1
|
Delleuze M, Schwob G, Orlando J, Gerard K, Saucède T, Brickle P, Poulin E, Cabrol L. Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean. FEMS Microbiol Ecol 2024; 100:fiae134. [PMID: 39363207 PMCID: PMC11523047 DOI: 10.1093/femsec/fiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.
Collapse
Affiliation(s)
- Mélanie Delleuze
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Marine Biology Lab, CP160/15, Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Karin Gerard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas 6210427, Chile
- Cape Horn Investigation Center, Puerto Williams 6350054, Chile
| | - Thomas Saucède
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 21000 Dijon, France
| | - Paul Brickle
- South Atlantic Environmental Research Institute, Port Stanley FIQQ 1ZZ, Falkland Islands
- School of Biological Sciences (Zoology), University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Aix-Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (M.I.O.) UM 110, 13009 Marseille, France
| |
Collapse
|
2
|
Marangon E, Uthicke S, Patel F, Marzinelli EM, Bourne DG, Webster NS, Laffy PW. Life-stage specificity and cross-generational climate effects on the microbiome of a tropical sea urchin (Echinodermata: Echinoidea). Mol Ecol 2023; 32:5645-5660. [PMID: 37724851 DOI: 10.1111/mec.17124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Microbes play a critical role in the development and health of marine invertebrates, though microbial dynamics across life stages and host generations remain poorly understood in most reef species, especially in the context of climate change. Here, we use a 4-year multigenerational experiment to explore microbe-host interactions under the Intergovernmental Panel on Climate Change (IPCC)-forecast climate scenarios in the rock-boring tropical urchin Echinometra sp. A. Adult urchins (F0 ) were exposed for 18 months to increased temperature and pCO2 levels predicted for years 2050 and 2100 under RCP 8.5, a period which encompassed spawning. After rearing F1 offspring for a further 2 years, spawning was induced, and F2 larvae were raised under current day and 2100 conditions. Cross-generational climate effects were also explored in the microbiome of F1 offspring through a transplant experiment. Using 16S rRNA gene sequence analysis, we determined that each life stage and generation was associated with a distinct microbiome, with higher microbial diversity observed in juveniles compared to larval stages. Although life-stage specificity was conserved under climate conditions projected for 2050 and 2100, we observed changes in the urchin microbial community structure within life stages. Furthermore, we detected a climate-mediated parental effect when juveniles were transplanted among climate treatments, with the parental climate treatment influencing the offspring microbiome. Our findings reveal a potential for cross-generational impacts of climate change on the microbiome of a tropical invertebrate species.
Collapse
Affiliation(s)
- Emma Marangon
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Loudon AH, Park J, Parfrey LW. Identifying the core microbiome of the sea star Pisaster ochraceus in the context of sea star wasting disease. FEMS Microbiol Ecol 2023; 99:6998556. [PMID: 36690340 DOI: 10.1093/femsec/fiad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Sea stars are keystone species and their mass die-offs due to sea star wasting disease (SSWD) impact marine communities and have fueled recent interest in the microbiome of sea stars. We assessed the host specificity of the microbiome associated with three body regions of the sea star Pisaster ochraceus using 16S rRNA gene amplicon surveys of the bacterial communities living on and in Pisaster, their environment, and sympatric marine hosts across three populations in British Columbia, Canada. Overall, the bacterial communities on Pisaster are distinct from their environment and differ by both body region and geography. We identified core bacteria specifically associated with Pisaster across populations and nearly absent in other hosts and the environment. We then investigated the distribution of these core bacteria on SSWD-affected Pisaster from one BC site and by reanalyzing a study of SSWD on Pisaster from California. We find no differences in the distribution of core bacteria in early disease at either site and two core taxa differ in relative abundance in advanced disease in California. Using phylogenetic analyses, we find that most core bacteria have close relatives on other sea stars and marine animals, suggesting these clades have evolutionary adaptions to an animal-associated lifestyle.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jungsoo Park
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, PO Box 25039, Campbell River, BC V9W 0B7, Canada
| |
Collapse
|
4
|
Zauner S, Vogel M, Polzin J, Yuen B, Mußmann M, El-Hacen EHM, Petersen JM. Microbial communities in developmental stages of lucinid bivalves. ISME COMMUNICATIONS 2022; 2:56. [PMID: 37938693 PMCID: PMC9723593 DOI: 10.1038/s43705-022-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2023]
Abstract
Bivalves from the family Lucinidae host sulfur-oxidizing bacterial symbionts, which are housed inside specialized gill epithelial cells and are assumed to be acquired from the environment. However, little is known about the Lucinidae life cycle and symbiont acquisition in the wild. Some lucinid species broadcast their gametes into the surrounding water column, however, a few have been found to externally brood their offspring by the forming gelatinous egg masses. So far, symbiont transmission has only been investigated in one species that reproduces via broadcast spawning. Here, we show that the lucinid Loripes orbiculatus from the West African coast forms egg masses and these are dominated by diverse members of the Alphaproteobacteria, Clostridia, and Gammaproteobacteria. The microbial communities of the egg masses were distinct from those in the environments surrounding lucinids, indicating that larvae may shape their associated microbiomes. The gill symbiont of the adults was undetectable in the developmental stages, supporting horizontal transmission of the symbiont with environmental symbiont acquisition after hatching from the egg masses. These results demonstrate that L. orbiculatus acquires symbionts from the environment independent of the host's reproductive strategy (brooding or broadcast spawning) and reveal previously unknown associations with microbes during lucinid early development.
Collapse
Affiliation(s)
- Sarah Zauner
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Margaret Vogel
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Polzin
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - Benedict Yuen
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - Marc Mußmann
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - El-Hacen M El-Hacen
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700CC, Groningen, The Netherlands
- Parc National du Banc d'Arguin (PNBA) Chami, B.P. 5355, Wilaya de Dakhlet Nouadhibou, Mauritania
| | - Jillian M Petersen
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 2022; 20:100. [PMID: 35524305 PMCID: PMC9077847 DOI: 10.1186/s12915-022-01291-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Zoological Institute, University of Kiel, Kiel, Germany.
| | - Manuel Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | | | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Ye L, Rawls JF. Microbial influences on gut development and gut-brain communication. Development 2021; 148:dev194936. [PMID: 34758081 PMCID: PMC8627602 DOI: 10.1242/dev.194936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.
Collapse
|
7
|
Carrier TJ, Beaulieu SE, Mills SW, Mullineaux LS, Reitzel AM. Larvae of Deep-Sea Invertebrates Harbor Low-Diversity Bacterial Communities. THE BIOLOGICAL BULLETIN 2021; 241:65-76. [PMID: 34436969 DOI: 10.1086/715669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractMicrobial symbionts are a common life-history character of marine invertebrates and their developmental stages. Communities of bacteria that associate with the eggs, embryos, and larvae of coastal marine invertebrates tend to be species specific and correlate with aspects of host biology and ecology. The richness of bacteria associated with the developmental stages of coastal marine invertebrates spans four orders of magnitude, from single mutualists to thousands of unique taxa. This understanding stems predominately from the developmental stages of coastal species. If they are broadly representative of marine invertebrates, then we may expect deep-sea species to associate with bacterial communities that are similar in diversity. To test this, we used amplicon sequencing to profile the bacterial communities of invertebrate larvae from multiple taxonomic groups (annelids, molluscs, crustaceans) collected from 2500 to 3670 m in depth in near-bottom waters near hydrothermal vents in 3 different regions of the Pacific Ocean (the East Pacific Rise, the Mariana Back-Arc, and the Pescadero Basin). We find that larvae of deep-sea invertebrates associate with low-diversity bacterial communities (~30 bacterial taxa) that lack specificity between taxonomic groups. The diversity of these communities is estimated to be ~7.9 times lower than that of coastal invertebrate larvae, but this result depends on the taxonomic group. Associating with a low-diversity community may imply that deep-sea invertebrate larvae do not have a strong reliance on a microbiome and that the hypothesized lack of symbiotic contributions would differ from expectations for larvae of coastal marine invertebrates.
Collapse
|
8
|
Microbiome reduction and endosymbiont gain from a switch in sea urchin life history. Proc Natl Acad Sci U S A 2021; 118:2022023118. [PMID: 33853946 DOI: 10.1073/pnas.2022023118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin Heliocidaris, we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome. We also determine that the lecithotroph vertically transmits a Rickettsiales that may complement host nutrition through amino acid biosynthesis and influence host reproduction. Our results indicate that the evolutionary loss of a functional gut correlates with a reduction in the microbiome and the association with an endosymbiont. Symbiotic transitions can therefore accompany life history transitions in the evolution of developmental strategies.
Collapse
|
9
|
Fleming TJ, Schrankel CS, Vyas H, Rosenblatt HD, Hamdoun A. CRISPR/Cas9 mutagenesis reveals a role for ABCB1 in gut immune responses to Vibrio diazotrophicus in sea urchin larvae. J Exp Biol 2021; 224:jeb232272. [PMID: 33653719 PMCID: PMC8077557 DOI: 10.1242/jeb.232272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host-microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.
Collapse
Affiliation(s)
- Travis J. Fleming
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah D. Rosenblatt
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Dong Y, Li Y, He P, Wang Z, Fan S, Zhang Z, Zhang X, Xu Q. Gut Microbial Composition and Diversity in Four Ophiuroid Species: Divergence Between Suspension Feeder and Scavenger and Their Symbiotic Microbes. Front Microbiol 2021; 12:645070. [PMID: 33815331 PMCID: PMC8017295 DOI: 10.3389/fmicb.2021.645070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Gut microbiota have important roles in the survival and adaptation of the host. Ophiuroids, as the worldwide dominant benthos, have ecological roles in benthic-pelagic coupling in the sea floor. However, little is known about the composition and diversity of their gut microbiota and its potential functions in benthic ecosystems. In present study, we preformed 16S rRNA sequencing and function analysis in four dominant species (Stegophiura sladeni, Ophiopholis mirabilis, Ophiura sarsii vadicola, and Ophiura kinbergi) with two feeding types (suspension feeding/herbivores and scavenger/carnivores) from the Yellow Sea, China. Results showed that 56 phyla and 569 genera of microbiota were identified among ophiuroid guts. Multivariate and diversity analyses showed that the ophiuroid gut microbiota were independent and have higher biodiversity to the sediment microbial in the Yellow Sea. Phyla Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes were the dominant bacteria, with more than 80% abundance among the four ophiuroid species. A comparison among the gut microbial compositions among four ophiuroids showed the similarity of two offshore carnivore ophiuroids (S. sladeni and O. sarsii vadicola) and variation in the dominant microbiota types of three nearshore ophiuroids (S. sladeni, O. mirabilis, and O. kinbergi). The functional analysis revealed the significant differences of the environment-related expression in S. sladeni gut microbiota between nearshore and offshore environments. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional annotation showed the significant divergence of metabolism pathways between two nearshore species, the herbivores O. mirabilis and carnivores S. sladeni, such as the Lipid metabolism, Carbohydrate metabolism, and Metabolism of cofactors and vitamins. The homolog search and phylogenetic analysis identified the first gut symbiotic Candidatus Hepatoplasma in S. sladeni with important roles for the nutrient metabolisms. Overall, our study reported the comprehensive data of ophiuroid gut microbiota, while the functional microbiome provides insight into the physiology and environmental adaptation in ophiuroids.
Collapse
Affiliation(s)
- Yue Dong
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yixuan Li
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Peiqing He
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zongling Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shiliang Fan
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xuelei Zhang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinzeng Xu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Faddetta T, Ardizzone F, Faillaci F, Reina C, Palazzotto E, Strati F, De Filippo C, Spinelli G, Puglia AM, Gallo G, Cavalieri V. Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus. Sci Rep 2020; 10:21443. [PMID: 33293569 PMCID: PMC7723044 DOI: 10.1038/s41598-020-78534-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
In the present work, culture-based and culture-independent investigations were performed to determine the microbiota structure of the coelomic fluid of Mediterranean sea urchin Paracentrotus lividus individuals collected from two distinct geographical sites neighboring a high-density population bay and a nature reserve, respectively. Next Generation Sequencing analysis of 16S rRNA gene (rDNA) showed that members of the Proteobacteria, Bacteroidetes and Fusobacteria phyla, which have been previously reported to be commonly retrieved from marine invertebrates, dominate the overall population of microorganisms colonizing this liquid tissue, with minority bacterial genera exhibiting remarkable differences among individuals. Our results showed that there is a correlation between microbiota structure and geographical location of the echinoderm collection site, highlighting over-representation of metagenomic functions related to amino acid and bioactive peptides metabolism in specimens inhabiting the nature reserve. Finally, we also described the developmental delay and aberrations exhibited by sea urchin embryos exposed to distinct bacterial isolates, and showed that these defects rely upon hydrophilic compound(s) synthesized by the bacterial strains assayed. Altogether, our findings lay the groundwork to decipher the relationships of bacteria with sea urchins in their aquatic environment, also providing an additional layer of information to understand the biological roles of the coelomic fluid.
Collapse
Affiliation(s)
- Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Francesco Ardizzone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Francesca Faillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy
| | - Emilia Palazzotto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello, 16, 20139, Milano, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy.
| |
Collapse
|