1
|
Tang W, Wang Z, Yuan X, Chen L, Guo H, Qi Z, Zhang Y, Xie X. DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure. Front Cardiovasc Med 2025; 11:1442238. [PMID: 39844908 PMCID: PMC11752391 DOI: 10.3389/fcvm.2024.1442238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Heart failure (HF) has a very high prevalence in patients with maintenance hemodialysis (MHD). However, there is still a lack of effective and reliable HF diagnostic markers and therapeutic targets for patients with MHD. Methods In this study, we analyzed transcriptome profiles of 30 patients with MHD by high-throughput sequencing. Firstly, the differential genes between HF group and control group of patients with MHD were screened. Secondly, HF-related genes were screened by WGCNA, and finally the genes intersecting the two were selected as candidate genes. Machine learning was used to identify hub gene and construct a nomogram model, which was verified by ROC curve and RT-qPCR. In addition, we further explored potential mechanism and function of hub genes in HF of patients with MHD through GSEA, immune cell infiltration analysis, drug analysis and establishment of molecular regulatory network. Results Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. Through GSEA analysis, it was found that the four genes were closely related to ribosome, cell cycle, ubiquitin-mediated proteolysis. We constructed a ceRNA regulatory network, and found that 4 hub genes (TYMS, CDCA2 and DEPDC1B) might be regulated by 4 miRNAs (hsa-miR-1297, hsa-miR-4465, hsa-miR-27a-3p, hsa-miR-129-5p) and 21 lncRNAs (such as HCP5, CAS5, MEG3, HCG18). 24 small molecule drugs were predicted based on TYMS through DrugBank website. Finally, qRT-PCR experiments showed that the expression trend of biomarkers was consistent with the results of transcriptome sequencing. Discussion Overall, our results reveal the molecular mechanism of HF in patients with MHD and provide insights into potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Wenwu Tang
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
- Department of Nephrology, Guangyuan Central Hospital, Guangyuan, China
| | - Zhixin Wang
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| | - Xinzhu Yuan
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| | - Liping Chen
- Psychiatry Major, North Sichuan Medical College, Nanchong, China
| | - Haiyang Guo
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhirui Qi
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Ying Zhang
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| | - Xisheng Xie
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Lin L, Zhang Y, Zeng F, Zhu C, Guo C, Huang H, Jin H, He H, Chen S, Zhou J, Chen Y, Xu Y, Li D, Yu W. In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis. Brain Res 2024; 1845:149276. [PMID: 39442645 DOI: 10.1016/j.brainres.2024.149276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.
Collapse
Affiliation(s)
- Ling Lin
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Yuanxin Zhang
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Fengshan Zeng
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Chanyan Zhu
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Chunmao Guo
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Haixiong Huang
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Hanna Jin
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Huahua He
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Shaolan Chen
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Jinyan Zhou
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Yao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuqian Xu
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Dongqi Li
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| | - Wenlin Yu
- Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
| |
Collapse
|
3
|
Zhao N, Feng C, Zhang Y, Chen H, Ma J. Cell Division Cycle 42 Improves Renal Functions, Fibrosis, Th1/Th17 Infiltration and Inflammation to Some Degree in Diabetic Nephropathy. Inflammation 2024:10.1007/s10753-024-02169-1. [PMID: 39535664 DOI: 10.1007/s10753-024-02169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Our two previous studies observed that cell division cycle 42 (CDC42) was lower and correlated with improved renal function and inflammation in diabetic nephropathy (DN) patients, and CDC42 inhibited renal tubular epithelial cell fibrosis and inflammation under high glucose condition. Sequentially, this current study aimed to investigate the effect of CDC42 on improving renal function, fibrosis, and inflammation in DN mice, and its interaction with T cell receptor (TCR) related pathways. Mice were treated by streptozotocin to construct early-stage DN model, then transfected with CDC42 overexpression adenovirus, followed by simultaneous treatment of LY294002 (PI3K/AKT inhibitor) and CI-1040 (ERK inhibitor), respectively. CDC42 reduced blood glucose, creatinine, and 24 h urine protein in DN mice, but only showed a tendency to decrease blood urea nitrogen without statistical significance. Hematoxylin&eosin staining revealed that CDC42 descended the glomerular volume, basement membrane thickness, and inflammatory cell infiltration in kidney. Meanwhile, CDC42 lowered fibronectin, TGF-β1, and Collagen I expressions in kidney, but not decreased α-SMA significantly. Besides, CDC42 decreased T-helper (Th) 1 and Th17 cells in kidney, and reduced serum IFN-γ, IL-1β, IL-17A, and TNF-α but not IL-6. Regarding TCR-related pathways, CDC42 activated AKT and ERK pathways but not JNK pathway. However, the treatment of LY294002 and CI-1040 had limited effect on attenuating CDC42's functions on renal function and fibrotic markers. CDC42 improves renal functions, fibrosis, Th1/Th17 infiltration and inflammation to some degree in DN mice, these functions may be independent to AKT and ERK pathways.
Collapse
Affiliation(s)
- Na Zhao
- Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, No.411 Gogol Avenue, Nangang District, Harbin, 150008, China
| | - Chuwen Feng
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Harbin, 150040, China
| | - Yuehui Zhang
- Department of Chinese Medicine Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huijun Chen
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, No.411 Gogol Avenue, Nangang District, Harbin, 150008, China.
| | - Jian Ma
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Harbin, 150040, China.
| |
Collapse
|
4
|
Deng XJ, Wang YN, Lv CB, Qiu ZZ, Zhu LX, Shi JH, Sana SRGL. Effect of cuproptosis on acute kidney injury after cardiopulmonary bypass in diabetic patients. World J Diabetes 2024; 15:2123-2134. [PMID: 39493567 PMCID: PMC11525729 DOI: 10.4239/wjd.v15.i10.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is a common procedure in cardiac surgery. CPB is a high-risk factor for acute kidney injury (AKI), and diabetes is also such a factor. Diabetes can lead to copper overload. It is currently unclear whether AKI after CPB in diabetic patients is related to copper overload. AIM To explore whether the occurrence of CPB-AKI in diabetic patients is associated with cuproptosis. METHODS Blood and urine were collected from clinical diabetic and non-diabetic patients before and after CPB. Levels of copper ion, lactate, glucose, heat shock protein-70 (HSP-70), and dihydrolipoamide dehydrogenase (DLAT) were determined. A diabetic rat model was established and CPB was performed. The rats were assessed for the development of CPB-AKI, and for the association of AKI with cuproptosis by detecting copper levels, iron-sulfur cluster proteins and observation of mitochondrial structure by electron microscopy. RESULTS CPB resulted in elevations of copper, lactate, HSP-70 and DLAT in blood and urine in both diabetic and non-diabetic patients. CPB was associated with pathologic and mitochondrial damage in the kidneys of diabetic rats. Cuproptosis-related proteins also appeared to be significantly reduced. CONCLUSION CPB-AKI is associated with cuproptosis. Diabetes mellitus is an important factor aggravating CPB-AKI and cuproptosis.
Collapse
Affiliation(s)
- Xi-Jin Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yi-Nan Wang
- Department of The Health Management Service Evaluation Center, The Health Management Service Evaluation Center of Heilongjiang Province, Harbin 150000, Hei-longjiang Province, China
| | - Chuan-Bao Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 150001, Guangdong Province, China
| | - Zhong-Zhi Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ling-Xin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jing-Hui Shi
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
5
|
Xiao R, Han J, Deng Y, Zhang L, Qian Y, Tian N, Yang Z, Zhang L. AGTR1: a potential biomarker associated with the occurrence and prognosis of lung adenocarcinoma. Front Oncol 2024; 14:1441235. [PMID: 39450258 PMCID: PMC11499140 DOI: 10.3389/fonc.2024.1441235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Lung adenocarcinoma, a disease with complex pathogenesis, high mortality and poor prognosis, is one of the subtypes of lung cancer. Hence, it is very crucial to find novel biomarkers as diagnostic and therapeutic targets for LUAD. Methods GSE10072 was used for DEGs and WGCNA, and the intersection genes were subjected to enrichment analysis through Metascape and GSEA. Key genes were screened by three machine learning methods. Further, the reliability of key genes was identified by ROC, COX regression analysis and qRT-PCR. CIBERSORT and Spearman analysis were used for understanding the relationships of LUAD, immunity and key genes. In addition, ceRNA networks and potential drugs of key genes were constructed and predicted. Results After overlapping 631 DEGs and key module genes, 623 intersection genes were obtained. Subsequently, DUOX1, CD36, AGTR1, FHL5 and SSR4 were further selected using three machine learning methods. Reliability analysis demonstrated that AGTR1 possesses important predictive value for the occurrence and prognosis of LUAD. The enrichment analysis showed that AGTR1 was significantly enriched in the GPCR-related pathways. Immune infiltration analysis showed that the development of LUAD was related to the changes of immune cells such as M2 macrophages and neutrophils, which were regulated by AGTR1. Further, AGTR1 is also involved in regulating immune chemokines, checkpoints and immune regulatory factors such as PECAM1, ADARB1, SPP1 and ENO1, all of them playing important roles in immune cell regulation, tumor cell proliferation and migration. Further, the drug-gene interaction network screened out 13 potential drugs such as Benazepril, Valsartan, Eprosartan, and so on. Discussion AGTR1 is a potential biomarker for the occurrence and progression of LUAD, closely related to tumor immunity, proliferation and migration. It can serve as a new target for the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Zhang
- College of Life Science/Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Chen JH, Ye L, Zhu SL, Yang Y, Xu N. DNMT1-Mediated the Downregulation of FOXF1 Promotes High Glucose-induced Podocyte Damage by Regulating the miR-342-3p/E2F1 Axis. Cell Biochem Biophys 2024; 82:2957-2975. [PMID: 39014186 DOI: 10.1007/s12013-024-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Podocyte damage plays a crucial role in the occurrence and development of diabetic nephropathy (DN). Accumulating evidence suggests that dysregulation of transcription factors plays a crucial role in podocyte damage in DN. However, the biological functions and underlying mechanisms of most transcription factors in hyperglycemia-induced podocytes damage remain largely unknown. Through integrated analysis of data mining, bioinformatics, and RT-qPCR validation, we identified a critical transcription factor forkhead box F1 (FOXF1) implicated in DN progression. Moreover, we discovered that FOXF1 was extensively down-regulated in renal tissue and serum from DN patients as well as in high glucose (HG)-induced podocyte damage. Meanwhile, our findings showed that FOXF1 might be a viable diagnostic marker for DN patients. Functional experiments demonstrated that overexpression of FOXF1 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and fibrosis in HG-induced podocytes damage. Mechanistically, we found that the downregulation of FOXF1 in HG-induced podocyte damage was caused by DNMT1 directly binding to FOXF1 promoter and mediating DNA hypermethylation to block FOXF1 transcriptional activity. Furthermore, we found that FOXF1 inhibited the transcriptional expression of miR-342-3p by binding to the promoter of miR-342, resulting in reduced sponge adsorption of miR-342-3p to E2F1, promoting the expression of E2F1, and thereby inhibiting HG-induced podocytes damage. In conclusion, our findings showed that blocking the FOXF1/miR-342-3p/E2F1 axis greatly alleviated HG-induced podocyte damage, which provided a fresh perspective on the pathogenesis and therapeutic strategies for DN patients.
Collapse
Affiliation(s)
- Jie-Hui Chen
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China.
| | - Ling Ye
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Sheng-Lang Zhu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Yun Yang
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Ning Xu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| |
Collapse
|
7
|
Lin Q, Zheng Z, Ni H, Xu Y, Nie H. Cellular senescence-Related genes define the immune microenvironment and molecular characteristics in severe asthma patients. Gene 2024; 919:148502. [PMID: 38670389 DOI: 10.1016/j.gene.2024.148502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Recent studies have shown that cellular senescence is involved in the pathogenesis of severe asthma (SA). The objective of this study was to investigate the role of cellular senescence-related genes (CSGs) in the pathogenesis of SA. Here, 54 differentially expressed CSGs were identified in SA patients compared to healthy control individuals. Among the 54 differentially expressed CSGs, 3 CSGs (ETS2, ETS1 and AURKA) were screened using the LASSO regression analysis and logistic regression analysis to establish the CSG-based prediction model to predict severe asthma. Moreover, we found that the protein expression levels of ETS2, ETS1 and AURKA were increased in the severe asthma mouse model. Then, two distinct senescence subtypes of SA with distinct immune microenvironments and molecular biological characteristics were identified. Cluster 1 was characterized by increased infiltration of immature dendritic cells, regulatory T cells, and other cells. Cluster 2 was characterized by increased infiltration levels of eosinophils, neutrophils, and other cells. The molecular biological characteristics of Cluster 1 included aerobic respiration and oxidative phosphorylation, whereas the molecular biological characteristics of Cluster 2 included activation of the immune response and immune receptor activity. Then, we established an Random Forest model to predict the senescence subtypes of SA to guide treatment. Finally, potential drugs were searched for each senescence subgroup of SA patients via the Connectivity Map database. A peroxisome proliferator-activated receptor agonist may be a potential therapeutic drug for patients in Cluster 1, whereas a tachykinin antagonist may be a potential therapeutic drug for patients in Cluster 2. In summary, CSGs are likely involved in the pathogenesis of SA, which may lead to new therapeutic options for SA patients.
Collapse
Affiliation(s)
- Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zhishui Zheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
8
|
Wang J, Song X, Xia Z, Feng S, Zhang H, Xu C, Zhang H. Serum biomarkers for predicting microvascular complications of diabetes mellitus. Expert Rev Mol Diagn 2024; 24:703-713. [PMID: 39158206 DOI: 10.1080/14737159.2024.2391021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Diabetic microvascular complications such as retinopathy, nephropathy, and neuropathy are primary causes of blindness, terminal renal failure, and neuropathic disorders in type 2 diabetes mellitus patients. Identifying reliable biomarkers promptly is pivotal for early detection and intervention in these severe complications. AREAS COVERED This review offers a thorough examination of the latest research concerning serum biomarkers for the prediction and assessment of diabetic microvascular complications. It encompasses biomarkers associated with glycation, oxidative stress, inflammation, endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis. The review also highlights the potential of emerging biomarkers, such as microRNAs and long non-coding RNAs. EXPERT OPINION Serum biomarkers are emerging as valuable tools for the early assessment and therapeutic guidance of diabetic microvascular complications. The biomarkers identified not only reflect the underlying pathophysiology but also align with the extent of the disease. However, further validation across diverse populations and improvement of the practicality of these biomarkers in routine clinical practice are necessary. Pursuing these objectives is essential to advance early diagnosis, risk assessment, and individualized treatment regimens for those affected by diabetes.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital Chuandong Hospital & Dazhou First People's Hospital, Dazhou, China
| | - Xiaoyi Song
- School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqiao Xia
- Laboratory medicine, Qianwei People's Hospital, Leshan, Sichuan, China
| | - Shu Feng
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hangfeng Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengjie Xu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Król-Kulikowska M, Banasik M, Kepinska M. The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy. Antioxidants (Basel) 2024; 13:838. [PMID: 39061907 PMCID: PMC11273648 DOI: 10.3390/antiox13070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), the altered production of which is characteristic of diabetic nephropathy. NOS exists in three isoforms: NOS1, NOS2, and NOS3. Moreover, there are reports about the potential role of NOS3 polymorphisms in the development of diabetes complications. The aim of this study was to assess the role of selected NOS polymorphisms-rs3782218 (NOS1), rs1137933 (NOS2), rs1799983, rs2070744, and rs61722009 (NOS3)-in the risk of developing diabetic nephropathy and in the likelihood of renal replacement therapy. METHODS The studied polymorphisms were analyzed in a group of 232 patients divided into three groups. Four polymorphisms (rs3782218, rs1137933, rs1799983, rs2070744) were genotyped using the PCR-RFLP, while the rs61722009 polymorphism was genotyped using the PCR. RESULTS The C/C genotype and the C allele of the rs3782218 polymorphism (NOS1) were associated with an increased risk of developing diabetic nephropathy and an increased likelihood of renal replacement therapy. In turn, the G allele of the rs1137933 polymorphism (NOS2) reduces the likelihood of renal replacement therapy. CONCLUSIONS The specific genotypes or alleles of the rs3782218 (NOS1) and rs1137933 (NOS2) polymorphisms seem to be potential risk factors for diabetic nephropathy and renal replacement therapy.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Mirosław Banasik
- Department and Clinic of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| |
Collapse
|
10
|
Cai H, Zeng Y, Luo D, Shao Y, Liu M, Wu J, Gao X, Zheng J, Zhou L, Liu F. Apoptosis and NETotic cell death affect diabetic nephropathy independently: An study integrative study encompassing bioinformatics, machine learning, and experimental validation. Genomics 2024; 116:110879. [PMID: 38851464 DOI: 10.1016/j.ygeno.2024.110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Although programmed cell death (PCD) and diabetic nephropathy (DN) are intrinsically conneted, the interplay among various PCD forms remains elusive. In this study, We aimed at identifying independently DN-associated PCD pathways and biomarkers relevant to the related pathogenesis. METHODS We acquired DN-related datasets from the GEO database and identified PCDs independently correlated with DN (DN-PCDs) through single-sample Gene Set Enrichment Analysis (ssGSEA) as well as, univariate and multivariate logistic regression analyses. Subsequently, applying differential expression analysis, weighted gene co-expression network analysis (WGCNA), and Mfuzz cluster analysis, we filtered the DN-PCDs pertinent to DN onset and progression. The convergence of various machine learning techniques ultimately spotlighted hub genes, substantiated through dataset meta-analyses and experimental validations, thereby confirming hub genes and related pathways expression consistencies. RESULTS We harmonized four DN-related datasets (GSE1009, GSE142025, GSE30528, and GSE30529) post-batch-effect removal for subsequent analyses. Our differential expression analysis yielded 709 differentially expressed genes (DEGs), comprising 446 upregulated and 263 downregulated DEGs. Based on our ssGSEA as well as univariate and multivariate logistic regressions, apoptosis and NETotic cell death were appraised as independent risk factors for DN (Odds Ratio > 1, p < 0.05). Next, we further refined 588 apoptosis- and NETotic cell death-associated genes through WGCNA and Mfuzz analysis, resulting in the identification of 17 DN-PCDs. Integrating protein-protein interaction (PPI) network analyses, network topology, and machine learning, we pinpointed hub genes (e.g., IL33, RPL11, and CX3CR1) as significant DN risk factors with expression corroborating in subsequent meta-analyses and experimental validations. Our GSEA enrichment analysis discerned differential enrichments between DN and control samples within pathways such as IL2/STAT5, IL6/JAK/STAT3, TNF-α via NF-κB, apoptosis, and oxidative phosphorylation, with related proteins such as IL2, IL6, and TNFα, which we subsequently submitted to experimental verification. CONCLUSION Innovatively stemming from from PCD interactions, in this study, we discerned PCDs with an independent impact on DN: apoptosis and NETotic cell death. We further screened DN evolution- and progression-related biomarkers, i.e. IL33, RPL11, and CX3CR1, all of which we empirically validated. This study not only poroposes a PCD-centric perspective for DN studies but also provides evidence for PCD-mediated immune cell infiltration exploration in DN regulation. Our results could motivate further exploration of DN pathogenesis, such as how the inflammatory microenvironment mediates NETotic cell death in DN regulation, representing a promising direction for future research.
Collapse
Affiliation(s)
- Huilian Cai
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yi Zeng
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dongqiang Luo
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ying Shao
- The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Manting Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiayu Wu
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaolu Gao
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiyuan Zheng
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lisi Zhou
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feng Liu
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, 510080, China.
| |
Collapse
|
11
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
Król-Kulikowska M, Abramenko N, Jakubek M, Banasik M, Kepinska M. The Role of Angiotensin-Converting Enzyme (ACE) Polymorphisms in the Risk of Development and Treatment of Diabetic Nephropathy. J Clin Med 2024; 13:995. [PMID: 38398308 PMCID: PMC10889548 DOI: 10.3390/jcm13040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) is responsible for the production of angiotensin II, and increased production of angiotensin II is observed in diabetes. What is more, ACE polymorphisms may play a role in the development of diabetic nephropathy. The aim of this study was to assess the role of selected ACE polymorphisms (rs4343 and rs4646994) in the risk of development of diabetic nephropathy and in the likelihood of renal replacement therapy. METHODS ACE polymorphisms were analyzed in a group of 225 patients who were divided into three subgroups. The rs4343 polymorphism was determined using the PCR-RFLP, and the rs4646994 polymorphism was determined using the PCR. Molecular docking between domains of ACE and its ligands was performed by using AutoDock Vina. RESULTS The G/G genotype of rs4343 polymorphism is associated with increased odds of developing diabetic nephropathy. The G allele is also associated with a higher risk of this disease. Similar results were obtained in patients who had already had a kidney transplant as a result of diabetic nephropathy. CONCLUSIONS The presence of G/G and G/A genotypes, and the G allele increases the likelihood of developing diabetic nephropathy. This may also be a risk factor for renal replacement therapy.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Mirosław Banasik
- Department and Clinic of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| |
Collapse
|
13
|
Tang C, Yang C, Wang P, Li L, Lin Y, Yi Q, Tang F, Liu L, Zhou W, Liu D, Zhang L, Yuan X. Identification and Validation of Glomeruli Cellular Senescence-Related Genes in Diabetic Nephropathy by Multiomics. Adv Biol (Weinh) 2024; 8:e2300453. [PMID: 37957539 DOI: 10.1002/adbi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Indexed: 11/15/2023]
Abstract
Accumulating evidence indicates that cellular premature senescence of the glomerulus, including endothelial cells, mesangial cells, and podocytes leads to diabetic nephropathy (DN), and DN is regarded as a clinical model of premature senescence. However, the role of cellular senescence-associated genes in the glomerulus in DN progression remains unclear. Therefore, this work aims to identify and validate potential cellular aging-related genes in the glomerulus in DN to provide novel clues for DN treatment based on anti-aging. The microarray GSE96804 dataset, including 41 diabetic glomeruli and 20 control glomeruli, is retrieved from the Gene Expression Omnibus (GEO) database and cellular senescence-related genes (CSRGs) are obtained from the GeneCards database and literature reports. Subsequently, PPI, GO, and KEGG enrichment are analyzed by screening the intersection between differentially expressed genes (DEGs) and CSRGs. scRNA-seq dataset GSE127235 is used to verify core genes expression in glomerulocytes of mice. Finally, db/db mice are utilized to validate the hub gene expression in the glomeruli, and high glucose-induced mesangial cells are used to confirm key gene expression. This study reveals that FOS and ZFP36 may play an anti-aging role in DN to ameliorate cell intracellular premature aging in mesangial cells of glomeruli.
Collapse
Affiliation(s)
- Chunyin Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Chunsong Yang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yunzhu Lin
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Qiusha Yi
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Fengru Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Lantao Liu
- Postgraduate Department, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Wei Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Dongwen Liu
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Lingli Zhang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| |
Collapse
|
14
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
Wu W, Zhang Y, Liu G, Chi Z, Zhang A, Miao S, Lin C, Xu Q, Zhang Y. Potential protective effects of Huanglian Jiedu Decoction against COVID-19-associated acute kidney injury: A network-based pharmacological and molecular docking study. Open Med (Wars) 2023; 18:20230746. [PMID: 37533739 PMCID: PMC10390755 DOI: 10.1515/med-2023-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Corona virus disease 2019 (COVID-19) is prone to induce multiple organ damage. The kidney is one of the target organs of SARS-CoV-2, which is susceptible to inducing acute kidney injury (AKI). Huanglian Jiedu Decoction (HLJDD) is one of the recommended prescriptions for COVID-19 with severe complications. We used network pharmacology and molecular docking to explore the therapeutic and protective effects of HLJDD on COVID-19-associated AKI. Potential targets related to "HLJDD," "COVID-19," and "Acute Kidney Injury/Acute Renal Failure" were identified from several databases. A protein-protein interaction (PPI) network was constructed and screened the core targets according to the degree value. The target genes were then enriched using gene ontology and Kyoto Encyclopedia of Genes and Genomes. The bioactive components were docked with the core targets. A total of 65 active compounds, 85 common targets for diseases and drugs were obtained; PPI network analysis showed that the core protein mainly involved JUN, RELA, and AKT1; functional analysis showed that these target genes were mainly involved in lipid and atherosclerosis signaling pathway and IL-17 signal pathway. The results of molecular docking showed that JUN, RELA, and AKT1 had good binding activity with the effective chemical components of HLJDD. In conclusion, HLJDD can be used as a potential therapeutic drug for COVID-19-associated AKI.
Collapse
Affiliation(s)
- Weichu Wu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Guoyuan Liu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Zepai Chi
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Aiping Zhang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, PR China
| | - Shuying Miao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengchuang Lin
- Department of Traditional Chinese Medicine, Shantou Central Hospital, Shantou, 515031, PR China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| |
Collapse
|
16
|
Iizuka K, Yabe D, Abu-Farha M, Abubaker J, Al-Mulla F. Editorial: Advances in the research of diabetic nephropathy, volume II. Front Endocrinol (Lausanne) 2023; 14:1135265. [PMID: 36742377 PMCID: PMC9890146 DOI: 10.3389/fendo.2023.1135265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake, Japan
- *Correspondence: Katsumi Iizuka,
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Center for Healthcare Information Technology, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | | |
Collapse
|