1
|
Rehder P, Packeiser EM, Körber H, Goericke-Pesch S. Altered Sertoli Cell Function Contributes to Spermatogenic Arrest in Dogs with Chronic Asymptomatic Orchitis. Int J Mol Sci 2025; 26:1108. [PMID: 39940876 PMCID: PMC11817828 DOI: 10.3390/ijms26031108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Acquired infertility due to chronic asymptomatic orchitis (CAO) is a common finding in male dogs. It is characterized by spermatogenic arrest, a significant reduction in spermatogonia, immune cell infiltration and a disruption of the blood-testis barrier. Sertoli cells are a key factor for spermatogenesis and the testicular micromilieu. We hypothesize altered Sertoli cell function to be involved in the pathogenesis of canine CAO. Consequently, the aim was to gain further insights into the spermatogonial stem cell niche and Sertoli cell function in CAO-affected dogs. Therefore, the testicular expression of the Sertoli cell-derived factors bFGF, GDNF, WNT5A, BMP4, CXCL12 and LDHC were evaluated in 15 CAO testis tissues and 10 normospermic controls by relative quantitative real-time PCR (qPCR). Additionally, the protein expression patterns of bFGF, GDNF and WNT5A were visualized immunohistochemically (IHC). This study revealed an overexpression of bFGF (IHC, p < 0.0001), GDNF (qPCR, p = 0.0036), WNT5A (IHC, p = 0.0066) and CXCL12 (qPCR, p = 0.0003) and a reduction in BMP4 (qPCR, p = 0.0041) and LDHC (qPCR, p = 0.0003) in CAO-affected testis in dogs, clearly confirming impaired Sertoli cell function in canine CAO. Sertoli cell function is essential for spermatogenesis and must be considered for potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit—Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (P.R.); (E.-M.P.); (H.K.)
| |
Collapse
|
2
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
3
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
4
|
Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171299. [PMID: 38423318 DOI: 10.1016/j.scitotenv.2024.171299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
After aging in the environment, some nanoplastics will carry different charges and functional groups, thereby altering their toxicological effects. To evaluate the potential impact of aging of nanoplastics on the mammalian reproductive system, we exposed C57BL/6 male mice to a dose of 5 mg/kg/d polystyrene nanoparticles (PS-NPs) with different functional groups (unmodified, carboxyl functionalized and amino functionalized) for 45 days for this study. The results suggest that PS-NPs with different functional groups triggered oxidative stress, a decreased in the testis index, disruption of the outer wall of the seminiferous tubules, reduction in the number of spermatogonia cells and sperm counts, and an increased in sperm malformations. We performed GO and KEGG enrichment analysis on the differentially expressed proteins, and found they were mainly enriched in protein transport, RNA splicing and mTOR signaling. We confirmed that the PI3K-AKT-mTOR pathway is over activated, which may lead to reduction of spermatogonia stem cells by over differentiation. Strikingly, PS-NPs with functional group modifications are more toxic than those of unmodified polystyrene, and that PS-NPs with positively charged amino modifications are the most toxic. This study provides a new understanding for correctly evaluating the toxicological effects of plastic aging, and of the mechanism responsible for the reproductive toxicity caused by nanoplastics.
Collapse
Affiliation(s)
- Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mengling Jiang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
5
|
Zhang P, Jing K, Tian Y, Li Y, Chai Z, Cai X. Additional glial cell line-derived neurotrophic factor in vitro promotes the proliferation of undifferentiated spermatogonia from sterile cattleyak. Anim Reprod Sci 2024; 260:107385. [PMID: 38056175 DOI: 10.1016/j.anireprosci.2023.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Tian
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuqian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Rajachandran S, Zhang X, Cao Q, Caldeira-Brant AL, Zhang X, Song Y, Evans M, Bukulmez O, Grow EJ, Nagano M, Orwig KE, Chen H. Dissecting the spermatogonial stem cell niche using spatial transcriptomics. Cell Rep 2023; 42:112737. [PMID: 37393620 PMCID: PMC10530051 DOI: 10.1016/j.celrep.2023.112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/07/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Spermatogonial stem cells (SSCs) in the testis support the lifelong production of sperm. SSCs reside within specialized microenvironments called "niches," which are essential for SSC self-renewal and differentiation. However, our understanding of the molecular and cellular interactions between SSCs and niches remains incomplete. Here, we combine spatial transcriptomics, computational analyses, and functional assays to systematically dissect the molecular, cellular, and spatial composition of SSC niches. This allows us to spatially map the ligand-receptor (LR) interaction landscape in both mouse and human testes. Our data demonstrate that pleiotrophin regulates mouse SSC functions through syndecan receptors. We also identify ephrin-A1 as a potential niche factor that influences human SSC functions. Furthermore, we show that the spatial re-distribution of inflammation-related LR interactions underlies diabetes-induced testicular injury. Together, our study demonstrates a systems approach to dissect the complex organization of the stem cell microenvironment in health and disease.
Collapse
Affiliation(s)
- Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andre L Caldeira-Brant
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangfan Zhang
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Youngmin Song
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Evans
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orhan Bukulmez
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Nagano
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Sagaradze G, Monakova A, Efimenko A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24119379. [PMID: 37298329 DOI: 10.3390/ijms24119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Adult stem cells maintaining tissue homeostasis and regeneration are tightly regulated by their specific microenvironments or stem cell niches. The dysfunction of niche components may alter the activity of stem cells and ultimately lead to intractable chronic or acute disorders. To overcome this dysfunction, niche-targeting regenerative medicine treatments such as gene, cell, and tissue therapy are actively investigated. Here, multipotent mesenchymal stromal cells (MSCs), and particularly their secretomes, are of high interest due to their potency to recover and reactivate damaged or lost stem cell niches. However, a workflow for the development of MSC secretome-based products is not fully covered by regulatory authorities, and and this issue significantly complicates their clinical translation and has possibly been expressed in a huge number of failed clinical trials. One of the most critical issues in this regard relates to the development of potency assays. In this review, guidelines for biologicals and cell therapies are considered to be applied for the development of potency assays for the MSC secretome-based products that aim for tissue regeneration. Specific attention is paid to their possible effects on stem cell niches and to a spermatogonial stem cell niche in particular.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anna Monakova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| |
Collapse
|