1
|
Kothawade GS, Khot LR, Chandel AK, Molnar C, Harper SJ, Wright AA. Feasibility of Little Cherry/X-Disease Detection in Prunus avium Using Field Asymmetric Ion Mobility Spectrometry. SENSORS (BASEL, SWITZERLAND) 2025; 25:2034. [PMID: 40218547 PMCID: PMC11990987 DOI: 10.3390/s25072034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Little cherry disease (LCD) and X-disease have critically impacted the Pacific Northwest sweet cherry (Prunus avium) industry. Current detection methods rely on laborious visual scouting or molecular analyses. This study evaluates the suitability of field asymmetric ion mobility spectrometry (FAIMS) for rapid detection of LCD and X-disease infection in three sweet cherry cultivars ('Benton', 'Cristalina', and 'Tieton') at the post-harvest stage. Stem cuttings with leaves were collected from commercial orchards and greenhouse trees. FAIMS operated at 1.5 L/min and 50 kPa, was used for headspace analysis. Molecular analyses confirmed symptomatic and asymptomatic samples. FAIMS data were processed for ion current sum (Isum), maximum ion current (Imax), and area under the curve (IAUC). Symptomatic samples showed higher ion currents in specific FAIMS regions (p < 0.05), with clear differences between symptomatic and asymptomatic samples across compensation voltage and dispersion field ranges. Cultivar-specific variation was also observed in the data. FAIMS spectra for LCD/X-disease symptomatic samples differed from those for asymptomatic samples in other Prunus species, such as peach and nectarines. These findings support FAIMS as a potential diagnostic tool for LCD/X disease. Further studies with controlled variables and key growth stages are recommended to realize early-stage detection.
Collapse
Affiliation(s)
- Gajanan S. Kothawade
- Department of Biological Systems Engineering, Center for Precision and Automated Agricultural Systems, Washington State University, Pullman, WA 99163, USA;
| | - Lav R. Khot
- Department of Biological Systems Engineering, Center for Precision and Automated Agricultural Systems, Washington State University, Pullman, WA 99163, USA;
| | - Abhilash K. Chandel
- Department of Biological Systems Engineering, Virginia Tech Tidewater AREC, Suffolk, VA 23437, USA;
| | - Cody Molnar
- Department of Plant Pathology, Washington State University, Prosser, WA 99350, USA; (C.M.); (S.J.H.)
| | - Scott J. Harper
- Department of Plant Pathology, Washington State University, Prosser, WA 99350, USA; (C.M.); (S.J.H.)
| | | |
Collapse
|
2
|
Orlovskis Z, Singh A, Kliot A, Huang W, Hogenhout SA. The phytoplasma SAP54 effector acts as a molecular matchmaker for leafhopper vectors by targeting plant MADS-box factor SVP. eLife 2025; 13:RP98992. [PMID: 39763298 PMCID: PMC11706604 DOI: 10.7554/elife.98992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors. SAP54 is responsible for the induction of leaf-like flowers in phytoplasma-infected plants. However, we previously demonstrated that the insects were attracted to leaves and the leaf-like flowers were not required. Here, we made the surprising discovery that leaf exposure to leafhopper males is required for the attraction phenotype, suggesting a leaf response that distinguishes leafhopper sex in the presence of SAP54. In contrast, this phytoplasma effector alongside leafhopper females discourages further female colonization. We demonstrate that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Critically, the host plant MADS-box transcription factor short vegetative phase (SVP) emerges as a key element in the female leafhopper preference for plants exposed to males, with SAP54 promoting the degradation of SVP. This preference extends to female colonization of male-exposed svp null mutant plants over those not exposed to males. Our research underscores the dual role of the phytoplasma effector SAP54 in host development alteration and vector attraction - integral to the phytoplasma life cycle. Importantly, we clarify how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects. SAP54 essentially acts as a molecular 'matchmaker', helping male leafhoppers more easily locate mates by degrading SVP-containing complexes in leaves. This study not only provides insights into the long reach of single parasite genes in extended phenotypes, but also opens avenues for understanding how transcription factors that regulate plant developmental processes intersect with and influence plant-insect interactions.
Collapse
Affiliation(s)
| | - Archana Singh
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Adi Kliot
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Weijie Huang
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | |
Collapse
|
3
|
Cooper WR, Serrano JM, Horton DR, Ohler BJ, Waters TD. Seasonal variation in attraction to plant volatiles by Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:677-686. [PMID: 38775360 DOI: 10.1093/ee/nvae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/18/2024]
Abstract
Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), occurs as 2 seasonal morphotypes. Summerforms occur on pear (Pyrus communis L.; Rosales: Rosaceae) where they are a significant pest. The larger and darker winterform morphotype develops in response to shortening daylengths and begins winter in reproductive diapause characterized by the absence of ovarian development. Diapausing winterforms often leave pear to overwinter on coniferous shelter plants and then return to pear in late winter and early spring to begin depositing the eggs that produce the first summerform generation. Cacopsylla pyricola adults are attracted to the color of foliage most of the year, but little is known about the role of plant volatiles in host finding and in seasonal dispersal between host and shelter plants by the psyllid. We used a Y-tube olfactometer and choice assays to investigate the response by C. pyricola adults to volatiles emitted by pear and an evergreen tree (cypress) often used as a shelter plant by wintering C. pyricola. Attraction to pear and cypress volatiles varied by season, tree phenology, and psyllid physiology. Cacopsylla pyricola were attracted to cypress volatiles and preferred to settle on cypress shoots during winter and early spring but then shifted to a marked preference for the pear developmental host in late spring and summer. Female C. pyricola exhibited stronger responses to pear volatiles than did males. Our study is the first to show that plant volatiles have a role in host finding by C. pyricola and provides a foundation for research on chemical ecology and management of C. pyricola.
Collapse
Affiliation(s)
- W Rodney Cooper
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Jacqueline M Serrano
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - David R Horton
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Bonnie J Ohler
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
- Washington State University Extension, 404 W. Clark Avenue, Pasco, WA 99301, USA
| | - Tim D Waters
- Washington State University Extension, 404 W. Clark Avenue, Pasco, WA 99301, USA
| |
Collapse
|
4
|
Lohmaneeratana K, Leetanasaksakul K, Thamchaipenet A. Transcriptomic Profiling of Sugarcane White Leaf (SCWL) Canes during Maturation Phase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1551. [PMID: 38891358 PMCID: PMC11174868 DOI: 10.3390/plants13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.
Collapse
Affiliation(s)
- Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
5
|
Czarnobai De Jorge B, Koßmann A, Hummel HE, Gross J. Evaluation of a push-and-pull strategy using volatiles of host and non-host plants for the management of pear psyllids in organic farming. FRONTIERS IN PLANT SCIENCE 2024; 15:1375495. [PMID: 38841281 PMCID: PMC11150531 DOI: 10.3389/fpls.2024.1375495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Introduction Pear decline (PD) is one of the most devastating diseases of Pyrus communis in Europe and North America. It is caused by the pathogen 'Candidatus Phytoplasma pyri' and transmitted by pear psyllids (Cacopsylla pyri, C. pyricola, and C. pyrisuga). Identifying attractant and repellent volatile organic compounds (VOCs) could improve the development of alternative plant protection measurements like push-pull or attract-and-kill strategies against pear psyllids. Our objective was to investigate which chemical cues of the host plant could influence the host-seeking behavior of pear psyllids, and if cedarwood (CWO) and cinnamon bark (CBO) essential oils could serve as repellents. Results and discussion Based on the literature, the five most abundant VOCs from pear plants elicited EAG responses in both C. pyri and C. pyrisuga psyllid species. In Y-olfactometer trials, single compounds were not attractive to C. pyri. However, the main compound mixture was attractive to C. pyri and C. pyrisuga females. CWO and CBO were repellent against C. pyri, and when formulated into nanofibers (NF), both were repellent in olfactometer trials. However, CBO nanoformulation was ineffective in masking the odors of pear plants. In a field trial, attractive, repellent CWO and blank formulated NF were inserted in attractive green sticky traps. C. pyri captures in traps with CWO NF were statistically lower than in traps with the attractive mixture. Nevertheless, no statistical differences in the numbers of caught specimens were observed between CWO NF and those captured in green traps baited with blank NF. Transparent traps captured fewer psyllids than green ones. In a second field study with a completed different design (push-and-count design), dispensers filled with CBO were distributed within the plantation, and attractive green sticky traps were placed around the plantation. The numbers of trapped pear psyllids increased significantly in the border of the treated plantation, showing that psyllids were repelled by the EOs in the plantation. Although further field evaluation is needed to assess and improve their effectiveness, our results show that these aromatic compounds, repellent or attractive both in nanoformulations and marking pen dispensers, offer great potential as an environmentally sustainable alternative to currently applied methods for managing pear decline vectors.
Collapse
Affiliation(s)
- Bruna Czarnobai De Jorge
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dossenheim, Germany
- Laboratory of Plant Chemical Ecology, Technical University of Darmstadt, Darmstadt, Germany
| | - Alicia Koßmann
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dossenheim, Germany
- Laboratory of Plant Chemical Ecology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hans E. Hummel
- Laboratory of Organic Agriculture, Justus-Liebig University of Giessen, Giessen, Germany
- Laboratory of Biodiversity and Ecological Entomology, Illinois Natural History Survey, Champaign, IL, United States
| | - Jürgen Gross
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dossenheim, Germany
| |
Collapse
|
6
|
Valle D, Mujica V, Gonzalez A. Herbivore-Dependent Induced Volatiles in Pear Plants Cause Differential Attractive Response by Lacewing Larvae. J Chem Ecol 2023; 49:262-275. [PMID: 36690765 DOI: 10.1007/s10886-023-01403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Biological control may benefit from the behavioral manipulation of natural enemies using volatile organic compounds (VOCs). Among these, herbivore-induced plant volatiles (HIPVs) provide potential tools for attracting or retaining predators and parasitoids of insect pests. This work aimed to characterize the VOCs emitted by pear plants in response to attack by Cacopsylla bidens (Hemiptera: Psyllidae), a major pest in pear orchards, to compare these with VOCs induced by a leaf chewing insect, Argyrotaenia sphaleropa (Lepidoptera: Tortricidae), and to evaluate the behavioral response of Chrysoperla externa (Neuroptera: Chrysopidae) to HIPVs from pear plants damaged by either herbivore. The results demonstrated that plants damaged by the pear psylla emitted VOC blends with increased amounts of aliphatic aldehydes. Leafroller damage resulted in increased amounts of benzeneacetonitrile, (E)-4,8-dimethylnona-1,3,7-triene, β-ocimene and caryophyllene. In olfactometer bioassays, larvae of C. externa were attracted to herbivore-damaged plants when contrasted with undamaged plants. When plant odors from psylla-damaged were contrasted with those of leafroller-damaged plants, C.externa preferred the former, also showing shorter response lag-times and higher response rates when psylla-damaged plants were present. Our results suggest that pear plants respond to herbivory by modifying their volatile profile, and that psylla-induced volatiles may be used as prey-specific chemical cues by chrysopid larvae. Our study is the first to report HIPVs in pear plants attacked by C. bidens, as well as the attraction of C. externa to psyllid-induced volatiles.
Collapse
Affiliation(s)
- D Valle
- Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Canelones, Uruguay.
| | - V Mujica
- Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Canelones, Uruguay
| | - A Gonzalez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Ferreira JA, Ramos JA, Dutra DRCS, Di Lella B, Helmick EE, Queiroz SCN, Bahder BW. Identification of Green-Leaf Volatiles Released from Cabbage Palms ( Sabal palmetto) Infected with the Lethal Bronzing Phytoplasma. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112164. [PMID: 37299142 DOI: 10.3390/plants12112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Lethal bronzing (LB) is a fatal infection that affects over 20 species of palms (Arecaceae) and is caused by the phytoplasma 'Candidatus Phytoplasma aculeata'. This pathogen causes significant economic losses to landscape and nursery companies in Florida, USA. Recently, the vector was determined to be the planthopper Haplaxius crudus, which was more abundant on LB-infected palms. Herein, the volatile chemicals emitted from LB-infected palms were characterized using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Infected Sabal palmetto were identified and confirmed as positive for LB via quantitative PCR. Healthy controls of each species were selected for comparison. All infected palms exhibited elevated levels of hexanal and E-2-hexenal. Threatened palms showed high releasing concentrations of 3-hexenal and Z-3-hexen-1-ol. The volatiles characterized herein are common green-leaf volatiles (GLVs) emitted by plants under stress. This study considers the first documented case of GLVs in palms attributed to phytoplasma infection. Due to the apparent attraction of LB-infected palms to the vector, one or several of the GLVs identified in this study could serve as a lure for the vector and supplement management programs.
Collapse
Affiliation(s)
- Jordana A Ferreira
- Laboratory of Residues and Contaminants, Embrapa Environment, Rodovia SP 340, km 127.5, Jaguariúna 13918-110, SP, Brazil
| | - José A Ramos
- College of Computing and Engineering, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7719, USA
| | - Debora R C S Dutra
- Laboratory of Residues and Contaminants, Embrapa Environment, Rodovia SP 340, km 127.5, Jaguariúna 13918-110, SP, Brazil
| | - Brandon Di Lella
- Department of Entomology and Nematology, University of Florida-Fort Lauderdale Research and Education Center, 3205 College Ave., Davie, FL 33314-7719, USA
| | - Ericka E Helmick
- Department of Entomology and Nematology, University of Florida-Fort Lauderdale Research and Education Center, 3205 College Ave., Davie, FL 33314-7719, USA
| | - Sonia C N Queiroz
- Laboratory of Residues and Contaminants, Embrapa Environment, Rodovia SP 340, km 127.5, Jaguariúna 13918-110, SP, Brazil
| | - Brian W Bahder
- Department of Entomology and Nematology, University of Florida-Fort Lauderdale Research and Education Center, 3205 College Ave., Davie, FL 33314-7719, USA
| |
Collapse
|
8
|
Gallinger J, Rid-Moneta M, Becker C, Reineke A, Gross J. Altered volatile emission of pear trees under elevated atmospheric CO 2 levels has no relevance to pear psyllid host choice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43740-43751. [PMID: 36658318 PMCID: PMC10076355 DOI: 10.1007/s11356-023-25260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The impact of climate change drivers on cultivated plants and pest insects has come into research focus. One of the most significant drivers is atmospheric carbon dioxide, which is converted into primary plant metabolites by photosynthesis. Increased atmospheric CO2 concentrations therefore affect plant chemistry. The chemical composition of non-volatile and volatile organic compounds of plants is used by insects to locate and identify suitable host plants for feeding and reproduction. We investigated whether elevated CO2 concentrations in the atmosphere affect the plant-pest interaction in a fruit crop of high economic importance in Europe. Therefore, potted pear trees were cultivated under specified CO2 conditions in a Free-Air Carbon dioxide Enrichment (FACE) facility at Geisenheim University in Germany for up to 14 weeks, beginning from bud swelling. We compared emitted volatiles from these pear trees cultivated for 7 and 14 weeks under two different CO2 levels (ambient: ca. 400 ppm and elevated: ca. 450 ppm CO2) and their impact on pest insect behavior. In total, we detected and analyzed 76 VOCs from pear trees. While we did not detect an overall change in VOC compositions, the relative release of single compounds changed in response to CO2 increase. Differences in VOC release were inconsistent over time (phenology stages) and between study years, indicating interactions with other climate parameters, such as temperature. Even though insect-plant interaction can rely on specific volatile compounds and specific mixtures of compounds, respectively, the changes of VOC patterns in our field study did not impact the host choice behavior of C. pyri females. In olfactometer trials, 64% and 60% of the females preferred the odor of pear trees cultivated under elevated CO2 for 7 and 14 weeks, respectively, over the odor from pear trees cultivated under ambient CO2. In binary-choice oviposition assays, C. pyri females laid most eggs on pears during April 2020; on average, 51.9 (± 51.3) eggs were laid on pears cultivated under eCO2 and 60.3 (± 48.7) eggs on aCO2.
Collapse
Affiliation(s)
- Jannicke Gallinger
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Schwabenheimer Str. 101, 69221, Dossenheim, Germany.
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 75007, Uppsala, Sweden.
| | - Margit Rid-Moneta
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Schwabenheimer Str. 101, 69221, Dossenheim, Germany
| | - Christine Becker
- Department of Crop Protection, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366, Geisenheim, Germany
| | - Annette Reineke
- Department of Crop Protection, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366, Geisenheim, Germany
| | - Jürgen Gross
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Schwabenheimer Str. 101, 69221, Dossenheim, Germany
| |
Collapse
|
9
|
Roddee J, Backus EA, Wangkeeree J, Hanboonsong Y. Alteration in the Stylet Probing Behavior and Host Preference of the Vector Matsumuratettix hiroglyphicus (Hemiptera: Cicadellidae) After Infection with Sugarcane White Leaf Phytoplasma. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1081-1090. [PMID: 33822114 DOI: 10.1093/jee/toab059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The leafhopper (Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae)) is a crucial insect vector of the phytoplasma associated with sugarcane white leaf (SCWL) disease. The aim of this study was to compare the stylet probing behaviors of M. hiroglyphicus on healthy sugarcane plants, asymptomatic, and symptomatic SCWL-infected sugarcane plants, using DC electropenetrography. We also used host-selection preference (free-choice) assays to identify the preferred types of host plants, and scanning electron microscopy to observe stylet puncture holes and salivary flanges after leafhopper probing. According to a quantitative analysis of M. hiroglyphicus stylet probing, mean durations per insect of both phloem ingestion (waveform D; the phytoplasma-acquisition behavior) and phloem salivation (waveform C; the phytoplasma-inoculation behavior) were significantly longer on both types of infected sugarcane than on healthy plants. These longer overall durations were mainly because the same number of significantly longer-duration C and D events was performed on infected sugarcane compared with healthy plants. On free-choice tested plants, M. hiroglyphicus displayed a significantly greater preference to settle on the infected plants (both types) than the healthy sugarcane. These results provide the first empirical evidence that acquiring the SCWL phytoplasma alters the host selection and stylet probing behaviors of its main vector (M. hiroglyphicus). Our study thus contributes to a better understanding of the interactions between the insect vector and SCWL phytoplasma-infected plants, and will aid in developing novel disease management tactics for sugarcane.
Collapse
Affiliation(s)
- Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, Nakhon Ratchasima, Thailand
| | - Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Juremart Wangkeeree
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand
| | - Yupa Hanboonsong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Nai Muang, Muang, Khon Kaen, Thailand
| |
Collapse
|
10
|
Görg LM, Gross J. Influence of ontogenetic and migration stage on feeding behavior of Cacopsylla picta on 'Candidatus Phytoplasma mali' infected and non-infected apple plants. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104229. [PMID: 33766541 DOI: 10.1016/j.jinsphys.2021.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The summer apple psyllid Cacopsylla picta (Foerster) is the vector of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease (AP). During its phloem-feeding activities it transmits this biotrophic bacterium from infected to healthy apple trees (Malus domestica Borkh.) causing high economic losses. During its life cycle, C.picta performs two host switches: In summer, the new adult generation (emigrants) hatch on apples before they emigrate to their overwintering host conifers. The following spring, the overwintered adult generation (remigrants) remigrate into apple orchards for mating and oviposition. The preimaginal stages (nymphs) develop on apple. It is known that phytopathogen-induced changes in plant physiology can affect insect-plant-interactions. In 12 h recordings of electrical penetration graphs (EPG) it was assessed whether 'Ca. P. mali' infection of the plant affected probing and feeding behavior of the vector C.picta. Its life stage and the infection status of the host plant (and the interaction between these factors) significantly affected the first occurrence, duration and frequency of probing and feeding phases. On 'Ca. P. mali' infected plants, the phloem salivation phase occurred later than on non-infected plants. Even though all life stages fed both on phloem and xylem, significant differences were found in the frequency and duration of phloem and xylem ingestion phases. Nymphs spent the shortest time non-probing, earlier started the first leaf penetration and longer ingested xylem compared with adults. Further, phloem phases differed between migratory stages; remigrants had higher numbers of phloem ingestion events and spent longer ingesting phloem than emigrants. For emigrants, however, phloem contact was very rarely observed during our recordings. The impact of our findings for understanding the multitrophic interactions between host plant, pathogen and behavior of vector insects are discussed with regard to the epidemiology of AP and pest control strategies of the vector.
Collapse
Affiliation(s)
- Louisa Maria Görg
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Schwabenheimer Str. 101, Dossenheim D-69221, Germany
| | - Jürgen Gross
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Schwabenheimer Str. 101, Dossenheim D-69221, Germany.
| |
Collapse
|
11
|
Gallinger J, Gross J. Phloem Metabolites of Prunus Sp. Rather than Infection with Candidatus Phytoplasma Prunorum Influence Feeding Behavior of Cacopsylla pruni Nymphs. J Chem Ecol 2020; 46:756-770. [PMID: 31965396 PMCID: PMC7429536 DOI: 10.1007/s10886-020-01148-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 10/29/2022]
Abstract
Phytoplasmas are specialized small bacteria restricted to the phloem tissue and spread by hemipterans feeding on plant sieve tube elements. As for many other plant pathogens, it is known that phytoplasmas alter the chemistry of their hosts. Most research on phytoplasma-plant interactions focused on the induction of plant volatiles and phytohormones. Little is known about the influence of phytoplasma infections on the nutritional composition of phloem and consequences on vector behavior and development. The plum psyllid Cacopsylla pruni transmits 'Candidatus Phytoplasma prunorum', the causing agent of European Stone Fruit Yellows (ESFY). While several Prunus species are susceptible for psyllid feeding, they show different responses to the pathogen. We studied the possible modulation of plant-insect interactions by bacteria-induced changes in phloem sap chemistry. Therefore, we sampled phloem sap from phytoplasma-infected and non-infected Prunus persica and Prunus insititia plants, which differ in their susceptibility to ESFY and psyllid feeding. Furthermore, the feeding behavior and development of C. pruni nymphs was compared on infected and non-infected P. persica and P. insititia plants. Phytoplasma infection did not affect phloem consumption by C. pruni nymphs nor their development time. In contrast, the study revealed significant differences between P. insititia and P. persica in terms of both phloem chemistry and feeding behavior of C. pruni nymphs. Phloem feeding phases were four times longer on P. insititia than on P. persica, resulting in a decreased development time and higher mortality of vector insects on P. persica plants. These findings explain the low infestation rates of peach cultivars with plum psyllids commonly found in field surveys.
Collapse
Affiliation(s)
- Jannicke Gallinger
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Dossenheim, Germany
- Plant Chemical Ecology, Technical University of Darmstadt, Schnittspahnstr. 4, 64287, Darmstadt, Germany
| | - Jürgen Gross
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Dossenheim, Germany.
- Plant Chemical Ecology, Technical University of Darmstadt, Schnittspahnstr. 4, 64287, Darmstadt, Germany.
| |
Collapse
|
12
|
Tracking Short-Range Attraction and Oviposition of European Grapevine Moths Affected by Volatile Organic Compounds in a Four-Chamber Olfactometer. INSECTS 2020; 11:insects11010045. [PMID: 31936307 PMCID: PMC7022303 DOI: 10.3390/insects11010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
The identification of volatile organic compounds (VOCs) leading to short-range attraction and oviposition of the European grapevine moth Lobesia botrana and European grape berry moth Eupoecilia ambiguella (Lepidoptera: Tortricidae) is crucial in order to establish bait-based decision support systems for control of these pests. Therefore, we developed a method to measure the real-time behavioral response of female moths to VOCs using a four-chamber olfactometer coupled with a video tracking system. Ten synthetic VOCs were selected for this study: (S)-(−)-perillaldehyde, (E)/(Z)-linalool oxide, (±)-limonene, linalool, (E)-β-caryophyllene, α/β-farnesene, (−)-α-cedrene, methyl salicylate and cumene. The effect of VOCs on egg deposition was determined using a dual-choice oviposition test, whereas perception by female antennae was verified using electroantennography (EAG). During video tracking, females responded to volatile compounds emitted by grapevine with higher antennae and ovipositor activity than to air control. (E)/(Z)-linalool oxide, cumene and (S)-(−)-perillaldehyde released ovipositor activity of L. botrana, while the latter provoked oviposition. (R)/(S)-limonene affected ovipositor activity of E. ambiguella, whereas none of the VOCs tested attracted for oviposition. The results suggest that females have the ability to perceive specific VOCs by the antennae but also by the ovipositor, which could attract or repel for egg deposition.
Collapse
|
13
|
Pradit N, Mescher MC, De Moraes CM, Rodriguez-Saona C. Phytoplasma Infection of Cranberry Affects Development and Oviposition, but Not Host-Plant Selection, of the Insect Vector Limotettix vaccinii. J Chem Ecol 2019; 46:722-734. [DOI: 10.1007/s10886-019-01137-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 01/30/2023]
|
14
|
Mittelberger C, Stellmach H, Hause B, Kerschbamer C, Schlink K, Letschka T, Janik K. A Novel Effector Protein of Apple Proliferation Phytoplasma Disrupts Cell Integrity of Nicotiana spp. Protoplasts. Int J Mol Sci 2019; 20:E4613. [PMID: 31540359 PMCID: PMC6770106 DOI: 10.3390/ijms20184613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023] Open
Abstract
Effector proteins play an important role in the virulence of plant pathogens such as phytoplasma, which are the causative agents of hundreds of different plant diseases. The plant hosts comprise economically relevant crops such as apples (Malus × domestica), which can be infected by 'Candidatus Phytoplasma mali' (P. mali), a highly genetically dynamic plant pathogen. As the result of the genetic and functional analyses in this study, a new putative P. mali effector protein was revealed. The so-called "Protein in Malus Expressed 2" (PME2), which is expressed in apples during P. mali infection but not in the insect vector, shows regional genetic differences. In a heterologous expression assay using Nicotiana benthamiana and Nicotiana occidentalis mesophyll protoplasts, translocation of both PME2 variants in the cell nucleus was observed. Overexpression of the effector protein affected cell integrity in Nicotiana spp. protoplasts, indicating a potential role of this protein in pathogenic virulence. Interestingly, the two genetic variants of PME2 differ regarding their potential to manipulate cell integrity. However, the exact function of PME2 during disease manifestation and symptom development remains to be further elucidated. Aside from the first description of the function of a novel effector of P. mali, the results of this study underline the necessity for a more comprehensive description and understanding of the genetic diversity of P. mali as an indispensable basis for a functional understanding of apple proliferation disease.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Hagen Stellmach
- Jasmonate Function & Mycorrhiza, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Bettina Hause
- Jasmonate Function & Mycorrhiza, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Christine Kerschbamer
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Katja Schlink
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Thomas Letschka
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Katrin Janik
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| |
Collapse
|
15
|
Hemmati C, Nikooei M, Bertaccini A. Identification and transmission of phytoplasmas and their impact on essential oil composition in Aerva javanica. 3 Biotech 2019; 9:310. [PMID: 31406632 DOI: 10.1007/s13205-019-1843-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Aerva javanica plants showing symptoms of witches' broom, little leaf, and leaf roll were observed in 50% of the A. javanica plants grown in the deserts of Hormozgan province, Iran. This study was carried out to verify possible phytoplasma association with this disease, insect vector, and modification of the chemical composition of symptomatic A. javanica. Aerial parts were collected at the full flowering stage from symptomatic and asymptomatic plants and samples were examined for phytoplasma presence by nested-PCR assays. PCR and sequencing analysis showed that a phytoplasma was associated with the disease sharing 99% sequence identity with 'Candidatus Phytoplasma aurantifolia'-related strains (16SrII). Furthermore, this phytoplasma was transmitted to healthy periwinkle plants under experimental conditions by the leafhopper Austroagallia sinuata that was then demonstrated to be a vector of this phytoplasma. Analysis of the oils carried out by GC-MS revealed the enrichment of the triterpene hydrocarbons (2.3% in asymptomatic vs. 11.8% in symptomatic samples) and the hydrocarbons (69.3% vs. 85.93%) as compared to the abundance in asymptomatic samples. Conversely, a matching decrease in ketone (3.51% vs. 0.6%) was observed in the symptomatic plants. These results indicate that phytoplasma presence is influencing the secondary metabolites production in infected plants.
Collapse
Affiliation(s)
- Chamran Hemmati
- 1Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
- 2Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Mehrnoosh Nikooei
- 1Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
- 2Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Assunta Bertaccini
- 3Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Contaldo N, D'Amico G, Paltrinieri S, Diallo HA, Bertaccini A, Arocha Rosete Y. Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiol Res 2019; 223-225:51-57. [PMID: 31178051 DOI: 10.1016/j.micres.2019.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/06/2023]
Abstract
Côte d'Ivoire lethal yellowing (CILY) is a devastating disease associated with phytoplasmas and has recently rapidly spread to several coconut-growing areas in the Country. Phytoplasmas are phloem-restricted bacteria that affect plant species worldwide. These bacteria are transmitted by plant sap-feeding insects, and their cultivation was recently achieved in complex artificial media. In this study, phytoplasmas were isolated for the first time from coconut palm trunk borings in both solid and liquid media from CILY symptom-bearing and symptomless coconut palms. The colony morphology, PCR and sequencing analyses indicated the presence of phytoplasmas from different ribosomal groups. This study reports the first biochemical characterization of two of these phytoplasma isolates. Moreover, a disc-diffusion antibiotic susceptibility assay revealed that these bacteria exhibit tobramycin susceptibility and cephalexin hydrate and rifampicin resistance. Urea and arginine hydrolysis, and glucose fermentation tests that were performed on colonies of phytoplasmas and Acholeplasma laidlawii indicated that both phytoplasmas tested were negative for urea and positive for glucose and arginine, whereas A. laidlawii was positive for glucose and negative for urea and arginine. The growth of coconut phytoplasmas in both solid and liquid artificial media and the biological characterization of these isolates are novel and important advancements in the field of disease management and containment measures for the CILY disease. The characterization of isolated phytoplasmas will allow for more efficient management strategies in both the prevention of a coconut phytoplasma epidemics and the reduction of the economic impact of the disease in the affected areas.
Collapse
Affiliation(s)
- Nicoletta Contaldo
- Department of Agricultural and Food Sciences, Plant Pathology, Alma Mater Studiorum, University of Bologna, viale G. Fanin, 40, 40127 Bologna, Italy.
| | - Gianfranco D'Amico
- Department of Agricultural and Food Sciences, Plant Pathology, Alma Mater Studiorum, University of Bologna, viale G. Fanin, 40, 40127 Bologna, Italy
| | - Samanta Paltrinieri
- Department of Agricultural and Food Sciences, Plant Pathology, Alma Mater Studiorum, University of Bologna, viale G. Fanin, 40, 40127 Bologna, Italy
| | | | - Assunta Bertaccini
- Department of Agricultural and Food Sciences, Plant Pathology, Alma Mater Studiorum, University of Bologna, viale G. Fanin, 40, 40127 Bologna, Italy
| | | |
Collapse
|
17
|
Hemmati C, Nikooei M. Phytoplasma Infection could Affect Chemical Composition of Artemisia sieberi. THE PLANT PATHOLOGY JOURNAL 2019; 35:274-279. [PMID: 31244572 PMCID: PMC6586195 DOI: 10.5423/ppj.nt.01.2019.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Artemisia sieberi showing symptoms resembling those caused by phytoplasma were observed in Geno Mountain, Hormozgan Province, Iran, and were examined for phytoplasma presence by PCR assays. In addition, the essential oils hydrodistilled from the aerial parts of phytoplasma-infected and healthy plants have been analyzed and compared by GC and GC/MS. Phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with A. sieberi witches' broom (AsWB) was a strain of 'Candidatus Phytoplasma aurantifolia'. The presence of the disease, however, induced a further enrichment (from 4.9 to 45.2%, a relative increase of 90%) of the entire monoterpene class as compared to the abundance in healthy samples. Conversely, a matching decrease in monoterpenoid (from 48.7 to 2%, a relative decrease of 90.2%) was observed in the infected plants. Besides the first report of phytoplasma infection of A. sieberi, the changes of its essential oils are reported.
Collapse
Affiliation(s)
- Chamran Hemmati
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, P.O.Box 3995, Bandar Abbas,
Iran
- Plant Protection Research Group, University of Hormozgan, P.O.Box 3995, Bandar Abbas,
Iran
| | - Mehrnoosh Nikooei
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, P.O.Box 3995, Bandar Abbas,
Iran
| |
Collapse
|
18
|
Collection, Identification, and Statistical Analysis of Volatile Organic Compound Patterns Emitted by Phytoplasma Infected Plants. Methods Mol Biol 2019; 1875:333-343. [PMID: 30362015 DOI: 10.1007/978-1-4939-8837-2_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we give an introduction to innovative attempts for the collection, identification, and statistical analysis of volatile organic compound (VOC) patterns emitted by phytoplasma-infected plants compared to healthy plants by the use of state-of-the-art techniques. This encompasses headspace-sampling techniques, gas chromatography coupled with mass spectrometry, and identification of VOC patterns by the "Automated Mass Spectral Deconvolution and Identification System" (AMDIS) followed by appropriate statistical analysis.
Collapse
|
19
|
Chang SH, Tan CM, Wu CT, Lin TH, Jiang SY, Liu RC, Tsai MC, Su LW, Yang JY. Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5389-5401. [PMID: 30165491 PMCID: PMC6255702 DOI: 10.1093/jxb/ery318] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
As key mediators linking developmental processes with plant immunity, TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 and 2) transcription factors have been increasingly shown to be targets of pathogenic effectors. We report here that TB/CYC (TEOSINTE-BRANCHED/CYCLOIDEA)-TCPs are destabilized by phytoplasma SAP11 effectors, leading to the proliferation of axillary meristems. Although a high degree of sequence diversity was observed among putative SAP11 effectors identified from evolutionarily distinct clusters of phytoplasmas, these effectors acquired fundamental activity in destabilizing TB/CYC-TCPs. In addition, we demonstrate that miR156/SPLs and miR172/AP2 modules, which represent key regulatory hubs involved in plant phase transition, were modulated by Aster Yellows phytoplasma strain Witches' Broom (AY-WB) protein SAP11. A late-flowering phenotype with significant changes in the expression of flowering-related genes was observed in transgenic Arabidopsis plants expressing SAP11AYWB. These morphological and molecular alterations were correlated with the ability of SAP11 effectors to destabilize CIN (CINCINNATA)-TCPs. Although not all putative SAP11 effectors display broad-spectrum activities in modulating morphological and physiological changes in host plants, they serve as core virulence factors responsible for the witches' broom symptom caused by phytoplasmas.
Collapse
Affiliation(s)
- Shu Heng Chang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Choon Meng Tan
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Chih-Tang Wu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Hsiang Lin
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shin-Ying Jiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ren-Ci Liu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Chen Tsai
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Li-Wen Su
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Comparative Analysis of MicroRNA Expression in Three Paulownia Species with Phytoplasma Infection. FORESTS 2018. [DOI: 10.3390/f9060302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Shaltiel-Harpaz L, Gerchman Y, Ibdah M, Kedoshim R, Rachmany D, Hatib K, Bar-Ya'akov I, Soroker V, Holland D. Grafting on resistant interstocks reduces scion susceptibility to pear psylla, Cacopsylla bidens. PEST MANAGEMENT SCIENCE 2018; 74:617-626. [PMID: 28967187 DOI: 10.1002/ps.4745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/10/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Pear psylla is a major obstacle to efficient integrated pest management in pear orchards in Israel and around the world. We used two accessions with natural resistance to pear psylla Cacopsylla bidens (Šulc) - Py.760-261 (760) and Py.701-202 (701), both apparently of Pyrus communis L. origin - as interstock grafts to confer psylla resistance to the commercially important 'Spadona Estiva' (Pyrus communis) scion (Spadona) cultivar. The interaction of the interstocks with quince (Cydonia oblong Mill.) and Pyrus betulifolia Bunge rootstocks was also tested. RESULTS Usage of Py.760-261 (760) and Py.701-202 (701) as interstocks for the psylla-sensitive Spadona resulted in a five-fold decrease in the C. bidens population, apparently as a consequence of antibiosis affecting nymph survival. Additionally, psylla survival was negatively correlated with the interstock length and amount of foliage. The yield and fruit quality of Spadona grafted on the '701' interstock equaled or even exceeded those of the control in fruit quantity, fruit size and soluble solids content, especially on P. betulifolia rootstock. CONCLUSION Susceptibility to pear psylla decreased significantly following grafting of commercial Spadona on resistant interstock. This is the first demonstration of increased resistance to pear psylla conferred by the use of resistant interstock in pear trees and among the few examples demonstrating transfer of resistance to insects from the interstock in fruit trees. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | | | - Mwafaq Ibdah
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Rike Kedoshim
- Migal Galilee Research Institute, Kiryat Shmona, Israel
| | | | - Kamel Hatib
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Irit Bar-Ya'akov
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Victoria Soroker
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Doron Holland
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| |
Collapse
|
22
|
Gross J. Chemical Communication between Phytopathogens, Their Host Plants and Vector Insects and Eavesdropping by Natural Enemies. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|