gatterdam K, Wieneke R, Heilemann M, Lanzerstorfer P, Tampé R. Dynamic in Situ Confinement Triggers Ligand-Free Neuropeptide Receptor Signaling. NANO LETTERS 2022; 22:8363-8371. [PMID: 36219818 PMCID: PMC9614963 DOI: 10.1021/acs.nanolett.2c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.
Collapse
Affiliation(s)
- M. Florencia Sánchez
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Marina S. Dietz
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- FFoQSI
- Austrian Competence Centre for Feed and Food Quality, Safety &
Innovation, FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria
| | - Karl Gatterdam
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Ralph Wieneke
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Peter Lanzerstorfer
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Robert Tampé
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
14
|
Shin MK, Kim H, Choi SH, Kim BJ, Kwon O. Sex-specific bi‑directional association between osteoporosis and depression from the national representative data of South Korea. Sci Rep 2022; 12:9500. [PMID: 35680922 PMCID: PMC9184731 DOI: 10.1038/s41598-022-13401-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Both osteoporosis and depression are major health threats, but their interrelationship is not clear. This study elucidated the associations between osteoporosis and depression while considering the temporal sequence of the diagnoses. In this cross-sectional study, data were extracted from the Korean National Health and Nutrition Examination Surveys (2007-2009 and 2015-2019, n = 29,045). Osteoporosis and depression were defined by diagnoses thereof. The odds ratio (OR) of the incident osteoporosis among depression patients without a history of osteoporosis was calculated by multivariable logistic regression adjusted for potential confounders. A reverse association was also assessed. Participants were additionally stratified by their sex and age. As a result, male depression patients aged under 50 years showed higher ORs for osteoporosis than those without depression (OR 9.16, 95% CI 1.78-47.18). Female osteoporosis patients showed lower ORs for depression than those without osteoporosis (OR 0.71, 95% CI 0.58-0.88), especially in women aged 50 years and older. In the sensitivity analysis, the same results were obtained in women by their menopause status. Depression has a strong positive association with the occurrence of osteoporosis in young male adults, and osteoporosis has a negative association with the occurrence of depression in female adults.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyejin Kim
- Department of Public Health, Yonsei University Graduate School, Seoul, 03722, Korea
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Psychiatry, Seoul National University Hospital, Seoul, 03080, Korea
| | - Beom-Jun Kim
- Department of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|