1
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Moretti JB, Korban A, Alchourron É, Gervais S, El Jalbout R. Carotid artery intima-media thickness values in obese or overweight children: a meta-analysis. Eur Radiol 2025; 35:3305-3313. [PMID: 39702636 DOI: 10.1007/s00330-024-11284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/20/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Carotid artery intima-media thickness (IMT) is a non-invasive ultrasound marker of early atherosclerosis. This systematic review and meta-analysis aim to report the published differences in IMT values in children living with overweight or obesity compared to controls with normal weight. METHODS This review was conducted according to PRISMA guidelines, including only cohorts with normal controls. Inclusion criteria were IMT measured using B-mode or radiofrequency (RF) techniques and based on the four consensuses: American Heart Association, Association for European Pediatric Cardiology, Mannheim Consensus, and American Society of Echocardiography. We used the body mass index based on the World Health Organization growth standard definitions of obesity in children. Relevant articles were extracted from PubMed, Cochrane Library, Embase, and Web of Science searched from inception to February 2024. A meta-analysis was done by a biostatistician using the R-software version 4.0.2. RESULTS We obtained 15 B-mode-based and two RF echo-tracking-based IMT measurement studies. IMT is significantly increased in children living with obesity. The mean IMT was 0.041 mm, 95% confidence interval (CI): 0.052; 0.031 higher in children with overweight/obesity, using the B-mode technique, and 0.045 mm, 95% CI: 0.062; 0.029 higher in children with overweight/obesity using RF technique. CONCLUSION This meta-analysis shows that IMT is significantly increased in children with obesity compared to normal-weight children according to both techniques. KEY POINTS Question IMT measured according to known consensuses is significantly increased in children living with obesity. Findings Mean IMT was 0.041 mm higher in children living with obesity using the B-mode technique and 0.045 mm using the RF technique. Clinical relevance There are different techniques to measure IMT in children. This meta-analysis, using cohorts of children living with obesity compared to normal weight controls, shows a significantly increased IMT in children living with obesity.
Collapse
Affiliation(s)
- Jean-Baptiste Moretti
- University of Montreal, Montreal, QC, Canada
- Sainte-Justine University Hospital and Research Center, Montreal, QC, Canada
| | | | - Émilie Alchourron
- University of Montreal, Montreal, QC, Canada
- Sainte-Justine University Hospital and Research Center, Montreal, QC, Canada
| | - Sylvie Gervais
- École de Technologie Supérieure de Montréal, Montreal, QC, Canada
| | - Ramy El Jalbout
- University of Montreal, Montreal, QC, Canada.
- Sainte-Justine University Hospital and Research Center, Montreal, QC, Canada.
| |
Collapse
|
3
|
Iorra FDQ, Rodrigues PG, Bock PM, Guahnon MP, Eller S, de Oliveira TF, Birk L, Schwarz PDS, Drehmer M, Bloch KV, Cureau FV, Schaan BD. Gut Microbiota Metabolite TMAO and Adolescent Cardiometabolic Health: A Cross-sectional Analysis. J Endocr Soc 2025; 9:bvaf055. [PMID: 40242209 PMCID: PMC12000724 DOI: 10.1210/jendso/bvaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Indexed: 04/18/2025] Open
Abstract
Background Trimethylamine N-oxide (TMAO) is a metabolite derived from gut microbiota that has been associated with cardiovascular and metabolic disease risk in adults. However, its role in assessing cardiometabolic risk in adolescents is unclear. Objective This study investigates the association between serum TMAO levels and cardiometabolic health indicators in Brazilian adolescents. Materials and Methods This is a multicenter, cross-sectional analysis involving 4446 participants aged 12 to 17 years from four Brazilian cities. Serum TMAO levels were quantified using liquid chromatography-tandem mass spectrometry, and associations with clinical, metabolic, and inflammatory variables were evaluated through multivariate linear regression analyses. Results After adjusting for potential confounders, being in the highest tertile of serum TMAO was positively associated with waist circumference [β 1.45; 95% confidence interval (CI) 0.77, 2.14; P < .001], body mass index Z-score (β .19; 95% CI 0.10, 0.27; P < .001), and C-reactive protein (β .24; 95% CI 0.13, 0.34; P < .001). A negative association between the highest tertile of TMAO and fasting plasma glucose was also observed (β -1.22; 95% CI -1.77, -0.66; P < .001). Conclusion TMAO may serve as an emerging biomarker for cardiometabolic risk assessment in adolescents.
Collapse
Affiliation(s)
- Fernando de Quadros Iorra
- Postgraduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | | | - Patrícia Martins Bock
- Post-Graduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Marina Petrasi Guahnon
- Postgraduate Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Leticia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Patricia de Souza Schwarz
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Michele Drehmer
- Postgraduate Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Food, Nutrition and Health, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Katia V Bloch
- Institute of Studies in Public Health, Federal University of Rio de Janeiro, Rio de Janeiro 20271-062, Brazil
| | - Felipe Vogt Cureau
- Graduate Program in Cardiology and Cardiovascular Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Beatriz D Schaan
- Postgraduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| |
Collapse
|
4
|
Du Y, Xiao X, Liu F, Zhu W, Mo J, Liu Z. Causal effects of metabolites on malignant neoplasm of bone and articular cartilage: a mendelian randomization study. Front Genet 2025; 16:1366743. [PMID: 40098980 PMCID: PMC11911353 DOI: 10.3389/fgene.2025.1366743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Objective Previous research has demonstrated that metabolites play a significant role in modulating disease phenotypes; nevertheless, the causal association between metabolites and malignant malignancies of bones and joint cartilage (MNBAC)has not been fully elucidated. Methods This study used two-sample Mendelian randomization (MR) to explore the causal correlation between 1,400 metabolites and MNBAC. Data from recent genome-wide association studies (GWAS) involving 8,299 individuals were summarized. The GWAS summary data for metabolites were acquired from the IEU Open GWAS database, while those for MNBAC were contributed by the Finnish Consortium. We employed eight distinct MR methodologies: simple mode, maximum likelihood estimator, MR robust adjusted profile score, MR-Egger, weighted mode, weighted median, MR-PRESSO and inverse variance weighted to scrutinize the causal association between metabolites engendered by each gene and MNBAC. Consequently, we evaluated outliers, horizontal pleiotropy, heterogeneity, the impact of single nucleotide polymorphisms (SNPs), and adherence to the normal distribution assumption in the MR analysis. Results Our findings suggested a plausible causative relationship between N-Formylmethionine (FMet) levels, lignoceroylcarnitine (C24) levels, and MNBAC. We observed a nearly significant causal association between FMet levels and MNBAC within the cohort of 1,400 metabolites (P = 0.024, odds ratio (OR) = 3.22; 95% CI [1.16-8.92]). Moreover, we ascertained a significant causal link between levels of C24 and MNBAC (P = 0.0009; OR = 0.420; 95%CI [0.25-0.70]). These results indicate a potential causative relationship between FMet, C24 level and MNBAC. Conclusion The occurrence of MNBAC may be causally related to metabolites. This might unveil new possibilities for investigating early detection and treatment of MNBAC.
Collapse
Affiliation(s)
- Yongwei Du
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiqiu Xiao
- Department of Orthopedics, 8th People Hospital of Nankang, Ganzhou, China
| | - Fuping Liu
- Department of Emergency, Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Wenqing Zhu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianwen Mo
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhen Liu
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Pescari D, Mihuta MS, Bena A, Stoian D. Independent Predictors of Circulating Trimethylamine N-Oxide (TMAO) and Resistin Levels in Subjects with Obesity: Associations with Carotid Intima-Media Thickness and Metabolic Parameters. Nutrients 2025; 17:798. [PMID: 40077669 PMCID: PMC11902032 DOI: 10.3390/nu17050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Obesity contributes to cardiometabolic risk, including subclinical atherosclerosis and insulin resistance. This study examines the predictive roles of trimethylamine N-oxide (TMAO) and resistin in relation to carotid intima-media thickness and metabolic parameters; Methods: Sixty adults (18-71 years) with varying body weights were assessed for body composition, subclinical atherosclerosis, and blood biomarkers, including TMAO and resistin; Results: TMAO correlated strongly with CIMT (r = 0.674, p < 0.001), indicating its role in subclinical atherosclerosis. Logistic regression identified TMAO (threshold 380; AUC = 0.880, accuracy = 91.7%) as a predictor of cardiometabolic risk. Resistin was associated with CIMT, WHR, and total cholesterol, inversely linked to LDL cholesterol (p = 0.003). Less active participants exhibited higher TMAO (p = 0.001) and resistin (p = 0.02). Family histories of obesity and diabetes correlated with elevated TMAO, while resistin linked to shorter sleep duration and diabetes history, highlighting their importance in obesity-related cardiometabolic risks; Conclusions: TMAO is strongly linked to abdominal fat, insulin resistance, and subclinical atherosclerosis, while resistin is associated with lipid metabolism and aging. Their combined assessment enhances the prediction of obesity-related cardiometabolic risk, supporting their role in risk stratification and targeted interventions.
Collapse
Affiliation(s)
- Denisa Pescari
- Department of Doctoral Studies, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Simina Mihuta
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andreea Bena
- Discipline of Endocrinology, Second Department of Internal Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Dana Stoian
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Jaworska K, Kopacz W, Koper M, Ufnal M. Microbiome-Derived Trimethylamine N-Oxide (TMAO) as a Multifaceted Biomarker in Cardiovascular Disease: Challenges and Opportunities. Int J Mol Sci 2024; 25:12511. [PMID: 39684223 DOI: 10.3390/ijms252312511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Biomarkers play a crucial role in various stages of disease management, including screening, diagnosis, prediction, prognosis, treatment, and safety monitoring. Although they are powerful tools in disease diagnosis, management, and drug development, identifying and validating reliable biomarkers remains a significant challenge. Among potential microbiome-derived biomarkers, trimethylamine N-oxide (TMAO) has gained notable attention for its link to atherosclerosis and cardiovascular risk. However, despite the growing body of research on TMAO, its practical application in clinical settings for disease management and patient outcome enhancement is still not a reality. This paper presents recent data on the utility of TMAO as a cardiovascular biomarker, categorized by its various roles: diagnostic, prognostic, susceptibility/risk, monitoring, pharmacodynamic/response, predictive, and safety. It also briefly discusses research on TMAO's potential role in cardiovascular disease development. While TMAO shows promise, particularly in prognostic applications, its reliability as a biomarker has been inconsistent across studies. These variances may result from several confounding factors that affect TMAO plasma levels, including diet, kidney function, and demographic variables. The review aims to elucidate the specific contexts in which TMAO can be valuable, potentially leading to more personalized and effective management of cardiovascular disease.
Collapse
Affiliation(s)
- Kinga Jaworska
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Wojciech Kopacz
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Mateusz Koper
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
7
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
8
|
Ho KJ, Muhammad LN, Khanh LN, Li XS, Carns M, Aren K, Kim SJ, Verma P, Hazen SL, Varga J. Elevated Circulating Levels of Gut Microbe-Derived Trimethylamine N-Oxide Are Associated with Systemic Sclerosis. J Clin Med 2024; 13:5984. [PMID: 39408044 PMCID: PMC11477889 DOI: 10.3390/jcm13195984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Alterations in fecal microbial communities in patients with systemic sclerosis (SSc) are common, but the clinical significance of this observation is poorly understood. Gut microbial production of trimethylamine (TMA), and its conversion by the host to trimethylamine N-oxide (TMAO), has clinical and mechanistic links to cardiovascular and renal diseases. Direct provision of TMAO has been shown to promote fibrosis and vascular injury, hallmarks of SSc. We sought to determine levels of TMAO and related metabolites in SSc patients and investigate associations between the metabolite levels with disease features. Methods: This is an observational case:control study. Adults with SSc (n = 200) and non-SSc controls (n = 400) were matched for age, sex, indices of renal function, diabetes mellitus, and cardiovascular disease. Serum TMAO, choline, betaine, carnitine, γ-butyrobetaine, and crotonobetaine were measured using stable isotope dilution liquid chromatography tandem mass spectrometry. Results: Median TMAO concentration was higher (p = 0.020) in SSc patients (3.31 [interquartile range 2.18, 5.23] µM) relative to controls (2.85 [IQR 1.88, 4.54] µM). TMAO was highest among obese and male SSc participants compared to all other groups. Following adjustment for sex, BMI, age, race, and eGFR in a quantile regression model, elevated TMAO levels remained associated with SSc at each quantile of TMAO. Conclusions: Patients with SSc have increased circulating levels of TMAO independent of comorbidities including age, sex, renal function, diabetes mellitus, and cardiovascular disease. As a potentially modifiable factor, further studies examining the link between TMAO and SSc disease severity and course are warranted.
Collapse
Affiliation(s)
- Karen J. Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Lutfiyya N. Muhammad
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Linh Ngo Khanh
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Xinmin S. Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (X.S.L.); (S.L.H.)
| | - Mary Carns
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.C.); (K.A.)
| | - Kathleen Aren
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.C.); (K.A.)
| | - Seok-Jo Kim
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Mondrian AI Co., Ltd., Incheon 21985, Republic of Korea
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (X.S.L.); (S.L.H.)
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
9
|
Chen Y, Meng L, Yuan W, Gao Z, Zhang X, Xie B, Song J, Li J, Zhong J, Liu X. Gut Fungal Microbiota Alterations in Pulmonary Arterial Hypertensive Rats. Biomedicines 2024; 12:298. [PMID: 38397900 PMCID: PMC10886911 DOI: 10.3390/biomedicines12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiome's imbalance has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), yet the contribution of the gut mycobiome remains largely unclear. This study delineates the gut mycobiome profile in PAH and examines its interplay with the bacterial microbiome alterations. Fecal samples from monocrotaline-induced PAH rats and matched controls were subjected to internal transcribed spacer 1 (ITS1) sequencing for fungal community assessment and 16S ribosomal RNA (rRNA) gene sequencing for bacterial community characterization. Comparative analysis revealed no significant disparities in the overall mycobiome diversity between the PAH and control groups. However, taxonomic profiling identified differential mycobiome compositions, with the PAH group exhibiting a significant enrichment of genera such as Wallemia, unidentified_Branch02, Postia, Malassezia, Epicoccum, Cercospora, and Alternaria. Conversely, genera Xeromyces, unidentified_Plectosphaerellaceae, and Monilia were more abundant in the controls. Correlations of Malassezia and Wallemia abundance with hemodynamic parameters were observed. Indications of bidirectional fungal-bacterial community interactions were also noted. This investigation reveals distinct gut mycobiome alterations in PAH, which are intricately associated with concurrent bacterial microbiome changes, suggesting a possible contributory role of gut fungi in PAH pathophysiology. These findings underscore the potential for novel gut mycobiome-targeted therapeutic interventions in PAH management.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Liukun Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100032, China;
| | - Wen Yuan
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| | - Zehan Gao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Z.G.); (J.L.)
| | - Xun Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Boqia Xie
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiawei Song
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Z.G.); (J.L.)
| | - Jiuchang Zhong
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoyan Liu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| |
Collapse
|