1
|
Long JA, Niedźwiedzki G, Garvey J, Clement AM, Camens AB, Eury CA, Eason J, Ahlberg PE. Earliest amniote tracks recalibrate the timeline of tetrapod evolution. Nature 2025:10.1038/s41586-025-08884-5. [PMID: 40369062 DOI: 10.1038/s41586-025-08884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/11/2025] [Indexed: 05/16/2025]
Abstract
The known fossil record of crown-group amniotes begins in the late Carboniferous with the sauropsid trackmaker Notalacerta1,2 and the sauropsid body fossil Hylonomus1-4. The earliest body fossils of crown-group tetrapods are mid-Carboniferous, and the oldest trackways are early Carboniferous5-7. This suggests that the tetrapod crown group originated in the earliest Carboniferous (early Tournaisian), with the amniote crown group appearing in the early part of the late Carboniferous. Here we present new trackway data from Australia that challenge this widely accepted timeline. A track-bearing slab from the Snowy Plains Formation of Victoria, Taungurung Country, securely dated to the early Tournaisian8,9, shows footprints from a crown-group amniote with clawed feet, most probably a primitive sauropsid. This pushes back the likely origin of crown-group amniotes by at least 35-40 million years. We also extend the range of Notalacerta into the early Carboniferous. The Australian tracks indicate that the amniote crown-group node cannot be much younger than the Devonian/Carboniferous boundary, and that the tetrapod crown-group node must be located deep within the Devonian; an estimate based on molecular-tree branch lengths suggests an approximate age of early Frasnian for the latter. The implications for the early evolution of tetrapods are profound; all stem-tetrapod and stem-amniote lineages must have originated during the Devonian. It seems that tetrapod evolution proceeded much faster, and the Devonian tetrapod record is much less complete, than has been thought.
Collapse
Affiliation(s)
- John A Long
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Grzegorz Niedźwiedzki
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Polish Geological Institute - National Research Institute, Warsaw, Poland
| | - Jillian Garvey
- Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- DJANDAK, Dja Dja Wurrung Enterprises, Bendigo, Victoria, Australia
| | - Alice M Clement
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Aaron B Camens
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Craig A Eury
- Independent researcher, Jamieson, Victoria, Australia
| | - John Eason
- Independent researcher, Jamieson, Victoria, Australia
| | - Per E Ahlberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Iijima M, Munteanu VD, Blob RW. Variations in humeral and femoral strains across body sizes and limb posture in American alligators. J Exp Biol 2024; 227:jeb249211. [PMID: 39713938 DOI: 10.1242/jeb.249211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
Bone loading is a crucial factor that constrains locomotor capacities of terrestrial tetrapods. To date, limb bone strains and stresses have been studied across various animals, with a primary emphasis on consistent bone loading in mammals of different sizes and variations in loading regimes across different clades and limb postures. However, the relationships between body size, limb posture and limb bone loading remain unclear in animals with non-parasagittally moving limbs, limiting our understanding of the evolution of limb functions in tetrapods. To address this, we investigated in vivo strains of the humerus and femur in juvenile to subadult American alligators as they walked with various limb postures. We found that principal strains on the ventromedial cortex of the femoral midshaft increased with larger sizes among the three individuals displaying similar limb postures. This indicates that larger individuals experience greater limb bone strains when maintaining similar limb postures to smaller individuals. Axial and shear strains in the humerus were generally reduced with a more erect limb posture, while trends in the femur varied among individuals. Given that larger alligators have been shown to adopt a more erect limb posture, the transition from sprawling to erect limb posture, particularly in the forelimb, might be linked to the evolution of larger body sizes in archosaurs, potentially as a means to mitigate limb bone loading. Moreover, both the humerus and femur experienced decreased shear loads compared with axial loads with a more erect limb posture, suggesting proportional changes in bone loading regimes throughout the evolution of limb posture.
Collapse
Affiliation(s)
- Masaya Iijima
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - V David Munteanu
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Knecht RJ, Benner JS, Swain A, Azevedo-Schmidt L, Cleal CJ, Labandeira CC, Engel MS, Dunlop JA, Selden PA, Eble CF, Renczkowski MD, Wheeler DA, Funderburk MM, Emma SL, Knoll AH, Pierce NE. Early Pennsylvanian Lagerstätte reveals a diverse ecosystem on a subhumid, alluvial fan. Nat Commun 2024; 15:7876. [PMID: 39251605 PMCID: PMC11383953 DOI: 10.1038/s41467-024-52181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Much of what we know about terrestrial life during the Carboniferous Period comes from Middle Pennsylvanian (~315-307 Mya) Coal Measures deposited in low-lying wetland environments1-5. We know relatively little about terrestrial ecosystems from the Early Pennsylvanian, which was a critical interval for the diversification of insects, arachnids, tetrapods, and seed plants6-10. Here we report a diverse Early Pennsylvanian trace and body fossil Lagerstätte (~320-318 Mya) from the Wamsutta Formation of eastern North America, distinct from coal-bearing deposits, preserved in clastic substrates within basin margin conglomerates. The exceptionally preserved trace fossils and body fossils document a range of vertebrates, invertebrates and plant taxa (n = 131), with 83 distinct foliage morphotypes. Plant-insect interactions include what may be the earliest evidence of insect oviposition. This site expands our knowledge of early terrestrial ecosystems and organismal interactions and provides ground truth for future phylogenetic reconstructions of key plant, arthropod, and vertebrate groups.
Collapse
Affiliation(s)
- Richard J Knecht
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.
| | - Jacob S Benner
- Department of Earth and Planetary Sciences, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Anshuman Swain
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
| | - Lauren Azevedo-Schmidt
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Christopher J Cleal
- School of Earth Science, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, P. R. China
| | - Michael S Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256 Jesús María, Lima 14, Perú
| | - Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, Germany
| | - Paul A Selden
- Department of Geology, University of Kansas, Lawrence, KS, USA
- Natural History Museum, London, United Kingdom
| | - Cortland F Eble
- Kentucky Geological Survey, University of Kentucky, Lexington, KY, USA
| | - Mark D Renczkowski
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Dillon A Wheeler
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Mataeus M Funderburk
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Calábková G, Madzia D, Nosek V, Ivanov M. Tracking 'transitional' diadectomorphs in the earliest Permian of equatorial Pangea. PeerJ 2023; 11:e16603. [PMID: 38077424 PMCID: PMC10710172 DOI: 10.7717/peerj.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Diadectomorpha was a clade of large-bodied stem-amniotes or possibly early-diverging synapsids that established a successful dynasty of late Carboniferous to late Permian high-fiber herbivores. Aside from their fairly rich record of body fossils, diadectomorphs are also well-known from widely distributed tracks and trackways referred to as Ichniotherium. Here, we provide detailed description of a diadectomorph trackway and a manus-pes couple originating from two different horizons in the Asselian (lowermost Permian) of the Boskovice Basin in the Czech Republic. The specimens represent two distinct ichnotaxa of Ichniotherium, I. cottae and I. sphaerodactylum. Intriguingly, the I. cottae trackway described herein illustrates a 'transitional' stage in the posture evolution of diadectomorphs, showing track morphologies possibly attributable to a Diadectes-like taxon combined with distances between the successive manus and pes imprints similar to those observable in earlier-diverging diadectomorphs, such as Orobates. In addition, this trackway is composed of 14 tracks, including six well-preserved manus-pes couples, and thus represents the most complete record of Ichniotherium cottae described to date from the Asselian strata. In turn, the manus-pes couple, attributed here to I. sphaerodactylum, represents only the second record of this ichnotaxon from the European part of Pangea. Our study adds to the diversity of the ichnological record of Permian tetrapods in the Boskovice Basin which had been essentially unexplored until very recently.
Collapse
Affiliation(s)
- Gabriela Calábková
- Department of Geology and Paleontology, Moravian Museum, Brno, Czech Republic
- Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Madzia
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Vojtěch Nosek
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Martin Ivanov
- Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Gônet J, Laurin M, Hutchinson JR. Evolution of posture in amniotes-Diving into the trabecular architecture of the femoral head. J Evol Biol 2023; 36:1150-1165. [PMID: 37363887 DOI: 10.1111/jeb.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/28/2023]
Abstract
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a "semi-erect" (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the "sprawling-to-erect" transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.
Collapse
Affiliation(s)
- Jordan Gônet
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - Michel Laurin
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
6
|
Ekhator C, Varshney A, Young MW, Tanis D, Granatosky MC, Diaz RE, Molnar JL. Locomotor characteristics of the ground-walking chameleon Brookesia superciliaris. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:602-614. [PMID: 37260090 DOI: 10.1002/jez.2703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Understanding the locomotor characteristics of early diverging ground-walking chameleons (members of the genera Brookesia, Rhampholeon, Palleon, and Rieppeleon) can help to explain how their unique morphology is adapted to fit their environment and mode of life. However, nearly all quantitative studies of chameleon locomotion thus far have focused on the larger "true arboreal" chameleons. We investigated kinematics and spatiotemporal gait characteristics of the Brown Leaf Chameleon (Brookesia superciliaris) on different substrates and compared them with true arboreal chameleons, nonchameleon lizards, and other small arboreal animals. Brookesia exhibits a combination of locomotor traits, some of which are traditionally arboreal, others more terrestrial, and a few that are very unusual. Like other chameleons, Brookesia moved more slowly on narrow dowels than on broad planks (simulating arboreal and terrestrial substrates, respectively), and its speed was primarily regulated by stride frequency rather than stride length. While Brookesia exhibits the traditionally arboreal trait of a high degree of humeral protraction at the beginning of stance, unlike most arboreal tetrapods, it uses smaller shoulder and hip excursions on narrower substrates, possibly reflecting its more terrestrial habits. When moving at very slow speeds, Brookesia often adopts an unusual footfall pattern, lateral-sequence lateral-couplets. Because Brookesia is a member of one of the earliest-diverging groups of chameleons, its locomotion may provide a good model for an intermediate stage in the evolution of arboreal chameleons. Thus, the transition to a fully arboreal way of life in "true arboreal" chameleons may have involved changes in spatiotemporal and kinematic characteristics as well as morphology.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | | | - Melody W Young
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Daniel Tanis
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
- Center for Biomedical Innovation College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Julia L Molnar
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
7
|
Abel P, Pommery Y, Ford DP, Koyabu D, Werneburg I. Skull Sutures and Cranial Mechanics in the Permian Reptile Captorhinus aguti and the Evolution of the Temporal Region in Early Amniotes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While most early limbed vertebrates possessed a fully-roofed dermatocranium in their temporal skull region, temporal fenestrae and excavations evolved independently at least twice in the earliest amniotes, with several different variations in shape and position of the openings. Yet, the specific drivers behind this evolution have been only barely understood. It has been mostly explained by adaptations of the feeding apparatus as a response to new functional demands in the terrestrial realm, including a rearrangement of the jaw musculature as well as changes in strain distribution. Temporal fenestrae have been retained in most extant amniotes but have also been lost again, notably in turtles. However, even turtles do not represent an optimal analog for the condition in the ancestral amniote, highlighting the necessity to examine Paleozoic fossil material. Here, we describe in detail the sutures in the dermatocranium of the Permian reptile Captorhinus aguti (Amniota, Captorhinidae) to illustrate bone integrity in an early non-fenestrated amniote skull. We reconstruct the jaw adductor musculature and discuss its relation to intracranial articulations and bone flexibility within the temporal region. Lastly, we examine whether the reconstructed cranial mechanics in C. aguti could be treated as a model for the ancestor of fenestrated amniotes. We show that C. aguti likely exhibited a reduced loading in the areas at the intersection of jugal, squamosal, and postorbital, as well as at the contact between parietal and postorbital. We argue that these “weak” areas are prone for the development of temporal openings and may be treated as the possible precursors for infratemporal and supratemporal fenestrae in early amniotes. These findings provide a good basis for future studies on other non-fenestrated taxa close to the amniote base, for example diadectomorphs or other non-diapsid reptiles.
Collapse
|
8
|
A Mississippian (early Carboniferous) tetrapod showing early diversification of the hindlimbs. Commun Biol 2022; 5:283. [PMID: 35422092 PMCID: PMC9010477 DOI: 10.1038/s42003-022-03199-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
The taxonomically diverse terrestrial tetrapod fauna from the late Mississippian East Kirkton Limestone includes the earliest known members of stem Amphibia and stem Amniota. Here we name and describe a new East Kirkton tetrapod with an unusual hindlimb morphology reminiscent of that of several stem- and primitive crown amniotes. It displays a unique ilium with two slender and elongate processes and a 5-digit pes with a long, stout metatarsal IV and a greatly elongate digit IV. The new taxon broadens our knowledge of East Kirkton tetrapods, adding to the remarkable diversity of their hindlimb constructions, functional specializations, locomotory modes, and adaptations to a wide variety of substrates. An unweighted character parsimony analysis places the new taxon in a polytomy alongside some other Carboniferous groups. Conversely, weighted parsimony and Bayesian analyses retrieve it among the earliest diverging stem amniotes, either as the basalmost anthracosaur or within a clade that includes also Eldeceeon and Silvanerpeton, crownward of an array of chroniosaurs plus anthracosaurs. Presenting Termonerpeton makrydactylus, an early tetrapod from late Mississippian Scotland. This new species demonstrates unusual hindlimb specialisations for its age.
Collapse
|
9
|
Granatosky MC, McElroy EJ. Stride frequency or length? A phylogenetic approach to understand how animals regulate locomotor speed. J Exp Biol 2022; 225:274352. [PMID: 35258613 DOI: 10.1242/jeb.243231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Speed regulation in animals involves stride frequency and stride length. While the relationship between these variables has been well documented, it remains unresolved whether animals primarily modify stride frequency or stride length to increase speed. In this study, we explored the interrelationships between these three variables across a sample of 103 tetrapods and assessed whether speed regulation strategy is influenced by mechanical, allometric, phylogenetic or ecological factors. We observed that crouched terrestrial species tend to regulate speed through stride frequency. Such a strategy is energetically costly, but results in greater locomotor maneuverability and greater stability. In contrast, regulating speed through stride length is closely tied to larger arboreal animals with relatively extended limbs. Such movements reduce substrate oscillations on thin arboreal supports and/or helps to reduce swing phase costs. The slope of speed on frequency is lower in small crouched animals than in large-bodied erect species. As a result, substantially more rapid limb movements are matched with only small speed increases in crouched, small-bodied animals. Furthermore, the slope of speed on stride length was inversely proportional to body mass. As such, small changes in stride length can result in relatively rapid speed increases for small-bodied species. These results are somewhat counterintuitive, in that larger species, which have longer limbs and take longer strides, do not appear to gain as much speed increase out of lengthening their stride. Conversely, smaller species that cycle their limbs rapidly do not gain as much speed out of increasing stride frequency as do larger species.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Eric J McElroy
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| |
Collapse
|
10
|
Lallensack JN, Falkingham PL. A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs. Curr Biol 2022; 32:1635-1640.e4. [PMID: 35240050 DOI: 10.1016/j.cub.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
Limb phase, the timing of the footfalls in quadrupedal locomotion that describes common gaits such as the trot and the pace gait,1,2 is widely believed to be difficult or even impossible to estimate for extinct tetrapods.3-5 We here present a fundamentally new approach that allows for estimating limb phase based on variation patterns in long trackways. The approach is tested on trackways of modern mammals, where the estimates generally correspond well with the actually employed limb phase. We then estimate limb phases of giant wide-gauged sauropod dinosaurs based on three long trackways from the Lower Cretaceous of Arkansas, US.6,7 Gait selection at the largest body sizes is of considerable interest given the lack of modern analogs. Contrary to previous assumptions,8,9 our estimates suggest lateral sequence diagonal couplet walks, in which the footfalls of the diagonal limb pairs (e.g., right hind and left fore) are more closely related in time than those of the same side of the body (e.g., right hind and right fore). Such a gait selection allows for efficient walking while maintaining diagonal limb support throughout the step cycle, which is important for a giant, wide-gauged trackmaker.10 Estimations of limb phase may help to constrain other gait parameters, body size and shape, and, finally, potential trackmaker taxa.
Collapse
Affiliation(s)
- Jens N Lallensack
- School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Bryon Street, Liverpool L3 3AF, UK.
| | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Bryon Street, Liverpool L3 3AF, UK
| |
Collapse
|
11
|
Marchetti L, Voigt S, Buchwitz M, MacDougall MJ, Lucas SG, Fillmore DL, Stimson MR, King OA, Calder JH, Fröbisch J. Tracking the Origin and Early Evolution of Reptiles. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.696511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The origin of Reptilia and the biostratigraphic and palaeobiogeographic distribution of its early representatives are still poorly understood. An independent source of information may come from the extensive Carboniferous footprint record of reptiles, which is arguably richer and more complete than the skeletal record. Nevertheless, previous studies often failed to provide useful information because they were based on poorly preserved material and/or characters non-exclusive of reptile tracks. In fact, a large part of the supposed early reptile tracks can be assigned to the anamniote ichnotaxon Hylopus hardingi. Here, we revise the ichnotaxon Hylopus hardingi based on anatomy-consistent material, attribute it to anamniote reptiliomorphs, and distinguish it from Notalacerta missouriensis, the earliest ichnotaxon that can be attributed to reptiles, and the somewhat younger Varanopus microdactylus (attributed to parareptiles, such as bolosaurians) and Dromopus lacertoides (attributed to araeoscelid reptiles and non-varanodontine varanopids). These attributions are based on correlating morphofunctional features of tracks and skeletons. Multivariate analysis of trackway parameters indicates that the late Bashkirian Notalacerta missouriensis and Hylopus hardingi differ markedly in their trackway patterns from Late Mississippian Hylopus hardingi and Late Pennsylvanian reptile tracks, which appear to share a derived amniote-like type of gait. While the first occurrence/appearance of reptile tracks in the tetrapod footprint record during the late Bashkirian corresponds to the first occurrence/appearance of reptiles in the skeletal record, footprints significantly enlarge the paleobiogeographic distribution of the group, suggesting an earlier radiation of reptiles during the Bashkirian throughout North America and possibly North Africa. Dromopus appeared in the Kasimovian together with the diapsid group Araeoscelidia, but footprints from Western-European occurrences enlarge the paleobiogeographic distribution of diapsids and varanopids. Varanopus and bolosaurian parareptiles appear in the Gzhelian of North America. Older parareptiles are, however, known from the late Moscovian. In all, the footprint record of early reptiles supplements the skeletal record, suggesting possible future lines of research.
Collapse
|