1
|
Rivera‐Duarte JD, May‐Concha IJ, Vargas‐Abasolo R, Martínez‐Castaneira MX, Farfán‐Beltrán ME, Mendoza‐Garfias B, Flores‐Villegas AL, Córdoba‐Aguilar A. Rewiring the Vehicle: Trypanosoma cruzi Parasites Alter the Antennae of Their Triatomine Hosts. Ecol Evol 2025; 15:e71164. [PMID: 40130004 PMCID: PMC11930763 DOI: 10.1002/ece3.71164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
This study investigates the antennal phenotype of the kissing bug Triatoma pallidipennis (Stål), a primary vector of Chagas disease, by comparing Trypanosoma cruzi-infected and noninfected individuals. We examined the antennae of infected and noninfected N5 nymphs, as well as adult females and males, focusing on four types of sensilla (bristles, basiconic, thin-walled trichoid, and thick-walled trichoid) across three antenna segments (pedicel, proximal flagellum, and distal flagellum). We found differences in sensilla abundance across the antennal segments, with the proximal flagellum showing the highest abundance, followed by the distal flagellum, and the pedicel having the least. Infection demonstrated that males had more chemosensilla than females. We observed a trend in the infected males and nymphs with an increased variation in sensilla types. These antennal modifications are related to previous results in this species whereby infected bugs were found to be more active and capable of finding a human odor compared to noninfected animals. Thus, infection-related changes in antennal phenotype may underlie T. pallidipennis' sensory capabilities, which may indirectly facilitate the spread of the parasite.
Collapse
Affiliation(s)
- Jose D. Rivera‐Duarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
- Laboratorio de Hidrobiología, Departamento de Ecología y Recursos Naturales, Escuela de Biología, Facultad de CienciasUniversidad Nacional Autónoma de Honduras, Ciudad UniversitariaTegucigalpaHonduras
| | - Irving Jesús May‐Concha
- SECIHTI, Centro de Investigaciones Regionales Dr. Hideyo NoguchiUniversidad Autónoma de YucatánMéridaMexico
| | - Reyna Vargas‐Abasolo
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Mayab X. Martínez‐Castaneira
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Manuel Edday Farfán‐Beltrán
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Berenit Mendoza‐Garfias
- LMF 1‐LANABIO, Instituto de BiologíaUniversidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Any Laura Flores‐Villegas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Alex Córdoba‐Aguilar
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| |
Collapse
|
2
|
Li CH, Poulin R. Alteration of host gene and protein expression by manipulative parasites. Trends Parasitol 2025; 41:83-86. [PMID: 39721905 DOI: 10.1016/j.pt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Host manipulation mechanisms remain poorly understood. We summarize recent studies using -omics approaches (transcriptomics, proteomics) to explore alteration in gene expression in hosts infected by manipulative parasites. To guide future research, we highlight the common pattern of neuromodulation, as well as other diverse combinations of functions targeted across different host manipulation systems.
Collapse
Affiliation(s)
- Chen-Hua Li
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| |
Collapse
|
3
|
van Roosmalen E, de Bekker C. Mechanisms Underlying Ophiocordyceps Infection and Behavioral Manipulation of Ants: Unique or Ubiquitous? Annu Rev Microbiol 2024; 78:575-593. [PMID: 39270680 DOI: 10.1146/annurev-micro-041522-092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Parasite manipulation of host behavior, as an effective strategy to establish transmission, has evolved multiple times across taxa, including fungi. Major strides have been made to propose molecular mechanisms that underlie manipulative parasite-host interactions including the manipulation of carpenter ant behavior by Ophiocordyceps. This research suggests that the secretion of parasite proteins and light-driven biological rhythms are likely involved in the infection and manipulation biology of Ophiocordyceps and other manipulating parasites. Here, we discuss research on Ophiocordyceps considering findings from other (fungal) parasites that either are relatively closely related (e.g., other insect- and plant-infecting Hypocreales) or also manipulate insect behavior (e.g., Entomophthorales). As such, this review aims to put forward this question: Are the mechanisms behind Ophiocordyceps manipulation and infection unique, or did they convergently evolve? From this discussion, we pose functional hypotheses about the infection biology of Ophiocordyceps that will need to be addressed in future studies.
Collapse
|
4
|
Perrot-Minnot MJ, Cézilly F, Musset O. Laser-based selective killing of a manipulative parasite reveals partial reversibility of phenotypic alterations in its intermediate host. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100221. [PMID: 39687492 PMCID: PMC11647135 DOI: 10.1016/j.crpvbd.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
Various parasites alter their intermediate host's phenotype in ways that increase parasite transmission to definitive hosts. To what extent infected intermediate hosts can recover from such "manipulation" is poorly documented, thus limiting our understanding of its proximate and ultimate causes. Here, we address the reversibility of several phenotypic alterations induced by the acanthocephalan Polymorphus minutus, a trophically-transmitted bird parasite, in its amphipod intermediate host. Using a recently developed laser-based technology, we selectively killed parasite larvae inside the body cavity of Gammarus fossarum, while preserving host viability. Following behavioral tests, parasite death was confirmed using DNA integrity assays. Alterations of geotaxis, locomotor activity and resting metabolic rate in infected gammarids remained unchanged one month after parasite's death. In contrast, elevated brain lactate concentration and hemolymph total phenoloxidase activity of treated gammarids hosting a dead cystacanth returned to control (uninfected) levels. Interestingly, melanotic encapsulation response to dead cystacanths was rare up to two months after treatment, with only 5.6% of cystacanths being fully or partially melanized, thus suggesting long-lasting protection from the acellular outer envelope. Irreversible behavioral but reversible physiological alterations appear to be a cost-effective strategy of host manipulation, and point to a putative role of epigenetic alterations in parasite manipulation.
Collapse
Affiliation(s)
| | - Frank Cézilly
- Université de Bourgogne, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Olivier Musset
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
5
|
Perrot-Minnot MJ, Parrot S. Contrasting alterations in brain chemistry in a crustacean intermediate host of two acanthocephalan parasites. Exp Parasitol 2024; 265:108821. [PMID: 39128576 DOI: 10.1016/j.exppara.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The dynamic properties of neural systems throughout life can be hijacked by so-called manipulative parasites. This study investigated changes in the brain chemistry of the amphipod Gammarus fossarum in response to infection with two trophically-transmitted helminth parasites known to induce distinct behavioral alterations: the bird acanthocephalan Polymorphus minutus and the fish acanthocephalan Pomphorhynchus tereticollis. We quantified brain antioxidant capacity as a common marker of homeostasis and neuroprotection, and brain total protein, on 72 pools of six brains. We analyzed the concentration of serotonin (5HT), dopamine (DA) and tyramine in 52 pools of six brains, by using ultrafast high performance liquid chromatography with electrochemical detection (UHPLC-ECD). Brain total protein concentration scaled hypo-allometrically to dry body weight, and was increased in infected gammarids compared to uninfected ones. The brain of gammarids infected with P. minutus had significantly lower total antioxidant capacity relative to total proteins. Infection with P. tereticollis impacted DA level compared to uninfected ones, and in opposite direction between spring and summer. Brain 5HT level was higher in summer compared to spring independently of infection status, and was decreased by infection after correcting for brain total protein concentration estimated from dry whole-body weight. The potential implication of 5HT/DA balance in parasite manipulation, as a major modulator of the reward-punishment axis, is discussed. Taken together, these findings highlight the need to consider both brain homeostatic and/or structural changes (antioxidant and total protein content) together with neurotransmission balance and flexibility, in studies investigating the impact of parasites on brain and behavior.
Collapse
Affiliation(s)
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, Neurodialytics Facility, Université Claude Bernard Lyon 1, INSERM, U1028, CNRS, UMR 5292, Bron, France
| |
Collapse
|
6
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
7
|
Doherty JF, Ames T, Brewster LI, Chiang J, Cyr E, Kelsey CR, Lee JP, Liu B, Lo IHY, Nirwal GK, Mohammed YG, Phelan O, Seyfourian P, Shannon DM, Tochor NK, Matthews BJ. An update and review of arthropod vector sensory systems: Potential targets for behavioural manipulation by parasites and other disease agents. ADVANCES IN PARASITOLOGY 2024; 124:57-89. [PMID: 38754927 DOI: 10.1016/bs.apar.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.
Collapse
Affiliation(s)
| | - Tahnee Ames
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Jonathan Chiang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Elsa Cyr
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Cameron R Kelsey
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Jeehan Phillip Lee
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Bingzong Liu
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Hok Yin Lo
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Orna Phelan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Parsa Seyfourian
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
8
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Jensen CH, Weidner J, Giske J, Jørgensen C, Eliassen S, Mennerat A. Adaptive host responses to infection can resemble parasitic manipulation. Ecol Evol 2023; 13:e10318. [PMID: 37456066 PMCID: PMC10349281 DOI: 10.1002/ece3.10318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Using a dynamic optimisation model for juvenile fish in stochastic food environments, we investigate optimal hormonal regulation, energy allocation and foraging behaviour of a growing host infected by a parasite that only incurs an energetic cost. We find it optimal for the infected host to have higher levels of orexin, growth and thyroid hormones, resulting in higher activity levels, increased foraging and faster growth. This growth strategy thus displays several of the fingerprints often associated with parasite manipulation: higher levels of metabolic hormones, faster growth, higher allocation to reserves (i.e. parasite-induced gigantism), higher risk-taking and eventually higher predation rate. However, there is no route for manipulation in our model, so these changes reflect adaptive host compensatory responses. Interestingly, several of these changes also increase the fitness of the parasite. Our results call for caution when interpreting observations of gigantism or risky host behaviours as parasite manipulation without further testing.
Collapse
Affiliation(s)
| | | | - Jarl Giske
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Sigrunn Eliassen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Adèle Mennerat
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
10
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
11
|
Tang D, Huang O, Zou W, Wang Y, Wang Y, Dong Q, Sun T, Yang G, Yu H. Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus 2023; 14:9. [PMID: 37170179 PMCID: PMC10173673 DOI: 10.1186/s43008-023-00114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
Some Ophiocordyceps species infecting ants are able to manipulate the host behavior. The hosts are manipulated in order to move to location that are advantageous for fungal spore transmission. Ophiocordyceps species that are able to manipulate the ant's behavior are called "zombie-ant fungi". They are widespread within tropical forests worldwide, with relatively few reports from subtropical monsoon evergreen broad-leaf forest. Zombie-ant fungi have been described and reported in different countries worldwide. However, there were a few reports from China. This study proposed six new species of zombie-ant fungi from China based on multi-gene (SSU, LSU, TEF, RPB1 and RPB2) phylogenetic analyses and morphological characteristics. Six novel species of Ophiocordyceps from China were identified as the Ophiocordyceps unilateralis core clade, forming a separate lineage with other species. Six novel species of Ophiocordyceps with hirsutella-like asexual morphs exclusively infecting ants were presented herein, namely, Ophiocordyceps acroasca, Ophiocordyceps bifertilis, Ophiocordyceps subtiliphialida, Ophiocordyceps basiasca, Ophiocordyceps nuozhaduensis and Ophiocordyceps contiispora. Descriptions and illustrations for six taxon were provided. Five of these species were collected from the subtropical monsoon evergreen broad-leaf forest, and one was collected from the rainforest and subtropical monsoon evergreen broad-leaf forest. This work proposes that the same host of Camponotus can be infected by multiple ant pathogenic fungi, while multiple ants of Polyrhachis can be infected by the same pathogenic fungi at the same time. This study contributes towards a better understanding of the evolutionary relationship between hosts and fungi, and provides novel insights into the morphology, distribution, parasitism, and ecology of Ophiocordyceps unilateralis sensu lato. We have provided a method for obtaining living cultures of Ophiocordyceps unilateralis complex species and their asexual morphs based on the living cultures, which is of significant value for further studies of Ophiocordyceps unilateralis complex species in the future.
Collapse
Affiliation(s)
- Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Ou Huang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Weiqiu Zou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Yuanbing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
| | - Quanying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Gang Yang
- The Council of Management and Conservation of Sun River National Park, Puer, 665000, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
12
|
Tang D, Xu Z, Wang Y, Wang Y, Tran NL, Yu H. Multigene phylogeny and morphology reveal two novel zombie-ant fungi in Ophiocordyceps (Ophiocordycipitaceae, Hypocreales). Mycol Prog 2023. [DOI: 10.1007/s11557-023-01874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
Albuquerque RL, Zani PA, Garland T. Lower-level predictors and behavioral correlates of maximal aerobic capacity and sprint speed among individual lizards. J Exp Biol 2023; 226:286757. [PMID: 36700411 DOI: 10.1242/jeb.244676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
The standard paradigm of organismal biology views lower-level traits (e.g. aspects of physiology) as determining organismal performance ability (e.g. maximal sprint speed), which in turn constrains behavior (e.g. social interactions). However, few studies have simultaneously examined all three levels of organization. We used focal observations to record movement behaviors and push-up displays in the field for adult male Sceloporus occidentalis lizards during the breeding season. We then captured animals, measured aspects of their physiology, morphology and performance, and counted ectoparasites and endoparasites as potential predictors of sprint speed and maximal oxygen consumption (V̇O2,max). Field behaviors were statistically repeatable, but not strongly so. Sprint speed and V̇O2,max were repeatable using residuals from regressions on body mass (speed: r=0.70; V̇O2,max: r=0.88). Both calf [standardized partial regression (path) coefficient B=0.53] and thigh [B=-0.37] muscle mass (as residuals from regressions on body mass) were significant predictors of sprint speed; hemoglobin concentration (B=0.42) was a predictor of V̇O2,max. In turn, V̇O2,max predicted the maximum number of four-legged push-ups per bout (B=0.39). In path analysis, log likelihood ratio tests indicated no direct paths from lower-level traits to behavior, supporting the idea that morphology, in the broad sense, only affects behavior indirectly through measures of performance. Our results show that inter-individual variation in field behaviors can be related to performance ability, which in turn reflect differences in morphology and physiology, although not parasite load. Given the low repeatability of field behaviors, some of the relationships between behavior and performance may be stronger than suggested by our results.
Collapse
Affiliation(s)
- Ralph L Albuquerque
- Department of Evolution Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA.,Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58050-585, Brazil
| | - Peter A Zani
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481-3897, USA
| | - Theodore Garland
- Department of Evolution Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Mohan P, Sinu PA. Is direct bodyguard manipulation a parasitoid-induced stress sleep? A new perspective. Biol Lett 2022; 18:20220280. [PMID: 36448293 PMCID: PMC9709512 DOI: 10.1098/rsbl.2022.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Bodyguard manipulation is a behavioural manipulation in which the host's behaviour is altered to protect the inducer's offspring from imminent biotic threats. The behaviour of a post-parasitoid-egressed host resembles a quiescence state with a characteristic reduction in motor activities like feeding, locomotion, respiration, and metabolic rate. Yet, they respond aggressively through a defensive response when disturbed, which ensures better fitness for the parasitoid's offspring. The behavioural changes in the parasitized host appear after the parasitoid egression. Several hypotheses have been proposed to elucidate how the parasitized host's behaviour is manipulated for the fitness benefits of the inducers, but the exact mechanism is still unknown. We review evidence to explain the behavioural changes and their mechanism in the parasitized hosts. The evidence suggests that parasitoid pre-pupal egression may drive the host to stress-induced sleep. The elevated octopamine concentration also reflects the stress response in the host. Given the theoretical links between the behavioural and the physiological changes in the post-parasitoid-egressed host and stress-induced sleep of other invertebrates, we suggest that behavioural studies combined with functional genomics, proteomics, and histological analyses might give a better understanding of bodyguard manipulation.
Collapse
Affiliation(s)
- Prabitha Mohan
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
- Zoological Survey of India, Chennai, Tamilnadu, India
| | - Palatty Allesh Sinu
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
16
|
Doherty JF, Matthews BJ. Host Manipulation, Gene Editing, and Non-Traditional Model Organisms: A New Frontier for Behavioral Research? FRONTIERS IN INSECT SCIENCE 2022; 2:938644. [PMID: 38468779 PMCID: PMC10926399 DOI: 10.3389/finsc.2022.938644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 03/13/2024]
Abstract
Insects and parasites dominate the biosphere, in terms of known biodiversity and mode of life, respectively. Consequently, insects play a part in many host-parasite systems, either as parasite, host, or both. Moreover, a lot of these systems involve adaptive parasite-induced changes of host phenotype (typically behavior or morphology), which is commonly known as host manipulation. While many host manipulation systems have been described within the last few decades, the proximate mechanisms that underpin host phenotypic change are still largely unknown. Given the intimate co-evolutionary history of host-parasite systems, teasing apart the intricate network of biochemical reactions involved in host manipulation requires the integration of various complementary technologies. In this perspective, we stress the importance of multidisciplinary research on host manipulation, such as high-throughput sequencing methods (genomics and transcriptomics) to search for candidate mechanisms that are activated during a manipulation event. Then, we argue that gene editing technologies, specifically the CRISPR-Cas9 system, are a powerful way to test for the functional roles of candidate mechanisms, in both the parasite and the host. Finally, given the sheer diversity of unique host-parasite systems discovered to date, there is indeed a tremendous potential to create novel non-traditional model systems that could greatly expand our capacity to test the fundamental aspects of behavior and behavioral regulation.
Collapse
|
17
|
Poulin R, Jorge F, Salloum PM. Inter-individual variation in parasite manipulation of host phenotype: A role for parasite microbiomes? J Anim Ecol 2022; 92:807-812. [PMID: 35748637 DOI: 10.1111/1365-2656.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Alterations in host phenotype induced by metazoan parasites are widespread in nature, yet the underlying mechanisms and the sources of intraspecific variation in the extent of those alterations remain poorly understood. In light of the microbiome revolution sweeping through ecology and evolutionary biology, we hypothesise that the composition of symbiotic microbial communities living within individual parasites influences the nature and extent of their effect on host phenotype. The interests of both the parasite and its symbionts are aligned through the latter's vertical transmission, favouring joint contributions to the manipulation of host phenotype. Our hypothesis can explain the variation in the extent to which parasites alter host phenotype, as microbiome composition varies among individual parasites. We propose two non-exclusive approaches to test the hypothesis, furthering the integration of microbiomes into studies of host-parasite interactions.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Otago Micro and Nano Imaging, Electron Microscopy Unit, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
18
|
The rise of ecological parasitology: twelve landmark advances that changed its history. Int J Parasitol 2021; 51:1073-1084. [PMID: 34390744 DOI: 10.1016/j.ijpara.2021.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
In the five decades since the first publication of the International Journal for Parasitology, ecological parasitology has grown from modest beginnings to become a modern discipline with a strong theoretical foundation, a diverse toolkit, and a multidisciplinary approach. In this review, I highlight 12 advances in the field that have spurred its growth over the past 50 years. Where relevant, I identify pivotal contributions that have altered the course of research, as well as the influence of developments in other fields such as mainstream ecology and molecular biology. The 12 key advances discussed are in areas including parasite population dynamics and community assembly, the regulation of host population abundance and food web structure, parasites as agents of natural selection, the impacts of biodiversity and anthropogenic changes on host-parasite interactions, the biogeography of parasite diversity, and the evolutionary genetics of parasites. I conclude by identifying some challenges and opportunities lying ahead, which need to be met for the future growth of ecological research on host-parasite interactions.
Collapse
|
19
|
Marliére NP, Lorenzo MG, Guarneri AA. Trypanosoma cruzi-infected Rhodnius prolixus endure increased predation facilitating parasite transmission to mammal hosts. PLoS Negl Trop Dis 2021; 15:e0009570. [PMID: 34197458 PMCID: PMC8279422 DOI: 10.1371/journal.pntd.0009570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/14/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022] Open
Abstract
Triatomine bugs aggregate with conspecifics inside shelters during daylight hours. At dusk, they leave their refuges searching for hosts on which to blood feed. After finding a host, triatomines face the threat of being killed, because hosts often prey on them. As it is known that many parasites induce the predation of intermediate hosts to promote transmission, and that ingestion of Trypanosoma cruzi-infected bugs represents a very effective means for mammal infection, we hypothesized that trypanosomes induce infected bugs to take increased risk, and, as a consequence, be predated when approaching a host. Therefore, we evaluated whether the predation risk and predation rates endured by Rhodnius prolixus increase when infected with T. cruzi. Assays were performed in square glass arenas offering one central refuge to infected and uninfected 5th instar nymphs. A caged mouse was introduced in each arena after a three-day acclimation interval to activate sheltered insects and induce them to approach it. As hypothesized, a significantly higher proportion of infected insects was predated when compared with uninfected ones (36% and 19%, respectively). Indeed, T. cruzi-infected bugs took higher risk (Approximation Index = 0.642) when compared with healthy ones (Approximation Index = 0.302) and remained outside the shelters when the host was removed from the arena. Our results show that infection by T. cruzi induces bugs to assume higher risk and endure higher predation rates. We reveal a hitherto unknown trypanosome-vector interaction process that increases infected bug predation, promoting increased rates of robust oral transmission. The significant consequences of the mechanism revealed here make it a fundamental component for the resilient maintenance of sylvatic, peridomestic and domestic cycles.
Collapse
Affiliation(s)
- Newmar Pinto Marliére
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| |
Collapse
|
20
|
The Adaptiveness of Host Behavioural Manipulation Assessed Using Tinbergen's Four Questions. Trends Parasitol 2021; 37:597-609. [PMID: 33568325 DOI: 10.1016/j.pt.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Host organisms show altered phenotypic reactions when parasitised, some of which result from adaptive host manipulation, a phenomenon that has long been debated. Here, we provide an overview and discuss the rationale in distinguishing adaptive versus nonadaptive host behavioural manipulation. We discuss Poulin's criteria of adaptive host behavioural manipulation within the context of Tinbergen's four questions of ethology, while highlighting the importance of both the proximate and evolutionary explanations of such traits. We also provide guidelines for future studies exploring the adaptiveness of host behavioural manipulation. Through this article, we seek to encourage researchers to consider both the proximate and ultimate causes of host behavioural manipulation to infer on the adaptiveness of such traits.
Collapse
|
21
|
Tick parasitism impairs contest behavior in the western fence lizard (Sceloporus occidentalis). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02980-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Steffen HM. Wie beeinflussen Parasiten das Verhalten ihres Wirts? Die parasitäre Manipulationshypothese. Dtsch Med Wochenschr 2020; 145:1848-1854. [DOI: 10.1055/a-1220-8737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Helland-Riise SH, Vindas MA, Johansen IB, Nadler LE, Weinersmith KL, Hechinger RF, Øverli Ø. Brain-encysting trematodes ( Euhaplorchis californiensis) decrease raphe serotonergic activity in California killifish ( Fundulus parvipinnis). Biol Open 2020; 9:bio049551. [PMID: 32439741 PMCID: PMC7358127 DOI: 10.1242/bio.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Modulation of brain serotonin (5-HT) signalling is associated with parasite-induced changes in host behaviour, potentially increasing parasite transmission to predatory final hosts. Such alterations could have substantial impact on host physiology and behaviour, as 5-HT serves multiple roles in neuroendocrine regulation. These effects, however, remain insufficiently understood, as parasites have been associated with both increased and decreased serotonergic activity. Here, we investigated effects of trematode Euhaplorchis californiensis metacercariae on post-stress serotonergic activity in the intermediate host California killifish (Fundulus parvipinnis). This parasite is associated with conspicuous behaviour and increased predation of killifish by avian end-hosts, as well as inhibition of post-stress raphe 5-HT activity. Until now, laboratory studies have only been able to achieve parasite densities (parasites/unit host body mass) well below those occurring in nature. Using laboratory infections yielding ecologically relevant parasite loads, we show that serotonergic activity indeed decreased with increasing parasite density, an association likely indicating changes in 5-HT neurotransmission while available transmitter stores remain constant. Contrary to most observations in the literature, 5-HT activity increased with body mass in infected fish, indicating that relationships between parasite load and body mass may in many cases be a real underlying factor for physiological correlates of body size. Our results suggest that parasites are capable of influencing brain serotonergic activity, which could have far-reaching effects beyond the neurophysiological parameters investigated here.
Collapse
Affiliation(s)
- Siri H Helland-Riise
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| | - Marco A Vindas
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| | - Ida B Johansen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| | - Lauren E Nadler
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA 92037, USA
| | | | - Ryan F Hechinger
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA 92037, USA
| | - Øyvind Øverli
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| |
Collapse
|
24
|
Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3-GENES GENOMES GENETICS 2020; 10:2275-2296. [PMID: 32354705 PMCID: PMC7341126 DOI: 10.1534/g3.120.401290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ant-infecting Ophiocordyceps fungi are globally distributed, host manipulating, specialist parasites that drive aberrant behaviors in infected ants, at a lethal cost to the host. An apparent increase in activity and wandering behaviors precedes a final summiting and biting behavior onto vegetation, which positions the manipulated ant in a site beneficial for fungal growth and transmission. We investigated the genetic underpinnings of host manipulation by: (i) producing a high-quality hybrid assembly and annotation of the Ophiocordyceps camponoti-floridani genome, (ii) conducting laboratory infections coupled with RNAseq of O. camponoti-floridani and its host, Camponotus floridanus, and (iii) comparing these data to RNAseq data of Ophiocordyceps kimflemingiae and Camponotus castaneus as a powerful method to identify gene expression patterns that suggest shared behavioral manipulation mechanisms across Ophiocordyceps-ant species interactions. We propose differentially expressed genes tied to ant neurobiology, odor response, circadian rhythms, and foraging behavior may result by activity of putative fungal effectors such as enterotoxins, aflatrem, and mechanisms disrupting feeding behaviors in the ant.
Collapse
|
25
|
Clonemate cotransmission supports a role for kin selection in a puppeteer parasite. Proc Natl Acad Sci U S A 2020; 117:5970-5976. [PMID: 32123093 DOI: 10.1073/pnas.1922272117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host manipulation by parasites is a fascinating evolutionary outcome, but adaptive scenarios that often accompany even iconic examples in this popular field of study are speculative. Kin selection has been invoked as a means of explaining the evolution of an altruistic-based, host-manipulating behavior caused by larvae of the lancet fluke Dicrocoelium dendriticum in ants. Specifically, cotransmission of larval clonemates from a snail first host to an ant second host is presumed to lead to a puppeteer parasite in the ant's brain that has clonemates in the ant abdomen. Clonal relatedness between the actor (brain fluke) and recipients (abdomen flukes) enables kin selection of the parasite's host-manipulating trait, which facilitates transmission of the recipients to the final host. However, the hypothesis that asexual reproduction in the snail leads to a high abundance of clonemates in the same ant is untested. Clonal relationships between the manipulator in the brain and the nonmanipulators in the abdomen are also untested. We provide empirical data on the lancet fluke's clonal diversity within its ant host. In stark contrast to other trematodes, which do not exhibit the same host-manipulating behavioral trait, the lancet fluke has a high abundance of clonemates. Moreover, our data support existing theory that indicates that the altruistic behavior can evolve even in the presence of multiple clones within the same ant host. Importantly, our analyses conclusively show clonemate cotransmission into ants, and, as such, we find support for kin selection to drive the evolution and maintenance of this iconic host manipulation.
Collapse
|
26
|
Helland-Riise SH, Nadler LE, Vindas MA, Bengston E, Turner AV, Johansen IB, Weinersmith KL, Hechinger RF, Øverli Ø. Regional Distribution of a Brain-Encysting Parasite Provides Insight on Parasite-Induced Host Behavioral Manipulation. J Parasitol 2020. [DOI: 10.1645/19-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Siri H. Helland-Riise
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1407, Norway
| | - Lauren E. Nadler
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1407, Norway
| | - Marco A. Vindas
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1407, Norway
| | - Erik Bengston
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California–San Diego, San Diego, California 92037
| | - Andrew V. Turner
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California–San Diego, San Diego, California 92037
| | - Ida B. Johansen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1407, Norway
| | | | - Ryan F. Hechinger
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California–San Diego, San Diego, California 92037
| | - Øyvind Øverli
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1407, Norway
| |
Collapse
|
27
|
Herbison R, Evans S, Doherty JF, Algie M, Kleffmann T, Poulin R. A molecular war: convergent and ontogenetic evidence for adaptive host manipulation in related parasites infecting divergent hosts. Proc Biol Sci 2019; 286:20191827. [PMID: 31744433 DOI: 10.1098/rspb.2019.1827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mermithids (phylum Nematoda) and hairworms (phylum Nematomorpha) somehow drive their arthropod hosts into water, which is essential for the worms' survival after egression. The mechanisms behind this behavioural change have been investigated in hairworms, but not in mermithids. Establishing a similar mechanistic basis for host behavioural change between these two distantly related parasitic groups would provide strong convergent evidence for adaptive manipulation and insight into how these parasites modify and/or create behaviour. Here, we search for this convergence, and also contrast changes in physiology between hosts infected with immature and mature mermithids to provide the first ontogenetic evidence for adaptive manipulation by disentangling host response and pathology from the parasite's apparent manipulative effects. We used SWATH-mass spectrometry on brains of Forficula auricularia (earwig) and Bellorchestia quoyana (sandhopper), infected with the mermithids Mermis nigrescens and Thaumamermis zealandica, respectively, at both immature and mature stages of infection, to quantify proteomic changes resulting from mermithid infection. Across both hosts (and hairworm-infected hosts, from earlier studies), the general function of dysregulated proteins was conserved. Proteins involved in energy generation/mobilization were dysregulated, corroborating reports of erratic/hyperactive behaviour in infected hosts. Dysregulated proteins involved in axon/dendrite and synapse modulation were also common to all hosts, suggesting neuronal manipulation is involved in inducing positive hydrotaxis. Furthermore, downregulation of CamKII and associated proteins suggest manipulation of memory also contributes to the behavioural shift.
Collapse
Affiliation(s)
- Ryan Herbison
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Steven Evans
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | - Michael Algie
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
28
|
Del Giudice M. Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/705038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Weinersmith KL. What's gotten into you?: a review of recent research on parasitoid manipulation of host behavior. CURRENT OPINION IN INSECT SCIENCE 2019; 33:37-42. [PMID: 31358193 DOI: 10.1016/j.cois.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 06/10/2023]
Abstract
Some parasitoids modify the behavior of their hosts, benefiting themselves at the host's expense. This phenomenon is called 'manipulation', and current research on parasitoid manipulation of host behavior tends to fall into one of three categories. First, the frequency of manipulation and the magnitude of its benefits to the parasitoid remains unclear. Basic documentation of manipulations is thus a major research focus, with especially valuable recent data coming from spiders manipulated by Polysphincta wasps. Second, for a handful of systems, we now have sufficient phylogenetic and behavioral data to begin asking questions about how manipulation evolved. Finally, the field continues to probe the mechanisms through which parasitoids manipulate host behavior, and now examines the role of parasitoid symbionts in this interaction.
Collapse
Affiliation(s)
- Kelly L Weinersmith
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
30
|
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. CURRENT OPINION IN INSECT SCIENCE 2019; 33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/10/2023]
Abstract
Plant virus infection fundamentally alters chemical and behavioral phenotypes of hosts and vectors. These alterations often enhance virus transmission, leading researchers to surmise that such effects are manipulations caused by virus adaptations and not just by-products of pathology. But identification of the virus components behind manipulation is missing from most studies performed to date. Here, we evaluate causative empirical evidence that virus components are the drivers of manipulated host and vector phenotypes. To do so, we link findings and methodologies on virus pathology with observational and functional genomics studies on virus manipulation. Our synthesis provides an overview of progress, areas of synergy, and new approaches that will lead to an improved mechanistic understanding of host and vector manipulation by plant viruses.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Jaimie Kenney
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Iritani R, Sato T. Host-Manipulation by Trophically Transmitted Parasites: The Switcher-Paradigm. Trends Parasitol 2018; 34:934-944. [DOI: 10.1016/j.pt.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
|
32
|
3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host. Sci Rep 2018; 8:8587. [PMID: 29872086 PMCID: PMC5988677 DOI: 10.1038/s41598-018-26977-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host's behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
Collapse
|
33
|
Finnerty PB, Shine R, Brown GP. Survival of the feces: Does a nematode lungworm adaptively manipulate the behavior of its cane toad host? Ecol Evol 2018; 8:4606-4618. [PMID: 29760901 PMCID: PMC5938457 DOI: 10.1002/ece3.3870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/07/2023] Open
Abstract
Parasites can enhance their fitness by modifying the behavior of their hosts in ways that increase rates of production and transmission of parasite larvae. We used an antihelminthic drug to experimentally alter infections of lungworms (Rhabdias pseudosphaerocephala) in cane toads (Rhinella marina). We then compared subsequent behaviors of dewormed toads versus toads that retained infections. Both in the laboratory and in the field, the presence of parasites induced hosts to select higher body temperatures (thereby increasing rates of lungworm egg production), to defecate in moister sites, and to produce feces with higher moisture content (thereby enhancing survival of larvae shed in feces). Because those behavioral modifications enhance rather than decrease parasite fitness, they are likely to have arisen as adaptive manipulations of host behavior rather than as host adaptations to combat infection or as nonadaptive consequences of infection on host physiology. However, the mechanisms by which lungworms alter cane toad thermal preference and defecation are not known. Although many examples of host manipulation by parasites involve intermediate hosts facilitating their own demise, our findings indicate that manipulation of definitive hosts can be as subtle as when and where to defecate.
Collapse
Affiliation(s)
- Patrick B Finnerty
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
34
|
Herbison R, Lagrue C, Poulin R. The missing link in parasite manipulation of host behaviour. Parasit Vectors 2018; 11:222. [PMID: 29615121 PMCID: PMC5881176 DOI: 10.1186/s13071-018-2805-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022] Open
Abstract
The observation that certain species of parasite my adaptively manipulate its host behaviour is a fascinating phenomenon. As a result, the recently established field of ‘host manipulation’ has seen rapid expansion over the past few decades with public and scientific interest steadily increasing. However, progress appears to falter when researchers ask how parasites manipulate behaviour, rather than why. A vast majority of the published literature investigating the mechanistic basis underlying behavioural manipulation fails to connect the establishment of the parasite with the reported physiological changes in its host. This has left researchers unable to empirically distinguish/identify adaptive physiological changes enforced by the parasites from pathological side effects of infection, resulting in scientists relying on narratives to explain results, rather than empirical evidence. By contrasting correlative mechanistic evidence for host manipulation against rare cases of causative evidence and drawing from the advanced understanding of physiological systems from other disciplines it is clear we are often skipping over a crucial step in host-manipulation: the production, potential storage, and release of molecules (manipulation factors) that must create the observed physiological changes in hosts if they are adaptive. Identifying these manipulation factors, via associating gene expression shifts in the parasite with behavioural changes in the host and following their effects will provide researchers with a bottom-up approach to unraveling the mechanisms of behavioural manipulation and by extension behaviour itself.
Collapse
Affiliation(s)
- Ryan Herbison
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| | - Clement Lagrue
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|