1
|
Mant D, Orevi T, Kashtan N. Impact of micro-habitat fragmentation on microbial population growth dynamics. THE ISME JOURNAL 2025; 19:wrae256. [PMID: 39711055 PMCID: PMC11964898 DOI: 10.1093/ismejo/wrae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Microbial communities thrive in virtually every habitat on Earth and are essential to the function of diverse ecosystems. Most microbial habitats are not spatially continuous and well-mixed, but rather composed, at the microscale, of many isolated or semi-isolated local patches of different sizes, resulting in partitioning of microbial populations into discrete local populations. The impact of this spatial fragmentation on population dynamics is not well-understood. Here, we study how such variably sized micro-habitat patches affect the growth dynamics of clonal microbial populations and how dynamics in individual patches dictate those of the metapopulation. To investigate this, we developed the μ-SPLASH, an ecology-on-a-chip platform, enabling the culture of microbes in microscopic landscapes comprised of thousands of microdroplets, with a wide range of sizes. Using the μ-SPLASH, we cultured the model bacteria Escherichia coli and based on time-lapse microscopy, analyzed the population dynamics within thousands of individual droplets. Our results reveal that growth curves substantially vary with droplet size. Although growth rates generally increase with drop size, reproductive success and the time to approach carrying capacity, display non-monotonic patterns. Combining μ-SPLASH experiments with computational modeling, we show that these patterns result from both stochastic and deterministic processes, and demonstrate the roles of initial population density, patchiness, and patch size distribution in dictating the local and metapopulation dynamics. This study reveals basic principles that elucidate the effects of habitat fragmentation and population partitioning on microbial population dynamics. These insights deepen our understanding of natural microbial communities and have significant implications for microbiome engineering.
Collapse
Affiliation(s)
- Dina Mant
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot 76100, Israel
| | - Tomer Orevi
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot 76100, Israel
| | - Nadav Kashtan
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
2
|
Fournier RJ, de Mendoza G, Sarremejane R, Ruhi A. Isolation controls reestablishment mechanisms and post-drying community structure in an intermittent stream. Ecology 2023; 104:e3911. [PMID: 36335551 PMCID: PMC10078480 DOI: 10.1002/ecy.3911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Biota in disturbance-prone landscapes have evolved a variety of strategies to persist long term, either locally (resistance) or by regional recolonization (resilience). Habitat fragmentation and isolation can limit the availability of recolonization pathways, and thus the dynamics of post-disturbance community reestablishment. However, empirical studies on how isolation may control the mechanisms that enable community recovery remain scarce. Here, we studied a pristine intermittent stream (Chalone Creek, Pinnacles National Park, California) to understand how isolation (distance from a perennial pool) alters invertebrate community recolonization after drying. We monitored benthic invertebrate reestablishment during the rewetting phase along a ~2-km gradient of isolation, using mesh traps that selected for specific recolonization pathways (i.e., drift, flying, swimming/crawling, and vertical migration from the hyporheic). We collected daily emigration samples, surveyed the reestablished benthic community after 6 weeks, and compared assemblages across trap types and sites. We found that isolation mediated migration dynamics by delaying peak vertical migration from the hyporheic by ca. 1 day on average per 250 m of dry streambed. The relative importance of reestablishment mechanisms varied longitudinally-with more resistance strategists (up to 99.3% of encountered individuals) in the upstream reaches, and increased drift and aerial dispersers in the more fragmented habitats (up to 17.2% and 18%, respectively). Resistance strategists persisting in the hyporheic dominated overall (88.2% of individuals, ranging 52.9%-99.3% across sites), but notably most of these organisms subsequently outmigrated downstream (85.6% on average, ranging 52.1%-96% across sites). Thus, contrary to conventional wisdom, resistance strategists largely contributed to downstream resilience as well as to local community recovery. Finally, increased isolation was associated with a general decrease in benthic invertebrate diversity, and up to a 3-fold increase in the relative abundance of drought-resistant stoneflies. Our results advance the notion that understanding spatial context is key to predicting post-disturbance community dynamics. Considering the interaction between disturbance and fragmentation may help inform conservation in ecosystems that are subject to novel environmental regimes.
Collapse
Affiliation(s)
- Robert J Fournier
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Guillermo de Mendoza
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA.,Faculty of Oceanography and Geography, Institute of Geography, University of Gdansk, Gdańsk, Poland
| | - Romain Sarremejane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA.,INRAE, UR RiverLy, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne Cedex, France
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Gharasoo M, Elsner M, Van Cappellen P, Thullner M. Pore-Scale Heterogeneities Improve the Degradation of a Self-Inhibiting Substrate: Insights from Reactive Transport Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13008-13018. [PMID: 36069624 DOI: 10.1021/acs.est.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ bioremediation is a common remediation strategy for many groundwater contaminants. It was traditionally believed that (in the absence of mixing-limitations) a better in situ bioremediation is obtained in a more homogeneous medium where the even distribution of both substrate and bacteria facilitates the access of a larger portion of the bacterial community to a higher amount of substrate. Such conclusions were driven with the typical assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes at high concentration levels. To investigate the influence of pore matrix heterogeneities on substrate inhibition, we use a numerical approach to solve reactive transport processes in the presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model is developed and used to model the reactive transport of a self-inhibiting substrate under both transient and steady-state conditions through media with various, spatially correlated, pore-size distributions. For the first time, we explore on the basis of a pore-scale model approach the link between pore-size heterogeneities and substrate inhibition. Our results show that for a self-inhibiting substrate, (1) pore-scale heterogeneities can consistently promote degradation rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous media can increase the overall efficiency of bioremediation.
Collapse
Affiliation(s)
- Mehdi Gharasoo
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Bundesanstalt für Gewässerkunde, Abteilung Quantitative Gewässerkunde, Am Mainzer Tor 1, Koblenz 56068, Germany
- Department of Earth and Environmental Sciences, Ecohydrology Research Group, University of Waterloo, 200 University Av W, Waterloo ON N2L3G1, Canada
| | - Martin Elsner
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Marchioninistr. 17, Munich 81377, Germany
| | - Philippe Van Cappellen
- Department of Earth and Environmental Sciences, Ecohydrology Research Group, University of Waterloo, 200 University Av W, Waterloo ON N2L3G1, Canada
| | - Martin Thullner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover 30655, Germany
| |
Collapse
|
4
|
West JR, Whitman T. Disturbance by soil mixing decreases microbial richness and supports homogenizing community assembly processes. FEMS Microbiol Ecol 2022; 98:fiac089. [PMID: 35869965 PMCID: PMC9397575 DOI: 10.1093/femsec/fiac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
The spatial heterogeneity of soil's microhabitats warrants the study of ecological patterns and community assembly processes in the context of physical disturbance that disrupts the inherent spatial isolation of soil microhabitats and microbial communities. By mixing soil at various frequencies in a 16-week lab incubation, we explored the effects of physical disturbance on soil bacterial richness, community composition, and community assembly processes. We hypothesized that well-mixed soil would harbor a less rich microbial community, with community assembly marked by homogenizing dispersal and homogeneous selection. Using 16S rRNA gene sequencing, we inferred community assembly processes, estimated richness and differential abundance, and calculated compositional dissimilarity. Findings supported our hypotheses, with > 20% decrease in soil bacterial richness in well-mixed soil. Soil mixing caused communities to diverge from unmixed controls (Bray-Curtis dissimilarity; 0.75 vs. 0.25), while reducing within-group heterogeneity. Our results imply that the vast diversity observed in soil may be supported by spatial heterogeneity and isolation of microbial communities, and also provide insight into the effects of physical disturbance and community coalescence events. By isolating and better understanding the effects of spatial heterogeneity and disconnectivity on soil microbial communities, we can better extrapolate how anthropogenic disturbances may affect broad soil functions.
Collapse
Affiliation(s)
- Jaimie R West
- Department of Soil Science, University of Wisconsin – Madison, 1525 Observatory Drive, Madison, WI 53706, United States
| | - Thea Whitman
- Department of Soil Science, University of Wisconsin – Madison, 1525 Observatory Drive, Madison, WI 53706, United States
| |
Collapse
|
5
|
Goss-Souza D, Tsai SM, Rodrigues JLM, Klauberg-Filho O, Sousa JP, Baretta D, Mendes LW. Biogeographic responses and niche occupancy of microbial communities following long-term land-use change. Antonie Van Leeuwenhoek 2022; 115:1129-1150. [DOI: 10.1007/s10482-022-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
6
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
7
|
König S, Vogel HJ, Harms H, Worrich A. Physical, Chemical and Biological Effects on Soil Bacterial Dynamics in Microscale Models. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|