1
|
Han L, Chang Z, Ren C, Chen X, Smagghe G, Yuan Y, Long J. Colony performance of three native bumblebee species from South China and association with their gut microbiome. INSECT SCIENCE 2024; 31:1960-1983. [PMID: 38516802 PMCID: PMC11632300 DOI: 10.1111/1744-7917.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Bumblebees play an important ecological economic role as pollinators in nature and agriculture. For reasons of biosecurity, many countries promote the cultivation of native bumblebee species for crop pollination instead of importing "alien" species. In South China, a few bumblebee species are considered useful in this way, particularly, Bombus atripes, Bombus bicoloratus and Bombus breviceps. However, whether they are suitable for artificial rearing and forming healthy colonies for pollination, remains unknown. In this project, queens from the 3 native species of Guizhou Province were collected and colonies were started under standardized conditions. The colonies were scored based on 19 parameters, including the stage of colony development, number and weight of offspring, and diet consumed. The data revealed that B. breviceps had the best performance, produced more workers and consumed the smallest diet. Next, we performed 16S rDNA sequencing of the bacterial communities found in the guts of offspring workers, and then a correlation analysis between colony performance and gut bacteria was conducted. Here, B. breviceps showed the highest diversity in gut bacterial composition, dominated by the bacteria Gilliamella, Snodgrassella, Enterobacter, and Lactobacillus Firm5. The higher the abundance of Snodgrassella, the better the performance of the colony in the foundation stage, and later Lactobacillus Firm5, Apibacter and Bifidobacterium were beneficial during the stages of rapid growth and colony decline. Although we do not understand all of the interactions yet, these correlations explain why B. breviceps demonstrated better colony performance. Our data provide valuable information for breeding local Bombus species and will contribute to developing strong colonies for crop pollination.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of Education/College of Animal Science, Guizhou UniversityGuiyangChina
| | - Zhi‐Min Chang
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Chang‐Shi Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of Education/College of Animal Science, Guizhou UniversityGuiyangChina
| | - Xiang‐Sheng Chen
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Guy Smagghe
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Yi‐Ge Yuan
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Jian‐Kun Long
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| |
Collapse
|
2
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
3
|
Gekière A, Vanderplanck M, Hettiarachchi A, Semay I, Gerbaux P, Michez D, Joossens M, Vandamme P. A case study of the diet-microbiota-parasite interplay in bumble bees. J Appl Microbiol 2023; 134:lxad303. [PMID: 38066692 DOI: 10.1093/jambio/lxad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
AIMS Diets and parasites influence the gut bacterial symbionts of bumble bees, but potential interactive effects remain overlooked. The main objective of this study was to assess the isolated and interactive effects of sunflower pollen, its phenolamides, and the widespread trypanosomatid Crithidia sp. on the gut bacterial symbionts of Bombus terrestris males. METHODS AND RESULTS Bumble bee males emerged in microcolonies fed on either (i) willow pollen (control), (ii) sunflower pollen, or (iii) willow pollen spiked with phenolamide extracts from sunflower pollen. These microcolonies were infected by Crithidia sp. or were pathogen-free. Using 16S rRNA amplicon sequencing (V3-V4 region), we observed a significant alteration of the beta diversity but not of the alpha diversity in the gut microbial communities of males fed on sunflower pollen compared to males fed on control pollen. Similarly, infection by the gut parasite Crithidia sp. altered the beta diversity but not the alpha diversity in the gut microbial communities of males, irrespective of the diet. By contrast, we did not observe any significant alteration of the beta or alpha diversity in the gut microbial communities of males fed on phenolamide-enriched pollen compared to males fed on control pollen. Changes in the beta diversity indicate significant dissimilarities of the bacterial taxa between the treatment groups, while the lack of difference in alpha diversity demonstrates no significant changes within each treatment group. CONCLUSIONS Bumble bees harbour consistent gut microbiota worldwide, but our results suggest that the gut bacterial communities of bumble bees are somewhat shaped by their diets and gut parasites as well as by the interaction of these two factors. This study confirms that bumble bees are suitable biological surrogates to assess the effect of diet and parasite infections on gut microbial communities.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Maryse Vanderplanck
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
| | - Irène Semay
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Tuerlings T, Hettiarachchi A, Joossens M, Geslin B, Vereecken NJ, Michez D, Smagghe G, Vandamme P. Microbiota and pathogens in an invasive bee: Megachile sculpturalis from native and invaded regions. INSECT MOLECULAR BIOLOGY 2023; 32:544-557. [PMID: 37191302 DOI: 10.1111/imb.12849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
The present study aimed to characterise the bacterial, fungal and parasite gut community of the invasive bee Megachile sculpturalis sampled from native (Japan) and invaded (USA and France) regions via 16S rRNA and ITS2 amplicon sequencing and PCR detection of bee microparasites. The bacterial and fungal gut microbiota communities in bees from invaded regions were highly similar and differed strongly from those obtained in Japan. Core amplicon sequence variants (ASVs) within each population represented environmental micro-organisms commonly present in bee-associated niches that likely provide beneficial functions to their host. Although the overall bacterial and fungal communities of the invasive M. sculpturalis in France and the co-foraging native bees Anthidium florentinum and Halictus scabiosae, were significantly different, five out of eight core ASVs were shared suggesting common environmental sources and potential transmission. None of the 46 M. sculpturalis bees analysed harboured known bee pathogens, while microparasite infections were common in A. florentinum, and rare in H. scabiosae. A common shift in the gut microbiota of M. sculpturalis in invaded regions as a response to changed environmental conditions, or a founder effect coupled to population re-establishment in the invaded regions may explain the observed microbial community profiles and the absence of parasites. While the role of pathogen pressure in shaping biological invasions is still debated, the absence of natural enemies may contribute to the invasion success of M. sculpturalis.
Collapse
Affiliation(s)
- Tina Tuerlings
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Benoît Geslin
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Université de Rennes (UNIR), UMR 6553 ECOBIO, CNRS, Rennes, France
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Kashung S, Bhardwaj P, Saikia M, Mazumdar-Leighton S. Midgut serine proteinases participate in dietary adaptations of the castor (Eri) silkworm Samia ricini Anderson transferred from Ricinus communis to an ancestral host, Ailanthus excelsa Roxb. FRONTIERS IN INSECT SCIENCE 2023; 3:1169596. [PMID: 38469493 PMCID: PMC10926435 DOI: 10.3389/finsc.2023.1169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/10/2023] [Indexed: 03/13/2024]
Abstract
Dietary change influenced the life-history traits, nutritional utilization, and midgut serine proteinases in the larvae of the domesticated polyphagous S. ricini, transferred from R. communis (common name: castor; family Euphorbiaceae; the host plant implicated in its domestication) to A. excelsa (common name: Indian tree of heaven; family Simaroubaceae; an ancestral host of wild Samia species). Significantly higher values for fecundity and body weight were observed in larvae feeding on R. communis (Scr diet), and they took less time to reach pupation than insects feeding on A. excelsa (Scai diet). Nevertheless, the nutritional index for efficiency of conversion of digested matter (ECD) was similar for larvae feeding on the two plant species, suggesting the physiological adaptation of S. ricini (especially older instars) to an A. excelsa diet. In vitro protease assays and gelatinolytic zymograms using diagnostic substrates and protease inhibitors revealed significantly elevated levels (p ≤ 0.05) of digestive trypsins, which may be associated with the metabolic costs influencing slow growth in larvae feeding on A. excelsa. RT-PCR with semidegenerate serine proteinase gene-specific primers, and cloning and sequencing of 3' cDNA ends identified a large gene family comprising at least two groups of putative chymotrypsins (i.e., Sr I and Sr II) resembling invertebrate brachyurins/collagenases with wide substrate specificities, and five groups of putative trypsins (i.e., Sr III, Sr IV, Sr V, Sr VII, and Sr VIII). Quantitative RT-PCR indicated that transcripts belonging to the Sr I, Sr III, Sr IV, and Sr V groups, especially the Sr IV group (resembling achelase I from Lonomia achelous), were expressed differentially in the midguts of fourth instars reared on the two plant species. Sequence similarity indicated shared lineages with lepidopteran orthologs associated with expression in the gut, protein digestion, and phytophagy. The results obtained are discussed in the context of larval serine proteinases in dietary adaptations, domestication, and exploration of new host plant species for commercial rearing of S. ricini.
Collapse
|
6
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
7
|
Botero J, Sombolestani AS, Cnockaert M, Peeters C, Borremans W, De Vuyst L, Vereecken NJ, Michez D, Smagghe G, Bonilla-Rosso G, Engel P, Vandamme P. A phylogenomic and comparative genomic analysis of Commensalibacter, a versatile insect symbiont. Anim Microbiome 2023; 5:25. [PMID: 37120592 PMCID: PMC10149009 DOI: 10.1186/s42523-023-00248-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND To understand mechanisms of adaptation and plasticity of pollinators and other insects a better understanding of diversity and function of their key symbionts is required. Commensalibacter is a genus of acetic acid bacterial symbionts in the gut of honey bees and other insect species, yet little information is available on the diversity and function of Commensalibacter bacteria. In the present study, whole-genome sequences of 12 Commensalibacter isolates from bumble bees, butterflies, Asian hornets and rowan berries were determined, and publicly available genome assemblies of 14 Commensalibacter strains were used in a phylogenomic and comparative genomic analysis. RESULTS The phylogenomic analysis revealed that the 26 Commensalibacter isolates represented four species, i.e. Commensalibacter intestini and three novel species for which we propose the names Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Comparative genomic analysis revealed that the four Commensalibacter species had similar genetic pathways for central metabolism characterized by a complete tricarboxylic acid cycle and pentose phosphate pathway, but their genomes differed in size, G + C content, amino acid metabolism and carbohydrate-utilizing enzymes. The reduced genome size, the large number of species-specific gene clusters, and the small number of gene clusters shared between C. melissae and other Commensalibacter species suggested a unique evolutionary process in C. melissae, the Western honey bee symbiont. CONCLUSION The genus Commensalibacter is a widely distributed insect symbiont that consists of multiple species, each contributing in a species specific manner to the physiology of the holobiont host.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Wim Borremans
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles, Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - German Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Phylogenomic Analyses of
Snodgrassella
Isolates from Honeybees and Bumblebees Reveal Taxonomic and Functional Diversity. mSystems 2022; 7:e0150021. [PMID: 35604118 PMCID: PMC9239279 DOI: 10.1128/msystems.01500-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Snodgrassella is a genus of Betaproteobacteria that lives in the gut of honeybees (Apis spp.) and bumblebees (Bombus spp). It is part of a conserved microbiome that is composed of a few core phylotypes and is essential for bee health and metabolism. Phylogenomic analyses using whole-genome sequences of 75 Snodgrassella strains from 4 species of honeybees and 14 species of bumblebees showed that these strains formed a monophyletic lineage within the Neisseriaceae family, that Snodgrassella isolates from Asian honeybees diverged early from the other species in their evolution, that isolates from honeybees and bumblebees were well separated, and that this genus consists of at least seven species. We propose to formally name two new Snodgrassella species that were isolated from bumblebees: i.e., Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov. Possible evolutionary scenarios for 107 species- or group-specific genes revealed very limited evidence for horizontal gene transfer. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism and carbohydrate transport and metabolism among these 107 specific genes. IMPORTANCE The microbiome of honeybees (Apis spp.) and bumblebees (Bombus spp.) is highly conserved and represented by few phylotypes. This simplicity in taxon composition makes the bee’s microbiome an emergent model organism for the study of gut microbial communities. Since the description of the Snodgrassella genus, which was isolated from the gut of honeybees and bumblebees in 2013, a single species (i.e., Snodgrassella alvi), has been named. Here, we demonstrate that this genus is actually composed of at least seven species, two of which (Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov.) are formally described and named in the present publication. We also report the presence of 107 genes specific to Snodgrassella species, showing notably the importance of small proteins and defense mechanisms in this genus.
Collapse
|
9
|
Houtz JL, Taff CC, Vitousek MN. Gut Microbiome as a Mediator of Stress Resilience: A Reactive Scope Model Framework. Integr Comp Biol 2022; 62:41-57. [PMID: 35544275 DOI: 10.1093/icb/icac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.
Collapse
Affiliation(s)
- Jennifer L Houtz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Honey bees and climate explain viral prevalence in wild bee communities on a continental scale. Sci Rep 2022; 12:1904. [PMID: 35115568 PMCID: PMC8814194 DOI: 10.1038/s41598-022-05603-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors, such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor several multi-host viruses with a mostly fecal-oral between-species transmission route, provide an excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in wild host populations. Here we show on a continental scale that the prevalence of three broad host viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus), Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by climatic variables. The former highlights the need for good beekeeping practices, including Varroa destructor management to reduce honey bee viral infection and hive placement. Furthermore, we found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and temperature will continue to increase and may hence impact viral prevalence in wild bee communities.
Collapse
|