1
|
Liu B, Peng Y, Su Y, Diao C, Cha L, Cheng R. Glutamate activates the MAPK pathway by inhibiting LPAR1 expression and promotes anlotinib resistance in thyroid cancer. Discov Oncol 2025; 16:1082. [PMID: 40512336 PMCID: PMC12165934 DOI: 10.1007/s12672-025-02853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/29/2025] [Indexed: 06/16/2025] Open
Abstract
OBJECTIVE To investigate the effects of glutamate on thyroid cancer (TC) cell lines and TC-anlotinib-resistant cell lines and to explore the potential molecular mechanism of glutamate and LPAR1 in promoting anlotinib resistance in TC. METHODS Glutamate was used to treat TC cell lines and TC-anlotinib-resistant cell lines, and changes in cell function and effects on the expression of LPAR1 and MAPK pathway-related proteins were assessed. In addition, overexpressed-LPAR1. (OE-LPAR1) cell lines were constructed, and OE-LPAR1 and glutamate were combined with TC cell lines and TC-anlotinib-resistant cell lines to explore the interaction between glutamate and LPAR1. Finally, a xenograft tumor model was established in nude mice, and the protein expression of key nodes was detected for further verification. RESULTS Glutamate promoted the migration, invasion and proliferation of TC cell lines and TC-anlotinib-resistant cell lines, inhibited the expression of LPAR1, and promoted the expression of MAPK pathway-related proteins, whereas OE-LPAR1 had the opposite effect. Furthermore, glutamate promoted the expression of Ki67, inhibited apoptosis, significantly inhibited the expression of LPAR1, and promoted the expression of MAPK pathway-related proteins in a nude mouse xenograft tumor model, whereas OE-LPAR1 significantly inhibited the expression of Ki67 and promoted apoptosis. CONCLUSION Our study revealed that glutamate promotes the progression of malignant biological behavior in TC cell lines and TC-anlotinib-resistant cell lines. Additionally, glutamate may activate the MAPK pathway by inhibiting the expression of LPAR1, thereby promoting resistance to anlotinib in TC.
Collapse
Affiliation(s)
- Bin Liu
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
- Kunming Medical University, Yunnan, 650032, China
| | - Ying Peng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Yanjun Su
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Chang Diao
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Liansheng Cha
- Zhenxiong County People's Hospital, Zhaotong , 657216, Yunnan, China
| | - Ruochuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Wang Y, Tang C, Wang K, Zhang X, Zhang L, Xiao X, Lin H, Xiong L. The role of ferroptosis in breast cancer: Tumor progression, immune microenvironment interactions and therapeutic interventions. Eur J Pharmacol 2025; 996:177561. [PMID: 40154567 DOI: 10.1016/j.ejphar.2025.177561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ferroptosis represents a distinctive and distinct form of regulated cellular death, which is driven by the accumulation of lipid peroxidation. It is distinguished by altered redox lipid metabolism and is linked to a spectrum of cellular activities, including cancer. In breast cancer (BC), with triple negative breast cancer (TNBC) being an iron-and lipid-rich tumor, inducing ferroptosis was thought to be a novel approach to killing breast tumor cells. However, in the recent past, a novel conceptual framework has emerged which posits that in addition to the promotion of tumor cell death, ferritin deposition has a potent immunosuppressive effect on the tumor immune microenvironment (TIME) via the influence on both innate and adaptive immune responses. TIME of BC includes various cell populations from both the innate and adaptive immune systems. In this review, the internal association between iron homeostasis and the progression of ferroptosis, along with the common inducers and protectors of ferroptosis in BC, are discussed in detail. Furthermore, a comprehensive analysis is conducted on the dual role of ferroptosis in immune cells and proto-oncogenic functions, along with an evaluation of the potential applications of immunogenic cell death-targeted immunotherapy in TIME of BC. It is anticipated that our review will inform future research endeavors that seek to integrate ferroptosis and immunotherapy in the management of BC.
Collapse
Affiliation(s)
- Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chuanyun Tang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoan Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinghua Xiao
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang, 330066, China
| | - Hui Lin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Kazantzi S, Edvinsson L, Haanes KA. Independent and synergistic roles of MEK-ERK1/2 and PKC pathways in regulating functional changes in vascular tissue following flow cessation. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 12:100300. [PMID: 40395439 PMCID: PMC12090243 DOI: 10.1016/j.jmccpl.2025.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025]
Abstract
Background The MEK-ERK1/2 and PKC pathways play critical roles in regulating functional changes in tissues, but their interplay remains poorly understood. The vasculature provides an ideal model to study these pathways, particularly under conditions of flow cessation, which is highly relevant to ischemia and other cardiovascular diseases. This study examined the independent roles, additive effects, and time-dependent dynamics of MEK and PKC pathway inhibition in functional receptor upregulation. Methods Rat basilar arteries were cultured for 48 h with selective inhibitors targeting MEK (Trametinib), PKC (RO-317549) and their downstream ERK (Ulixertinib) and NF-kB (BMS 345541). Functional changes in ETB receptor responses were assessed via wire myography following stimulation with Sarafotoxin 6c (S6c). Western blot analysis quantified ERK phosphorylation, and the effects of inhibitor timing and combination treatments were evaluated. Results MEK inhibition reduced ERK phosphorylation and ETB receptor-mediated contractility, whereas PKC inhibition had no effect on ERK phosphorylation but significantly reduced ETB receptor function. Combining MEK and PKC inhibitors produced an additive effect, resulting in greater suppression of functional changes compared to single treatments. At 6 h following flow cessation, PKC inhibition effectively suppressed ETB receptor function, while MEK inhibition had minimal effects when introduced at this delayed time point. Conclusions The MEK and PKC pathways independently drive functional changes in vascular tissue, particularly following flow cessation. MEK inhibition is effective early, while PKC inhibition remains effective when applied later. The additive effects observed with combined MEK and PKC inhibition indicate parallel and functionally independent pathway activation during ETB receptor upregulation.
Collapse
Affiliation(s)
- Spyridoula Kazantzi
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
- Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Agmund Haanes
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
- Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
4
|
Liu Z, Gao Z, Lu J, Zhang X, Ren K, Li X, Sun F, Zhao H, Li Q, Xu Y, Gou M, Han Y. Molecular evolution and functional characterization of PKC-α-like in Lamprey. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110238. [PMID: 40015494 DOI: 10.1016/j.fsi.2025.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Protein kinase C-α (PKC-α) is a serine/threonine protein kinase categorized within the lipid-regulated PKC family. Despite considerable research on PKC-α in various vertebrates, information about its presence and characteristics in lampreys-among the few extant jawed vertebrates and the most primitive-remains limited. In this study, we report the first identification of a PKC-α-like gene in lamprey by successfully cloning its coding region, composed of 1683 base pairs that encode 560 amino acids, from the constructed cDNA library of Lampetrajaponica. Sequence analysis demonstrated a high degree of homology between the PKC-α-like sequence in lamprey and those in other vertebrates. Phylogenetic analysis indicated that lamprey PKC-α-like occupies an intermediate position between vertebrates and invertebrates, supporting the principles of species evolution. Gene structure analysis revealed low conservation throughout evolution, possibly due to events like chromosomal rearrangements or homologous recombination which may have caused significant changes in gene arrangement patterns. Additionally, we generated polyclonal antibody against PKC-α-like and investigated its tissue distribution in Lampetrajaponica. Our results demonstrated widespread expression of PKC-α-like across all tissues with varying mRNA expression levels in response to different pathogenic stimuli. Specifically, PKC-α-like expression was consistently up-regulated in response to polyinosine-polycytidylic acid (Poly (I:C)) stimulation, especially in immune-related tissues. Furthermore, we confirmed that PKC-α-like is primarily localized in the cytoplasm of lamprey cells. Moreover, our findings indicate that PKC-α-like promotes cell proliferation, prompting us to undertake a preliminary investigation of the underlying molecular mechanisms. In summary, this study establishes a theoretical foundation for further exploration of the evolutionary process of PKC-α and its role in cell proliferation mechanisms.
Collapse
Affiliation(s)
- Zhulin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Zhanfeng Gao
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Jiali Lu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xingzhu Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Kaixia Ren
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Xue Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Feng Sun
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
5
|
Khan K, Anwar M, Badshah Y, Ashraf NM, Hamid A, Trembley JH, Shabbir M, Afsar T, Husain FM, Khan D, Razak S. Zapotin mitigates breast cancer progression by targeting PKCε mediated glycolytic pathway regulation. BMC Cancer 2025; 25:798. [PMID: 40296014 PMCID: PMC12039207 DOI: 10.1186/s12885-025-14202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The breast cancer recurrence and chemoresistance has increased over the years. A novel PKC, PKCε, may promote chemoresistance by causing hypoxia and cancer metabolic rewiring. A natural flavonoid, Zapotin, in colon cancer cells may modulate PKCε expression. Therefore, this study aimed to explore Zapotin impact on PKCε expression and the metabolic profile of breast cancer cells. METHODS Pharmacophore analysis of Zapotin was performed and molecular dynamics (MD) simulations were employed to study PKCε and Zapotin interaction stability. The effect of Zapotin treatment on PKCε expression and various aspects of cancer cell viability and metabolism was studied in MCF-7 and MDA-MB-231 breast cancer cell lines using real-time PCR, growth and death assays, and Gas Chromatography-Mass Spectrometry. RESULTS In silico analyses revealed good solubility and absorption of Zapotin with lower toxicity. Zapotin showed cancer cell-specific cytotoxicity (P < 0.0001). It's treatment also reduced breast cancer cell viability, colony formation, and migratory potential by targeting PKCε and associated HIF-1ɑ and VEGF signaling (P < 0.01). Zapotin also impacted PKCε-mediated metabolic signaling by targeting glycolytic pathways. CONCLUSION This study demonstrated the role of PKCε mediated HIF-1ɑ, VEGF, and glycolytic pathways in promoting breast carcinogenicity and demonstrated Zapotin as a potential treatment option for different types of breast tumors.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Maryam Anwar
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan.
| | - Arslan Hamid
- LIMES Institute (AG-Netea), University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Maria Shabbir
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dilawar Khan
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Wang Y, Wang Y, Bao L, Vale G, McDonald JG, Fang Y, Peng Y, Kumar A, Xing C, Brasó-Maristany F, Prat A, Arteaga CL, Wang Y, Luo W. ZMYND8 drives HER2 antibody resistance in breast cancer via lipid control of IL-27. Nat Commun 2025; 16:3908. [PMID: 40281007 PMCID: PMC12032076 DOI: 10.1038/s41467-025-59184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Anti-HER2 antibodies are effective but often lead to resistance in patients with HER2+ breast cancer. Here, we report an epigenetic crosstalk with aberrant glycerophospholipid metabolism and inflammation as a key resistance mechanism of anti-HER2 therapies in HER2+ breast cancer. Histone reader ZMYND8 specifically confers resistance to cancer cells against trastuzumab and/or pertuzumab. Mechanistically, ZMYND8 enhances cPLA2α expression in resistant tumor cells through inducing c-Myc. cPLA2α inactivates phosphatidylcholine-specific phospholipase C to inhibit phosphatidylcholine breakdown into diacylglycerol, which diminishes protein kinase C activity leading to interleukin-27 secretion. Supplementation with interleukin-27 protein counteracts cPLA2α loss to reinforce trastuzumab resistance in HER2+ tumor cells and patient-derived organoids. Upregulation of ZMYND8, c-Myc, cPLA2α, and IL-27 is prevalent in HER2+ breast cancer patients following HER2-targeted therapies. Targeting c-Myc or cPLA2α effectively overcomes anti-HER2 therapy resistance in patient-derived xenografts. Collectively, this study uncovers a druggable signaling cascade that drives resistance to HER2-targeted therapies in HER2+ breast cancer.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng Fang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Cancer Institute and Blood Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- Reveal Genomics, S.L., Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Cancer Institute and Blood Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- Reveal Genomics, S.L., Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Institute of Oncology-Hospital Quirónsalud, Barcelona, Spain
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Yi J, Ye Z, Xu H, Zhang H, Cao H, Li X, Wang T, Dong C, Du Y, Dong S, Zhou W. EGCG targeting STAT3 transcriptionally represses PLXNC1 to inhibit M2 polarization mediated by gastric cancer cell-derived exosomal miR-92b-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156137. [PMID: 39566403 DOI: 10.1016/j.phymed.2024.156137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND M2-polarized tumor-associated macrophages (TAMs) predominate in tumor microenvironment (TME) and serve primary functions in tumor progression, including growth, angiogenesis, metastasis, immunosuppression, chemoresistance, and poor prognosis. The reversal of M2 polarization provides a new treatment strategy for cancer. Presently, the molecular mechanisms of M2 polarization have yet to be fully characterized, and there is a lack of effective therapeutic targets and drugs. Cancer cells initiate an immunosuppressive TME by recruiting macrophages and promoting M2 polarization through the secretion of inflammatory factors. Accordingly, blocking cancer cell-induced TAM M2 polarization may present a more effective strategy from the perspective of cancer cells. Hedyotis diffusa Willd (HDW) possesses immunomodulatory and antitumor properties, and is a precious and direct source of small molecule natural products with a dual function of inhibition of tumor growth and tumor cell-mediated M2 polarization. OBJECTIVE To identify a new target promoting gastric cancer (GC) cell growth and GC cell-mediated M2 polarization from mRNA profiles of GC cells treated with HDW injection (HDI) and to excavate a natural product from HDI that can regulate related mRNA and inhibit the aforementioned effects. METHODS RNA sequencing (RNA-seq) was used to analyze HDI-regulated differentially expressed mRNAs (HRmRNAs) in MKN45 cells. Weighted gene co-expression network analysis (WGCNA), univariate and multivariate Cox regression analysis, KM survival curves, and association analysis between HRmRNA and clinical characteristics/tumor infiltrating immune cells (TIICs) individually were utilized to screen out the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. shRNA lentiviral vectors were used for stably silencing, and transient overexpressing plasmids were constructed for overexpression. CCK8, EdU, colony formation, migration and invasion assays were used to validate the function of drugs and molecules in GC. HDI constituent analysis was performed using UHPLC-QE-MS. A network of HDI constituent-hub transcription factor (TF)-HRmRNA was constructed based on RNA-Seq, network pharmacology and TFs prediction. Exosome isolation and identification were performed using ultracentrifugation, NTA, TEM and western blot. Apoptosis and macrophage phenotypes were determined by flow cytometric analysis. Small RNA-Seq made exosomal miRNA identification. Small molecule interaction with targets were analyzed using molecular docking, SPR and CETSA. The direct relationship between transcription factors and promoters was verified using ChIP-QPCR and dual-luciferase reporter gene assay. A nude mice xenograft tumor model was established for vivo validation. RESULTS HDI inhibited MKN45 cell proliferation, migration, invasion and promoted apoptosis. RNA-Seq identified 2583 HRmRNAs. PLXNC1 was screened out as the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. PLXNC1 promoted GC cell proliferation and facilitated TAMs M2 polarization by transferring GC cell-derived exosomal miR-92b-5p, inhibiting SOCS7-STAT3 interactions and subsequently activating STAT3 in macrophages. M2 TAMs induced by PLXNC1-mediated GC cell-derived exosomes promoted GC cell migration and invasion. PLXNC1 regulated exosomal miR-92b-5p through the MEK1/MSK1/CREB1 pathway. STAT3 could transcriptionally regulate PLXNC1 expression in GC cells. The network of HDI constituent-hub TF-HRmRNA showed epigallocatechin gallate (EGCG) from HDI targeted STAT3 to transcriptionally regulate PLXNC1 expression. EGCG as a natural product directly bound to STAT3 to diminish its nuclear localization, resulting in the transcriptional repression of PLXNC1 and the reversal of M2 polarization induced by PLXNC1-mediated GC cell-derived exosomes. CONCLUSION PLXNC1 is a novel target exerting dual effects on GC cell proliferation and GC cell-mediated M2 polarization. EGCG derived from HDI inhibits GC cell proliferation and targets STAT3 to inhibit M2 polarization induced by PLXNC1-mediated exosomes derived from GC cells, which may be a multi-target therapeutic agent for GC cell proliferation and immune microenvironment.
Collapse
Affiliation(s)
- Jianfeng Yi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Zhenzhen Ye
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Gansu Provincial Key Laboratory for Mining and Innovation Transformation of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310006, Zhejiang, PR China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, PR China
| | - Hui Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China
| | - Hongtai Cao
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xin Li
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Tianming Wang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yan Du
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shi Dong
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wence Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
8
|
Wang L, Wang Y, Li Y, Zhou L, Du J, Wang J, Liu S, Cao Y, Li Y, Yang W, Zhu T. Resistance mechanisms and prospects of trastuzumab. Front Oncol 2024; 14:1389390. [PMID: 39655080 PMCID: PMC11625751 DOI: 10.3389/fonc.2024.1389390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer that overexpresses Human Epidermal Growth Factor Receptor 2 (HER2+) due to gene amplification or overexpression constitutes 15-20% of all breast cancer cases. Trastuzumab, the first FDA-approved monoclonal antibody targeting HER2, serves as the standard first-line treatment for HER2-positive advanced breast cancer, as recommended by multiple clinical guidelines.Currently, accumulated clinical evidence reveals a considerable degree of variability in the response of HER2+ breast cancer to trastuzumab treatment. Specifically, over 50% of patients either do not respond to or develop resistance against trastuzumab.The specific mechanisms of resistance to trastuzumab are currently unclear. This paper aims to review the existing research on the resistance mechanisms of trastuzumab, based on its target, from aspects such as genetic loci, molecular structure, signaling pathways, and the tumor microenvironment and to outline current research progress and new strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ting Zhu
- The Third Affiliated Hospital of Anhui Medical University, Hefei first people’s
Hospital, Hefei, China
| |
Collapse
|
9
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Morshed S, Mansoori M, Davies TF. The TSH Receptor Antibody Reactome Contributes to Retro-Orbital Inflammation. J Endocr Soc 2024; 8:bvae182. [PMID: 39502473 PMCID: PMC11535722 DOI: 10.1210/jendso/bvae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 11/08/2024] Open
Abstract
The thyroid eye disease (TED) of Graves disease is associated with high titers of stimulating TSH receptor antibodies, retro-orbital inflammation, fibroblast release of cytokines and chemokines, and adipogenesis, which in turn leads to proptosis, muscle fibrosis, and dysfunction. Part of this scenario is the induction of fibroblast proliferation and autophagy secondary to synergism between the TSH receptor (TSHR) and the insulin-like growth factor-1 receptor (IGF-1R). While TED is well associated with thyroid-stimulating antibodies to the TSHR, which is also well expressed on fibroblasts, in fact the TSHR reactome has a variety of TSHR antibodies with varying biological activity. Therefore, we have now evaluated the possible role of neutral TSHR antibodies (N-TSHR-mAbs), directed at the hinge region of the TSHR, which do not induce cell proliferation but are known to have effects on multiple proteins in thyroid cells including stress-related signaling molecules. We examined the consequences of an N-TSHR-mAb acting on TSHR-expressing fibroblasts and found marked cell stress, which initiated signaling pathways involving inflammasome activation. This response ended in widespread cell death by pyroptosis through activation of caspase 8 and gasdermin D. Hence, not only can stimulating TSHR autoantibodies influence TED inflammation but the N-TSHR antibodies, representing more of the reactome, may also exaggerate the retro-orbital inflammatory response seen in TED.
Collapse
Affiliation(s)
- Syed Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Maryam Mansoori
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
11
|
Li F, Shi Y, Ma M, Yang X, Chen X, Xie Y, Liu S. Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC. J Pharm Anal 2024; 14:100977. [PMID: 39493309 PMCID: PMC11531627 DOI: 10.1016/j.jpha.2024.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 11/05/2024] Open
Abstract
Trastuzumab has improved survival rates in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), but drug resistance leads to treatment failure. Natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC) represents an essential antitumor immune mechanism of trastuzumab. Traditional Chinese medicine (TCM) has been used for centuries to treat diseases because of its capacity to improve immune responses. Xianling Lianxia formula (XLLXF), based on the principle of "strengthening body and eliminating toxin", exhibits a synergistic effect in the trastuzumab treatment of patients with HER2-positive BC. Notably, this synergistic effect of XLLXF was executed by enhancing NK cells and ADCC, as demonstrated through in vitro co-culture of NK cells and BC cells and in vivo intervention experiments. Mechanistically, the augmented impact of XLLXF on NK cells is linked to a decrease in cytokine inducible Src homology 2 (SH2) containing protein (CISH) expression, which in turn activates the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5) pathway. Collectively, these findings suggested that XLLXF holds promise for enhancing NK cell function and sensitizing patients with HER2-positive BC to trastuzumab.
Collapse
Affiliation(s)
- Feifei Li
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Youyang Shi
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Yang
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Sheng Liu
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| |
Collapse
|
12
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
13
|
Yu J, Xiang Y, Gao Y, Chang S, Kong R, Lv X, Yu J, Jin Y, Li C, Ma Y, Wang Z, Zhou J, Yuan H, Shang S, Hua F, Zhang X, Cui B, Li P. PKC α inhibitors promote breast cancer immune evasion by maintaining PD-L1 stability. Acta Pharm Sin B 2024; 14:4378-4395. [PMID: 39525583 PMCID: PMC11544271 DOI: 10.1016/j.apsb.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Protein kinase C α (PKCα) regulates diverse biological functions of cancer cells and is a promising therapeutic target. However, clinical trials of PKC-targeted therapies have not yielded satisfactory results. Recent studies have also indicated a tumor-suppressive role of PKCs via unclear molecular mechanisms. In this study, we found that PKCα inhibition enhances CD8+ T-cell-mediated tumor evasion and abolishes antitumor activity in immunocompetent mice. We further identified PKCα as a critical regulator of programmed cell death-ligand 1 (PD-L1) and found that it enhances T-cell-dependent antitumor immunity in breast cancer by interacting with PD-L1 and suppressing PD-L1 expression. We demonstrated that PKCα-mediated PD-L1 phosphorylation promotes PD-L1 degradation through β transducin repeat-containing protein. Notably, the efficacy of PKCα inhibitors was intensified by synergizing with anti-PD-L1 mAb therapy to boost antitumor T-cell immunity in vivo. Clinical analysis revealed that PKCα expression is positively correlated with T-cell function and the interferon-gamma signature in patients with breast cancer. This study demonstrated the antitumor capability of PKCα, identified potential therapeutic strategies to avoid tumor evasion via PKC-targeted therapies, and provided a proof of concept for targeting PKCα in combination with anti-PD-L1 mAb therapy as a potential therapeutic approach against breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Jiaojiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujin Xiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuzhen Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoxi Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinmei Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yunjie Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chenxi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiran Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhenhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jichao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Premaratne A, Basu S, Bagchi A, Zhou T, Feng Q, Lin CY. Liver X Receptor Ligand GAC0001E5 Downregulates Antioxidant Capacity and ERBB2/HER2 Expression in HER2-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:1651. [PMID: 38730603 PMCID: PMC11083021 DOI: 10.3390/cancers16091651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The HER2-positive subtype accounts for approximately one-fifth of all breast cancers. Insensitivity and development of acquired resistance to targeted therapies in some patients contribute to their poor prognosis. HER2 overexpression is associated with metabolic reprogramming, facilitating cancer cell growth and survival. Novel liver X receptor (LXR) ligand GAC0001E5 (1E5) has been shown to inhibit cancer cell proliferation by disrupting glutaminolysis and inducing oxidative stress. In this study, HER2-positive breast cancer cells were treated with 1E5 to determine their potential inhibitory effects and mechanisms of action in HER2-positive breast cancers. Similar to previous observations in other cancer types, 1E5 treatments inhibited LXR activity, expression, and cancer cell proliferation. Expression of fatty acid synthesis genes, including fatty acid synthase (FASN), was downregulated following 1E5 treatment, and results from co-treatment experiments with an FASN inhibitor suggest that the same pathway is targeted by 1E5. Treatments with 1E5 disrupted glutaminolysis and resulted in increased oxidative stress. Strikingly, HER2 transcript and protein levels were both significantly downregulated by 1E5. Taken together, these findings indicate the therapeutic potential of targeting HER2 overexpression and associated metabolic reprogramming via the modulation of LXR in HER2-positive breast cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Chin-Yo Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
15
|
Sanz-Álvarez M, Luque M, Morales-Gallego M, Cristóbal I, Ramírez-Merino N, Rangel Y, Izarzugaza Y, Eroles P, Albanell J, Madoz-Gúrpide J, Rojo F. Generation and Characterization of Trastuzumab/Pertuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Int J Mol Sci 2023; 25:207. [PMID: 38203378 PMCID: PMC10779249 DOI: 10.3390/ijms25010207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The combination of trastuzumab and pertuzumab as first-line therapy in patients with HER2-positive breast cancer has shown significant clinical benefits compared to trastuzumab alone. However, despite initial therapeutic success, most patients eventually progress, and tumors develop acquired resistance and invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance in order to develop targeted therapeutic strategies with improved efficacy. We generated four novel HER2-positive cell lines via prolonged exposure to trastuzumab and pertuzumab and determined their resistance rates. Long-term resistance was confirmed by a significant increase in the colony-forming capacity of the derived cells. We authenticated the molecular identity of the new lines via both immunohistochemistry for the clinical phenotype and molecular profiling of point mutations. HER2 overexpression was confirmed in all resistant cell lines, and acquisition of resistance to trastuzumab and pertuzumab did not translate into differences in ER, PR, and HER2 receptor expression. In contrast, changes in the expression and activity of other HER family members, particularly HER4, were observed. In the same vein, analyses of the receptor and effector kinase status of different cellular pathways revealed that the MAPK pathway may be involved in the acquisition of resistance to trastuzumab and pertuzumab. Finally, proteomic analysis confirmed a significant change in the abundance patterns of more than 600 proteins with implications in key biological processes, such as ribosome formation, mitochondrial activity, and metabolism, which could be relevant mechanisms in the generation of resistance in HER2-positive breast cancer. We concluded that these resistant BCCLs may be a valuable tool to better understand the mechanisms of acquisition of resistance to trastuzumab and pertuzumab-based anti-HER2 therapy.
Collapse
Affiliation(s)
- Marta Sanz-Álvarez
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Melani Luque
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Miriam Morales-Gallego
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Ion Cristóbal
- Translational Oncology Division, OncoHealth Institute, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain;
| | | | - Yamileth Rangel
- Department of Pathology, Infanta Elena University Hospital, 28342 Madrid, Spain;
| | - Yann Izarzugaza
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Pilar Eroles
- Institute of Health Research INCLIVA—CIBERONC, 46010 Valencia, Spain;
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain;
- Department of Medical Oncology, Hospital del Mar—CIBERONC, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Faculty of Medicine, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Juan Madoz-Gúrpide
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| |
Collapse
|
16
|
Zhou J, Xie T, Shan H, Cheng G. HLA-DQA1 expression is associated with prognosis and predictable with radiomics in breast cancer. Radiat Oncol 2023; 18:117. [PMID: 37434241 DOI: 10.1186/s13014-023-02314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND High HLA-DQA1 expression is associated with a better prognosis in many cancers. However, the association between HLA-DQA1 expression and prognosis of breast cancer and the noninvasive assessment of HLA-DQA1 expression are still unclear. This study aimed to reveal the association and investigate the potential of radiomics to predict HLA-DQA1 expression in breast cancer. METHODS In this retrospective study, transcriptome sequencing data, medical imaging data, clinical and follow-up data were downloaded from the TCIA ( https://www.cancerimagingarchive.net/ ) and TCGA ( https://portal.gdc.cancer.gov/ ) databases. The clinical characteristic differences between the high HLA-DQA1 expression group (HHD group) and the low HLA-DQA1 expression group were explored. Gene set enrichment analysis, Kaplan‒Meier survival analysis and Cox regression were performed. Then, 107 dynamic contrast-enhanced magnetic resonance imaging features were extracted, including size, shape and texture. Using recursive feature elimination and gradient boosting machine, a radiomics model was established to predict HLA-DQA1 expression. Receiver operating characteristic (ROC) curves, precision-recall curves, calibration curves, and decision curves were used for model evaluation. RESULTS The HHD group had better survival outcomes. The differentially expressed genes in the HHD group were significantly enriched in oxidative phosphorylation (OXPHOS) and estrogen response early and late signalling pathways. The radiomic score (RS) output from the model was associated with HLA-DQA1 expression. The area under the ROC curves (95% CI), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the radiomic model were 0.866 (0.775-0.956), 0.825, 0.939, 0.7, 0.775, and 0.913 in the training set and 0.780 (0.629-0.931), 0.659, 0.81, 0.5, 0.63, and 0.714 in the validation set, respectively, showing a good prediction effect. CONCLUSIONS High HLA-DQA1 expression is associated with a better prognosis in breast cancer. Quantitative radiomics as a noninvasive imaging biomarker has potential value for predicting HLA-DQA1 expression.
Collapse
Affiliation(s)
- JingYu Zhou
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - TingTing Xie
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - HuiMing Shan
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - GuanXun Cheng
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
17
|
Alrahimi J, Yousuf M, Pushparaj P, Basingab F, Zaher K, Hassan M, Alghamdi E, Al-Sakkaf K, Aldahlawi A. Investigating the Changing Levels of Immune Checkpoint Proteins in The Serum of Breast Cancer Patients. PHARMACOPHORE 2022. [DOI: 10.51847/fudihnow6w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|