1
|
Gaggini M, Sabatino L, Suman AF, Chatzianagnostou K, Vassalle C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells 2025; 14:387. [PMID: 40072115 PMCID: PMC11898734 DOI: 10.3390/cells14050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
In recent years, new drugs for the treatment of type 2 diabetes (T2D) have been proposed, including glucagon-like peptide 1 (GLP-1) agonists or sodium-glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. Over time, some of these agents (in particular, GLP-1 agonists and SGLT2 inhibitors), which were initially developed for their glucose-lowering actions, have demonstrated significant beneficial pleiotropic effects, thus expanding their potential therapeutic applications. This review aims to discuss the mechanisms, pleiotropic effects, and therapeutic potential of GLP-1, DPP-4, and SGLT2, with a particular focus on their cardiorenal benefits beyond glycemic control.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Adrian Florentin Suman
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | | | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
2
|
Psachna S, Chondrogianni ME, Stathopoulos K, Polymeris A, Chatzigeorgiou A, Chronopoulos E, Tournis S, Kassi E. The effect of antidiabetic drugs on bone metabolism: a concise review. Endocrine 2025; 87:907-919. [PMID: 39402366 DOI: 10.1007/s12020-024-04070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/06/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, which derives from either insufficient insulin production [type 1 diabetes mellitus (T1DM)] or both impaired insulin sensitivity along with inadequate insulin production [type 2 diabetes mellitus (T2DM)] and affects millions of people worldwide. In addition to the adverse effects of DM on classical target organs and tissues, skeletal health can also be adversely affected. There is considerable evidence linking DM with osteoporosis. The fracture risk in patients with DM differs upon the type of diabetes, and it appears to be related to the type of anti-diabetic treatment. Antidiabetic drugs may have various effects on bone health. Most of them have neutral or even favorable effects on bone metabolism with the exception of thiazolidinediones (TZDs). Some studies suggest that TZDs may have negative impact on bone health by decreasing bone formation and increasing the fracture risk. There are also limited studies linking the use of canagliflozin, a Sodium-glucose contransporter-2 inhibitor (SGLT2i), with increased fracture risk. On the other hand, therapies that are based on incretin effect, like Dipeptidyl peptidase-4 inhibitors (DPP-4i) and Glucagon-like peptide-1 receptor agonizts (GLP-1RAs) might have positive effects on bone health by promoting bone formation. Herein we review the impact of antidiabetic drugs on bone health, highlighting the potential benefits and risks associated with these medications in an attempt to contribute to the development of personalized treatment strategies for individuals with DM.
Collapse
Affiliation(s)
- Stavroula Psachna
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Attica General Hospital "Sismanoglio-Amalia Fleming", Athens, Greece
| | - Maria Eleni Chondrogianni
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, Medical Scool, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stathopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Polymeris
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Attica General Hospital "Sismanoglio-Amalia Fleming", Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, Medical Scool, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Mangoura SA, Ahmed MA, Hamad N, Zaka AZ, Khalaf KA. Hepatoprotective effects of vildagliptin mitigates lung biochemical and histopathological changes in experimental hepatopulmonary syndrome model in rat. Int Immunopharmacol 2024; 143:113254. [PMID: 39353392 DOI: 10.1016/j.intimp.2024.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a liver disease-induced pulmonary complication manifested with arterial hypoxemia. Hepatic cholestasis, encountered in several clinical situations, leads to biliary cirrhosis and HPS, both of which are best reproduced by rat common bile duct ligation (CBDL). Experience from liver transplantation suggests hepatoprotective-based therapy would be most effective in HPS treatment Dipeptidyl peptidase-4 (DPP-4) enzyme is involved in different pathogenic mechanisms of liver diseases. Vildagliptin (Vild) is a DPP-4 inhibitor which possesses favorable anti-inflammatory, anti-oxidant and anti-fibrotic effects. The present work explored hepatoprotective mechanisms of Vild and their participation in its prophylactic effectiveness in HPS induced by CBDL in rats. Male Wistar rats weighing 220-280 g were allocated into 4 groups: normal control, sham, CBDL and CBDL + Vild groups. i.p. saline was administered to the first 3 groups and i.p. Vild (10 mg/kg/day) was given to the fourth group for 6 weeks starting 2 week before CBDL. CBDL produced liver fibrosis, arterial hypoxemia and decreased survivability of rats. It altered liver functions and induced oxidative stress, pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)], vasodilatory molecules [endothelin-1 (ET-1), and inducible and endothelial nitric oxide synthases] and angiogenesis-associated protein [vascular endothelial growth factor-A (VEGF-A)] in liver and lung. Vild ameliorated liver fibrosis, and improved hypoxemia and survivability of CBDL rats and reversed these biochemical alterations. Prophylactic Vild administration attenuated CBDL-induced HPS in rats via direct hepatoprotective effects in the form of anti-oxidant, anti-inflammatory, anti-angiogenic and anti-fibrotic effects beside inhibition of pathological intrahepatic vasodilatation.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt.
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Khaled A Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
4
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Siegenthaler J, Betsholtz C. Commentary on "Structural characterization of SLYM - a 4th meningeal membrane". Fluids Barriers CNS 2024; 21:69. [PMID: 39252039 PMCID: PMC11385822 DOI: 10.1186/s12987-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
For centuries, the meninges have been described as three membranes: the inner pia, middle arachnoid and outer dura. It was therefore sensational when in early 2023 Science magazine published a report of a previously unrecognized - 4th - meningeal membrane located between the pia and arachnoid. Multiple features were claimed for this new membrane: a single cell layer marked by the transcription factor Prox1 that formed a barrier to low molecular weight substances and separated the subarachnoid space (SAS) into two fluid-filled compartments, not one as previously described. These features were further claimed to facilitate unidirectional glymphatic cerebrospinal fluid transport. These claims were immediately questioned by several researchers as misinterpretations of the authors' own data. The critics argued that (i) the 4th meningeal membrane as claimed did not exist as a separate structure but was part of the arachnoid, (ii) the "outer SAS" compartment was likely an artifactual subdural space created by the experimental procedures, and (iii) the 4th membrane barrier property was confused with the arachnoid barrier. Subsequent publications in late 2023 indeed showed that Prox1 + cells are embedded within the arachnoid and located immediately inside of and firmly attached to the arachnoid barrier cells by adherens junctions and gap junctions. In a follow-up study, published in this journal, the lead authors of the Science paper Kjeld Møllgård and Maiken Nedergaard reported additional observations they claim support the existence of a 4th meningeal membrane and the compartmentalization of the SAS into two non-communicating spaces. Their minor modification to the original paper was the 4th meningeal membrane was better observable at the ventral side of the brain than at the dorsal side where it was originally reported. The authors also claimed support for the existence of a 4th meningeal membrane in classical literature. Here, we outline multiple concerns over the new data and interpretation and argue against the claim there is prior support in the literature for a 4th meningeal membrane.
Collapse
Affiliation(s)
- Julie Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Anschutz Medical Campus, 12800 East 19th Ave, MS-8313, Aurora, CO, 80045, USA.
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
6
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Padilla Apuntate N, Puerto Cabeza CG, Gallego Royo A, Goñi Ros N, Abadía Molina C, Acha Pérez J, Calmarza P. Estudio del efecto del tratamiento con fármacos antidiabéticos sobre el metabolismo óseo. ADVANCES IN LABORATORY MEDICINE 2024; 5:90-95. [PMID: 38634085 PMCID: PMC11019870 DOI: 10.1515/almed-2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Objetivos La prevalencia de la diabetes mellitus tipo 2 (DMT2) está aumentando de forma exponencial en todo el mundo, habiéndose comprobado que estos pacientes tienen mayor riesgo de presentar fracturas óseas, con respecto a la población sana, por lo que resulta de gran relevancia el conocimiento del efecto de los fármacos antidiabéticos sobre el metabolismo óseo. Métodos Estudio estadístico descriptivo, retrospectivo, de 106 pacientes en tratamiento con seis grupos de fármacos antidiabéticos: insulina, inhibidores de dipeptidilpeptidasa 4 (iDPP4), agonistas del receptor del péptido similar al glucagón tipo 1 (arGLP1), sulfonilureas, inhibidores del cotransportador de sodio-glucosa tipo 2 (iSGLT2) y pioglitazona, en los que se determinaron osteocalcina (OC), fosfatasa alcalina ósea (FAO) y telopéptido C-terminal del colágeno tipo 1 o beta-crosslaps (β-CTx). Resultados Se encontraron concentraciones más elevadas de β-CTx en los pacientes tratados con pioglitazona que en los tratados con iDPP4 (p=0,035), iSGLT2 (p=0,020) y con arGLP1 (p<0,001), siendo los pacientes tratados con arGLP1 los que presentaron las concentraciones más bajas de β-CTx. Conclusiones El tipo de tratamiento antidiabético recibido en pacientes que padecen DMT2 puede afectar el remodelado óseo. En nuestro estudio los pacientes que fueron tratados con pioglitazona mostraron las concentraciones más elevadas de β-CTx con respecto al resto de grupos de fármacos, lo cual parece indicar la conveniencia de evitar estos fármacos, sobre todo en mujeres postmenopáusicas con DMT2. Los fármacos arGLP1 presentaron los valores más bajos de β-CTx, por lo que podrían ejercer un efecto beneficioso sobre el metabolismo óseo.
Collapse
Affiliation(s)
| | | | - Alba Gallego Royo
- Servicio de Medicina Preventiva, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Nuria Goñi Ros
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Claudia Abadía Molina
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Javier Acha Pérez
- Servicio de Endocrinología y Nutrición, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, España
- Universidad de Zaragoza, Zaragoza, España
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, Madrid, España
| |
Collapse
|
8
|
Padilla Apuntate N, Puerto Cabeza CG, Gallego Royo A, Goñi Ros N, Abadía Molina C, Acha Pérez J, Calmarza P. Effects of antidiabetic drugs on bone metabolism. ADVANCES IN LABORATORY MEDICINE 2024; 5:85-89. [PMID: 38634079 PMCID: PMC11019883 DOI: 10.1515/almed-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Objectives The prevalence of diabetes mellitus type 2 (DMT2) is increasing exponentially worldwide. DMT2 patients have been found to be at a higher risk for bone fractures than the healthy population. Hence, improving our understanding of the impact of antidiabetic drugs on bone metabolism is crucial. Methods A descriptive, retrospective study involving 106 patients receiving six groups of antidiabetic drugs: insulin; dipeptidylpeptidase four inhibitors (DPP4i); glucagon-like peptide type 1 receptor agonists (GLP1ra); sulfonylureas; sodium-glucose cotransporter two inhibitors (SGLT2i); and pioglitazone, in which osteocalcin (OC), bone alkaline phosphatase (BAP) and C-terminal telopeptide of collagen type 1 or beta-crosslaps (β-CTx) were determined. Results β-CTx concentrations were higher in the patients treated with pioglitazone, as compared to patients treated with DPP4i (p=0.035), SGLT2i (p=0.020) or GLP1ra (p<0.001). The lowest β-CTx concentrations were observed in the patients treated with GLP1ra. Conclusions Bone remodeling is influenced by the type of antidiabetic drug administered to DMT2 patients. In our study, the patients who received pioglitazone showed higher β-CTx concentrations, as compared to patients treated with other types of antidiabetic drugs. This finding highlights the convenience of avoiding these drugs, especially in postmenopausal women with DMT2. GLP1ra drugs were associated with the lowest β-CTx concentrations, which suggests that these agents could exert beneficial effects on bone metabolism.
Collapse
Affiliation(s)
| | | | - Alba Gallego Royo
- Service of Preventive Medicine, Miguel Servet University Hospital, Zaragoza, Spain
| | - Nuria Goñi Ros
- Service of Clinical Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía Molina
- Service of Clinical Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
| | - Javier Acha Pérez
- Service of Endocrinology and Nutrition, Miguel Servet University Hospital, Zaragoza, Spain
| | - Pilar Calmarza
- Service of Clinical Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
- Institute of Biomedical Research (IIS) of Aragón, Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
- Spanish Network-Center for Cardiovascular Biomedical Research) (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Member of SEQCML Oxidative Stress Commission and Lipoproteins and Vascular Diseases Commission, Madrid, Spain
| |
Collapse
|
9
|
Shen Y, Shi Q, Zou X, Meng W, Tian H, Du L, Li S. Time-dependent risk of fracture in adults with type 2 diabetes receiving anti-diabetic drug: A one-stage network meta-analysis. Diabetes Metab Res Rev 2024; 40:e3780. [PMID: 38367257 DOI: 10.1002/dmrr.3780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2023] [Accepted: 12/31/2023] [Indexed: 02/19/2024]
Abstract
AIMS To assess the time-dependent risk of fracture in adults with type 2 diabetes receiving anti-diabetic drugs. MATERIALS AND METHODS We searched MEDLINE, EMBASE, and Cochrane Library up to 18 November 2021, for randomized controlled trials (RCTs) and propensity-score-matched non-randomized studies (NRSs) comparing all anti-diabetic drugs with standard treatment or with each other on fracture in adults with type 2 diabetes. The study performed a one-stage network meta-analysis using discrete-time hazard regression with reconstructed individual time-to-event data. RESULTS This network meta-analysis involved seven RCTs (65,051 adults with type 2 diabetes) with a median follow-up of 36 months and three propensity-score-based NRSs (17,954 participants) with a median follow-up of 27.3 months. Among anti-diabetic drugs, thiazolidinediones increased the overall hazard of fracture by 42% (95% credible interval [CrI], 3%-97%) and almost tripled the risk after 4 years (hazard ratio [HR], 2.74; 95% CrI, 1.53-4.80). Credible subgroup analysis suggested that thiazolidinediones increased the hazard of fracture only in females (HR, 2.19; 95% CrI, 1.26-3.74) but not among males (HR, 0.81; 95% CrI, 0.45-1.40). Moderate certainty evidence established that thiazolidinediones increase 92 fractures in five years per 1000 female patients. We did not find the risk of fractures with other anti-diabetic drugs including metformin, sulfonylureas, sodium-glucose cotransporter-2 (SGLT2) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors. CONCLUSIONS Long-term use of thiazolidinediones elevates the risk of fracture among females with type 2 diabetes. There is no evidence eliciting fracture risk associated with other anti-diabetic drugs.
Collapse
Affiliation(s)
- Yanjiao Shen
- Department of Endocrinology and Metabolism, MAGIC China Centre, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qingyang Shi
- Department of Endocrinology and Metabolism, MAGIC China Centre, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherland
| | - Xinyu Zou
- Department of Endocrinology and Metabolism, MAGIC China Centre, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, MAGIC China Centre, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liang Du
- Medical Device Regulatory Research and Evaluation Center, Chinese Evidence-Based Medicine Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, MAGIC China Centre, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Cipriani C, Lauriero G, Tripepi G, Ferrari S, Bover J, Ravera M, Barbuto S, Cianciolo G, De Nicola L, Brandi ML, Minisola S, Mereu MC, Corrao G, Del Vecchio L, Fusaro M. Effect of Antidiabetic Drugs on Bone Health in Patients with Normal Renal Function and in Chronic Kidney Disease (CKD): Insight into Clinical Challenges in the Treatment of Type 2 Diabetes. J Clin Med 2023; 12:7260. [PMID: 38068310 PMCID: PMC10707671 DOI: 10.3390/jcm12237260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 09/14/2024] Open
Abstract
Among the metabolic changes occurring during the course of type 2 diabetes (T2DM) and diabetic kidney disease (DKD), impaired bone health with consequent increased fracture risk is one of the most complex and multifactorial complications. In subjects with diabetic kidney disease, skeletal abnormalities may develop as a consequence of both conditions. In the attempt to define a holistic approach to diabetes, potential effects of various classes of antidiabetic drugs on the skeleton should be considered in the setting of normal kidney function and in DKD. We reviewed the main evidence on these specific topics. Experimental studies reported potential beneficial and harmful effects on bone by different antidiabetics, with few data available in DKD. Clinical studies specifically designed to evaluate skeletal effects of antidiabetics have not been performed; notwithstanding, data gleaned from randomized controlled trials and intervention studies did not completely confirm observations made by basic research. In the aggregate, evidence from meta-analyses of these studies suggests potential positive effects on fracture risk by metformin and glucagon-like peptide-1 receptor agonists, neutral effects by dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors, and sulfonylureas, and negative effects by insulin and thiazolidinediones. As no clinical recommendations on the management of antidiabetic drugs currently include fracture risk assessment among the main goal of therapy, we propose an integrated approach with the aim of defining a patient-centered management of diabetes in chronic kidney disease (CKD) and non-CKD patients. Future clinical evidence on the skeletal effects of antidiabetics will help in optimizing the approach to a personalized and more effective therapy of diabetes.
Collapse
Affiliation(s)
- Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gabriella Lauriero
- Nephrology and Dialysis Unit, Ospedale “F. Perinei”, ASL of Bari, 70022 Bari, Italy;
| | - Giovanni Tripepi
- National Research Council (CNR), Institute of Clinical Physiology, Section of Biostatistics, 89124 Reggio Calabria, Italy;
| | - Serge Ferrari
- Department of Medicine, Service of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Jordi Bover
- Department of Nephrology, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain;
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain
| | - Maura Ravera
- Nephrology, Dialysis, and Transplantation, University of Genoa and Policlinico San Martino, 16132 Genoa, Italy;
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.B.); (G.C.)
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.B.); (G.C.)
| | - Luca De Nicola
- Division of Nephrology, University of Campania “Luigi Vanvitelli”, 80137 Naples, Italy;
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy;
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Giovanni Corrao
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant’ Anna Hospital, ASST Lariana, 22042 Como, Italy;
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy
- Department of Medicine, University of Padua, 35128 Padua, Italy
| |
Collapse
|
11
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
12
|
Wu C, Yang C, Wang Y, Wang J, Zhu J. Molecular Characterization and Functional Analysis of the Dipeptidyl Peptidase IV from Venom of the Ectoparasitoid Scleroderma guani. Toxins (Basel) 2023; 15:311. [PMID: 37235347 PMCID: PMC10222045 DOI: 10.3390/toxins15050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a proline-specific serine peptidase that remains poorly investigated in terms of venom composition. Here, we describe the molecular characteristics and possible functions of DPPIV as a major venom component of the ant-like bethylid ectoparasitoid, Scleroderma guani, named SgVnDPPIV. The SgVnDPPIV gene was cloned, which encodes a protein with the conserved catalytic triads and substrate binding sites of mammalian DPPIV. This venom gene is highly expressed in the venom apparatus. Recombinant SgVnDPPIV, produced in Sf9 cells using the baculovirus expression system, has high enzymatic activity, which can be efficiently inhibited by vildagliptin and sitagliptin. Functional analysis revealed that SgVnDPPIV affects genes related to detoxification, lipid synthesis and metabolism, response to stimuli, and ion exchange in pupae of Tenebrio molitor, an envenomated host of S. guani. The present work contributes towards understanding the role of venom DPPIV involved in the interaction between parasitoid wasp and its host.
Collapse
Affiliation(s)
- Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Cheng Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Yuqin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Abstract
Type 2 diabetes mellitus (T2DM), is a chronic metabolic disease, characterized by the presence of hyperglycemia and insulin resistance. The key treatment strategies for T2DM include modification of lifestyle, medications, and continuous glucose monitoring. DM patients often have DM-associated morbidities and comorbidities; however, disorders of musculoskeletal system are often neglected, compared to other major systems in DM patients. Based on sharing similar pathophysiology of DM and osteoporosis, it is supposed that the use of antidiabetic agents (ADAs) may not only provide the lowering glucose level effect and the maintenance of the sugar homeostasis to directly delay the tissue damage secondary to hyperglycemia but also offer the benefits, such as the prevention of developing osteoporosis and fractures. Based on the current review, evidence shows the positive correlation between DM and osteoporosis or fracture, but the effectiveness of using ADA in the prevention of osteoporosis and subsequent reduction of fracture seems to be inconclusive. Although the benefits of ADA on bone health are uncertain, the potential value of "To do one and to get more" therapeutic strategy should be always persuaded. At least, one of the key treatment strategies as an establishment of healthy lifestyle may work, because it improves the status of insulin resistance and subsequently helps DM control, prevents the DM-related micro- and macrovascular injury, and possibly strengthens the general performance of musculoskeletal system. With stronger musculoskeletal system support, the risk of "fall" may be decreased, because it is associated with fracture. Although the ADA available in the market does not satisfy the policy of "To do one and to get more" yet, we are looking forward to seeing the continuously advanced technology of drug development on diabetic control, and hope to see their extra-sugar-lowering effects.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| | - Szu-Ting Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Hsun Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|