1
|
Berles P, Wölfer J, Nyakatura JA. Joint function in marmosets and tamarins: Insights from computational modeling of hip extensor muscles. J Anat 2025. [PMID: 40375451 DOI: 10.1111/joa.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/18/2025] Open
Abstract
Analyses of the musculoskeletal system of callitrichid primates contribute to the understanding of the specializations of an apparently highly conserved body plan exhibited by this radiation of New World primates. This pilot study provides data from computational modeling of muscle function of five hip extensor muscles in four species of Callitrichidae to identify potential adaptations to previously documented differential leaping behaviors. Based on microCT scans of fresh cadavers, we reconstructed the muscle topology to inform the modeling of instantaneous muscle moment arms (MMAs) contributing to hip extension and accompanying muscle strains. Generally, muscle properties of the four species were surprisingly similar despite documented differences in leaping behavior. However, all extensors of Goeldi's marmoset (except for the semimembranosus) had the longest instantaneous MMAs. This may result in a greater capacity to generate hip torques in these marmosets (assuming identical force provided by the muscles), beneficial to their specialization in long-distance trunk-to-trunk leaps. The shorter instantaneous MMAs of the extensors of the three other studied species indicate specialization toward more rapid hip extension. Strain analysis showed that, in all four species, the two glutei optimally generate force during the entire extension of the hip from a strongly crouched leg position to take off with an almost entirely extended leg. For the other three muscles (biceps femoris, semimembranosus and semitendinosus), we found optimal strains for force generation only at 50°-140° hip extension. We tentatively conclude that a relatively generalized musculoskeletal system for hip extension, coupled with moderate biomechanical adaptations favoring either joint torque or rotational speed, enables callitrichids to achieve remarkable locomotor versatility within highly intricate arboreal environments.
Collapse
Affiliation(s)
- Patricia Berles
- Comparative Zoology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Ishida M, Berio F, Di Santo V, Shubin NH, Iida F. Paleoinspired robotics as an experimental approach to the history of life. Sci Robot 2024; 9:eadn1125. [PMID: 39441900 DOI: 10.1126/scirobotics.adn1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Paleontologists must confront the challenge of studying the forms and functions of extinct species for which data from preserved fossils are extremely limited, yielding only a fragmented picture of life in deep time. In response to this hurdle, we describe the nascent field of paleoinspired robotics, an innovative method that builds upon established techniques in bioinspired robotics, enabling the exploration of the biology of ancient organisms and their evolutionary trajectories. This Review presents ways in which robotic platforms can fill gaps in existing research using the exemplars of notable transitions in vertebrate locomotion. We examine recent case studies in experimental paleontology, highlighting substantial contributions made by engineering and robotics techniques, and further assess how the efficient application of robotic technologies in close collaboration with paleontologists and biologists can offer additional insights into the study of evolution that were previously unattainable.
Collapse
Affiliation(s)
- Michael Ishida
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Fidji Berio
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 114 18 Stockholm, Sweden
| | - Valentina Di Santo
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 114 18 Stockholm, Sweden
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Fumiya Iida
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| |
Collapse
|
3
|
Demuth OE, Herbst E, Polet DT, Wiseman ALA, Hutchinson JR. Modern three-dimensional digital methods for studying locomotor biomechanics in tetrapods. J Exp Biol 2023; 226:jeb245132. [PMID: 36810943 PMCID: PMC10042237 DOI: 10.1242/jeb.245132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Here, we review the modern interface of three-dimensional (3D) empirical (e.g. motion capture) and theoretical (e.g. modelling and simulation) approaches to the study of terrestrial locomotion using appendages in tetrapod vertebrates. These tools span a spectrum from more empirical approaches such as XROMM, to potentially more intermediate approaches such as finite element analysis, to more theoretical approaches such as dynamic musculoskeletal simulations or conceptual models. These methods have much in common beyond the importance of 3D digital technologies, and are powerfully synergistic when integrated, opening a wide range of hypotheses that can be tested. We discuss the pitfalls and challenges of these 3D methods, leading to consideration of the problems and potential in their current and future usage. The tools (hardware and software) and approaches (e.g. methods for using hardware and software) in the 3D analysis of tetrapod locomotion have matured to the point where now we can use this integration to answer questions we could never have tackled 20 years ago, and apply insights gleaned from them to other fields.
Collapse
Affiliation(s)
- Oliver E. Demuth
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Eva Herbst
- Palaeontological Institute and Museum, University of Zurich, 8006 Zürich, Switzerland
| | - Delyle T. Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - Ashleigh L. A. Wiseman
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| |
Collapse
|
4
|
Scheidt A, Ditzel PC, Geiger SM, Wagner FC, Mülling CKW, Nyakatura JA. A therian mammal with sprawling kinematics? Gait and 3D forelimb X-ray motion analysis in tamanduas. J Exp Biol 2022; 225:275397. [PMID: 35554550 DOI: 10.1242/jeb.243625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Therian mammals are known to move their forelimbs in a parasagittal plane, retracting the mobilised scapula during stance phase. Non-cursorial therian mammals often abduct the elbow out of the shoulder-hip parasagittal plane. This is especially prominent in Tamandua (Xenarthra), which suggests they employ aspects of sprawling (e.g., lizard-like-) locomotion. Here, we test if tamanduas use sprawling forelimb kinematics, i.e., a largely immobile scapula with pronounced lateral spine bending and long-axis rotation of the humerus. We analyse high speed videos and use X-ray motion analysis of tamanduas walking and balancing on branches of varying inclinations and provide a quantitative characterization of gaits and forelimb kinematics. Tamanduas displayed lateral sequence lateral-couplets gaits on flat ground and horizontal branches, but increased diagonality on steeper in- and declines, resulting in lateral sequence diagonal-couplets gaits. This result provides further evidence for high diagonality in arboreal species, likely maximising stability in arboreal environments. Further, the results reveal a mosaic of sprawling and parasagittal kinematic characteristics. The abducted elbow results from a constantly internally rotated scapula about its long axis and a retracted humerus. Scapula retraction contributes considerably to stride length. However, lateral rotation in the pectoral region of the spine (range: 21°) is higher than reported for other therian mammals. Instead, it is similar to skinks and alligators, indicating an aspect generally associated with sprawling locomotion is characteristic for forelimb kinematics of tamanduas. Our study contributes to a growing body of evidence of highly variable non-cursorial therian mammal locomotor kinematics.
Collapse
Affiliation(s)
- Adrian Scheidt
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Paulo C Ditzel
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Sandra M Geiger
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Franziska C Wagner
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph K W Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
5
|
Demuth OE, Wiseman ALA, van Beesel J, Mallison H, Hutchinson JR. Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa. Sci Rep 2022; 12:3358. [PMID: 35233027 PMCID: PMC8888607 DOI: 10.1038/s41598-022-07074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biomechanical models and simulations of musculoskeletal function rely on accurate muscle parameters, such as muscle masses and lines of action, to estimate force production potential and moment arms. These parameters are often obtained through destructive techniques (i.e., dissection) in living taxa, frequently hindering the measurement of other relevant parameters from a single individual, thus making it necessary to combine multiple specimens and/or sources. Estimating these parameters in extinct taxa is even more challenging as soft tissues are rarely preserved in fossil taxa and the skeletal remains contain relatively little information about the size or exact path of a muscle. Here we describe a new protocol that facilitates the estimation of missing muscle parameters (i.e., muscle volume and path) for extant and extinct taxa. We created three-dimensional volumetric reconstructions for the hindlimb muscles of the extant Nile crocodile and extinct stem-archosaur Euparkeria, and the shoulder muscles of an extant gorilla to demonstrate the broad applicability of this methodology across living and extinct animal clades. Additionally, our method can be combined with surface geometry data digitally captured during dissection, thus facilitating downstream analyses. We evaluated the estimated muscle masses against physical measurements to test their accuracy in estimating missing parameters. Our estimated muscle masses generally compare favourably with segmented iodine-stained muscles and almost all fall within or close to the range of observed muscle masses, thus indicating that our estimates are reliable and the resulting lines of action calculated sufficiently accurately. This method has potential for diverse applications in evolutionary morphology and biomechanics.
Collapse
Affiliation(s)
- Oliver E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK.
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Ashleigh L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Julia van Beesel
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Heinrich Mallison
- Zoological Museum, University of Hamburg, Hamburg, Germany
- Palaeo3D, Rain am Lech, Germany
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
6
|
Wiseman ALA, Demuth OE, Hutchinson JR. A Guide to Inverse Kinematic Marker-Guided Rotoscoping using IK Solvers. Integr Org Biol 2022; 4:obac002. [PMID: 35261964 PMCID: PMC8896983 DOI: 10.1093/iob/obac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray Reconstruction of Moving Morphology (XROMM) permits researchers to see beneath the skin, usually to see musculoskeletal movements. These movements can be tracked and later used to provide information regarding the mechanics of movement. Here, we discuss “IK marker-guided rotoscoping”—a method that combines inverse kinematic solvers with that of traditional scientific rotoscoping methods to quickly and efficiently overlay 3D bone geometries with the X-ray shadows from XROMM data. We use a case study of three Nile crocodiles’ (Crocodylus niloticus) forelimbs and hindlimbs to evaluate this method. Within these limbs, different marker configurations were used: some configurations had six markers, others had five markers, and all forelimb data only had three markers. To evaluate IK marker-guided rotoscoping, we systematically remove markers in the six-marker configuration and then test the magnitudes of deviation in translations and rotations of the rigged setup with fewer markers versus those of the six-marker configuration. We establish that IK marker-guided rotoscoping is a suitable method for “salvaging” data that may have too few markers.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Oliver E Demuth
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|