1
|
Two oncomiRs, miR-182-5p and miR-103a-3p, Involved in Intravenous Leiomyomatosis. Genes (Basel) 2023; 14:genes14030712. [PMID: 36980984 PMCID: PMC10048324 DOI: 10.3390/genes14030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Leiomyomas, also referred to as fibroids, belong to the most common type of benign tumors developing in the myometrium of the uterus. Intravenous leiomyomatosis (IVL) tends to be regarded as a rare type of uterine leiomyoma. IVL tumors are characterized by muscle cell masses developing within the uterine and extrauterine venous system. The underlying mechanism responsible for the proliferation of these lesions is still unknown. The aim of the study was to investigate the expression of the two epigenetic factors, oncomiRs miR-182-5p and miR-103a-3p, in intravenous leiomyomatosis. This study was divided into two stages: initially, miR-182-5p and miR-103a-3p expression was assessed in samples coming from intravenous leiomyomatosis localized in myometrium (group I, n = 6), intravenous leiomyomatosis beyond the uterus (group II; n = 5), and the control group, i.e., intramural leiomyomas (group III; n = 9). The expression level of miR-182-5p was significantly higher in samples coming from intravenous leiomyomatosis (group I and group II) as compared to the control group (p = 0.029 and p = 0.024, respectively). In the second part of the study, the expression levels of the studied oncomiRs were compared between seven samples delivered from one woman during a four-year observation. The long-term follow-up of one patient demonstrated significantly elevated levels of both studied oncomiRs in intravenous leiomyomatosis in comparison to intramural leiomyoma samples.
Collapse
|
2
|
Fragoso MF, Fernandez GJ, Vanderveer L, Cooper HS, Slifker M, Clapper ML. Dysregulation of miR-1-3p: An Early Event in Colitis-Associated Dysplasia. Int J Mol Sci 2022; 23:13024. [PMID: 36361810 PMCID: PMC9657954 DOI: 10.3390/ijms232113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
Detection of colorectal dysplasia during surveillance colonoscopy remains the best method of determining risk for colitis-associated colorectal cancer (CAC). miRNAs (miRs) show great promise as tissue-specific biomarkers of neoplasia. The goal of this study was to explore the miR expression profile of precancerous dysplastic lesions in the AOM/DSS mouse model and identify early molecular changes associated with CAC. Epithelial cells were laser-microdissected from the colonic mucosa (inflamed versus dysplastic) of mice with AOM/DSS-induced colitis. A miR signature that can distinguish inflamed non-neoplastic mucosa from dysplasia was identified. Bioinformatic analyses led to the discovery of associated miR gene targets and enriched pathways and supported the construction of a network interaction map. miR-1a-3p was one of the miRs with the highest number of predicted targets, including Cdk6. Interestingly, miR-1a-3p and Cdk6 were down- and up-regulated in dysplastic lesions, respectively. Transfection of HCT116 and RKO cells with miR-1a-3p mimics induced apoptosis and cell cycle arrest in G1, suggesting its biological function. A slight reduction in the level of CDK6 transcripts was also observed in cells transfected with miR-1. These data provide novel insight into the early molecular alterations that accompany the development of CAC and identify a miR signature that represents a promising biomarker for the early detection of colitis-associated dysplasia.
Collapse
Affiliation(s)
- Mariana F. Fragoso
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Geysson J. Fernandez
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia–UdeA, Medellín 050010, Colombia
| | - Lisa Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harry S. Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
3
|
Tu SM, Pisters LL. Stem-Cell Theory of Cancer: Implications for Antiaging and Anticancer Strategies. Cancers (Basel) 2022; 14:1338. [PMID: 35267646 PMCID: PMC8909197 DOI: 10.3390/cancers14051338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
A stem-cell theory of cancer predicates that not only does the cell affect the niche, the niche also affects the cell. It implicates that even though genetic makeup may be supreme, cellular context is key. When we attempt to solve the mystery of a long cancer-free life, perhaps we need to search no further than the genetics and epigenetics of the naked mole-rat. When we try to unlock the secrets in the longevity and quality of life, perhaps we need to look no further than the lifestyle and habits of the super centenarians. We speculate that people with Down's syndrome and progeria age faster but have fewer cancers, because they are depleted of stem cells, and, as a consequence, have fewer opportunities for stem cell defects that could predispose them to the development of cancer. We contemplate whether these incredible experiments of nature may provide irrefutable evidence that cancer is a stem-cell disease-fewer aberrant stem cells, fewer cancers; no defective stem cells, no cancer. In this perspective, we investigate a stem-cell origin of aging and cancer. We elaborate an intriguing inverse relationship between longevity and malignancy in the naked mole-rat, in Down's syndrome, and in progeria. We postulate that stem-cell pools and stemness factors may affect aging and dictate cancer. We propose that a healthy microbiome may protect and preserve stem cell reserves and provide meaningful antiaging effects and anticancer benefits.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
4
|
Hue-Beauvais C, Faulconnier Y, Charlier M, Leroux C. Nutritional Regulation of Mammary Gland Development and Milk Synthesis in Animal Models and Dairy Species. Genes (Basel) 2021; 12:genes12040523. [PMID: 33916721 PMCID: PMC8067096 DOI: 10.3390/genes12040523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
In mammals, milk is essential for the growth, development, and health. Milk quantity and quality are dependent on mammary development, strongly influenced by nutrition. This review provides an overview of the data on nutritional regulations of mammary development and gene expression involved in milk component synthesis. Mammary development is described related to rodents, rabbits, and pigs, common models in mammary biology. Molecular mechanisms of the nutritional regulation of milk synthesis are reported in ruminants regarding the importance of ruminant milk in human health. The effects of dietary quantitative and qualitative alterations are described considering the dietary composition and in regard to the periods of nutritional susceptibly. During lactation, the effects of lipid supplementation and feed restriction or deprivation are discussed regarding gene expression involved in milk biosynthesis, in ruminants. Moreover, nutrigenomic studies underline the role of the mammary structure and the potential influence of microRNAs. Knowledge from three lactating and three dairy livestock species contribute to understanding the variety of phenotypes reported in this review and highlight (1) the importance of critical physiological stages, such as puberty gestation and early lactation and (2) the relative importance of the various nutrients besides the total energetic value and their interaction.
Collapse
Affiliation(s)
- Cathy Hue-Beauvais
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
- Correspondence:
| | - Yannick Faulconnier
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| | - Madia Charlier
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
| | - Christine Leroux
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| |
Collapse
|
5
|
Zabaleta ME, Forbes-Hernández TY, Simal-Gandara J, Quiles JL, Cianciosi D, Bullon B, Giampieri F, Battino M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res Int 2020; 137:109623. [DOI: 10.1016/j.foodres.2020.109623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
6
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
7
|
Wang Z, Wang W, Zhao W, Wang Z, Yang J, Wang W, Teng P, Su X, Li D, Zhang X, Wang H, Hao M. Folate inhibits miR-27a-3p expression during cervical carcinoma progression and oncogenic activity in human cervical cancer cells. Biomed Pharmacother 2020; 122:109654. [PMID: 31918266 DOI: 10.1016/j.biopha.2019.109654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Folate deficiency has been long implicated in cancer development. Although the role of folate in preventing cervical cancer is still unclear, emerging evidence shows that microRNAs (miRs) have great influence on tumor cell migration and invasion. OBJECTIVES The purpose of this study was to conduct an integrated analysis of miR expression in squamous cell carcinoma tissues with adequate or deficient serum folate. Further, study conducted tissue validation and functional analysis of miRs to uncover novel pathogenic mechanisms on the role of folate in squamous cell carcinoma (SCC). MATERIALS AND METHODS miR expression profiles were obtained from five paired primary SCC tumors with sufficient or deficient serum folate levels through Affymetrix GeneChip microRNA 4.0. This was followed by an integrated bioinformatics analysis and expanded sample size to verify core miRs by molecular biological validation. HeLa and SiHa cells with different concentrations of folate were used to clarify the roles of miR-27a on cell proliferation, migration, and invasion. MiR-27a expression was measured by the quantitative real-time polymerase chain reaction. Cell counting proliferation, wound healing, and transwell invasion assays were used to determine cell survival, proliferation, migration, and invasion abilities, respectively. RESULTS Our study found increasing miR-27a expression in serum of normal, high-grade squamous intraepithelial lesion (HSIL), and SCC tissues (in order of magnitude), which trend was negatively correlated with serum folate content. Further, there were significant differences in cellular miR-27a expression between 200 nM and 500 nM folate concentrations, with higher folate concentrations showing lower proliferation, migration, and invasion in SCC. Finally, miR-27a promoted proliferation and invasion in HeLa cells, whereas a miR-27a inhibitor blocked cell proliferation and invasion. CONCLUSION There is a significant association between miR-27a expression and folate during cervical carcinoma progression. Therefore, miR-27a could be used as a new biomarker for SCC diagnosis and prediction, suggesting a new therapeutic strategy for SCC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenhao Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhilian Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Teng
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqiang Su
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dongyan Li
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xi Zhang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Hao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
8
|
Apiaceous vegetable intake modulates expression of DNA damage response genes and microRNA in the rat colon. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Huang Q, Shi J. Impact of dietary compounds on cancer-related gut microbiota and microRNA. Appl Microbiol Biotechnol 2018; 102:4291-4303. [PMID: 29589094 DOI: 10.1007/s00253-018-8935-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common causes of death worldwide. Extensive research has been conducted on cancer; regardless, the link between cancer and diet remains undetermined. Recent studies have emphasized the importance of miRNAs in cancer-associated pathways from the perspective of dietary modulation. We highlighted the recent data on dietary modulation of gut microbiota and miRNAs related to cancer on the basis of recently published results. The targets of miRNAs are oncogenes or tumor suppressors that mediate the progression and initiation of carcinogenesis. Different miRNAs display complex expression profiles in response to dietary manipulation. Various dietary components, such as fatty acids, resveratrol, isothiocyanate, and curcumin, have been effectively used in cancer prevention and treatment. This potency is attributed to the capability of these components to alter miRNA expression, thereby modulating the vital pathways involved in metastasis, invasion, apoptosis, tumor growth, and cell proliferation.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Zhao Haobin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Wang D, Sun-Waterhouse D, Li F, Xin L, Li D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit Rev Food Sci Nutr 2018; 59:2189-2201. [DOI: 10.1080/10408398.2018.1441123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
- Shandong Institute of Pomology, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
- School of Chemical Sciences, the University of Auckland, New Zealand
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Li Xin
- Shandong Institute of Pomology, Taian, P.R. China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| |
Collapse
|
11
|
MicroRNA-26b inhibits tumor metastasis by targeting the KPNA2/c-jun pathway in human gastric cancer. Oncotarget 2018; 7:39511-39526. [PMID: 27078844 PMCID: PMC5129949 DOI: 10.18632/oncotarget.8629] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/12/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNA) play an important role in carcinogenesis. Previously, we identified miR-26b as a significantly downregulated miRNA in gastric cancer (GC) tissues (n = 106) based on differential quantitative RT-PCR (RT-qPCR) miRNA expression profiles. In the current study, we aimed to clarify the potential role of miR-26b and related target genes in GC progression. Downregulation of miR-26b was associated with advanced tumor-node-metastasis stage (TNM stage) and poor 5-year survival rate. Forced expression of miR-26b led to inhibition of GC cell migration and invasion in vitro and lung metastasis formation in vivo. Conversely, depletion of miR-26b had stimulatory effects. Additionally, miR-26b affected GC cell behavior through negative regulation of the metastasis promoter, karyopherin alpha 2 (KPNA2). Ectopic expression of miR-26b induced a reduction in KPNA2 protein levels, confirmed by luciferase assay data showing that miR-26b directly binds to the 3' untranslated regions (UTR) of KPNA2 mRNA. Furthermore, miR-26b and KPNA2 mRNA/protein expression patterns were inversely correlated in GC tissues. Cag A of Helicobacter pylori (Hp) enhanced miR-26b levels through regulation of the KPNA2/c-jun pathway. Taken together, our data indicate that miR-26b plays an anti-metastatic role and is downregulated in GC tissues via the KPNA2/c-jun pathway. Based on the study findings, we propose that miR-26b overexpression or KPNA2/c-jun suppression may have therapeutic potential in inhibiting GC metastasis.
Collapse
|
12
|
Mobuchon L, Le Guillou S, Marthey S, Laubier J, Laloë D, Bes S, Le Provost F, Leroux C. Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland. PLoS One 2017; 12:e0185511. [PMID: 29281677 PMCID: PMC5744907 DOI: 10.1371/journal.pone.0185511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Oil supplementation in dairy cattle diets is used to modulate milk fat composition, as well as the expression of mammary lipogenic genes, whose regulation remains unclear. MiRNAs are small non-coding RNA considered as crucial regulators of gene expression, offering clues to explain the mechanism underlying gene nutriregulation. The present study was designed to identify miRNAs whose expression in the cow mammary gland is modulated by sunflower oil supplementation. MiRNomes were obtained using RNAseq technology from the mammary gland of lactating cows receiving a low forage diet, supplemented or not with 4% sunflower oil. Among the 272 miRNAs characterized, eight were selected for RT-qPCR validations, showing the significant down-regulation of miR-142-5p and miR-20a-5p by sunflower supplementation. These two miRNAs are predicted to target genes whose expression was reported as differentially expressed by sunflower supplementation. Among their putative targets, ELOVL6 gene involved in lipid metabolism has been studied. However, a first analysis did not show its significant down-regulation, in response to the over-expression of miR-142-5p, of miR-20a-5p, or both, in a bovine mammary epithelial cell line. However, a clearer understanding of the miRNA expression by lipid supplementation would help to decipher the regulation of lactating cow mammary gland in response to nutrition.
Collapse
Affiliation(s)
- Lenha Mobuchon
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- INRA, UMR1213 Herbivores, Saint Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | | | - Sylvain Marthey
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johann Laubier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Denis Laloë
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sébastien Bes
- INRA, UMR1213 Herbivores, Saint Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | | | - Christine Leroux
- INRA, UMR1213 Herbivores, Saint Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
13
|
Zanoaga O, Jurj A, Raduly L, Cojocneanu-Petric R, Fuentes-Mattei E, Wu O, Braicu C, Gherman CD, Berindan-Neagoe I. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer. Exp Ther Med 2017; 15:1167-1176. [PMID: 29434704 PMCID: PMC5776638 DOI: 10.3892/etm.2017.5515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer represents one of the most common forms of cancer in women worldwide, with an increase in the number of newly diagnosed patients in the last decade. The role of fatty acids, particularly of a diet rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs), in breast cancer development is not fully understood and remains controversial due to their complex mechanism of action. However, a large number of animal models and cell culture studies have demonstrated that high levels of ω-3 PUFAs have an inhibitory role in the development and progression of breast cancer, compared to ω-6 PUFAs. The present review focused on recent studies regarding the correlation between dietary PUFAs and breast cancer development, and aimed to emphasize the main molecular mechanisms involved in the modification of cell membrane structure and function, modulation of signal transduction pathways, gene expression regulation, and antiangiogenic and antimetastatic effects. Furthermore, the anticancer role of ω-3 PUFAs through the modulation of microRNA expression levels was also reviewed.
Collapse
Affiliation(s)
- Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Physiopathology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Oscar Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Texas Tech University Honors College, McClellan Hall, Lubbock, TX 79409, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Surgical Clinic II Hospital, 400006 Cluj-Napoca, Romania.,Department of Surgery, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 400349 Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology, Prof Dr Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Adeyeni TA, Khatwani N, San K, Ezekiel UR. BMI1 is downregulated by the natural compound curcumin, but not by bisdemethoxycurcumin and dimethoxycurcumin. Physiol Rep 2017; 4:4/16/e12906. [PMID: 27550987 PMCID: PMC5002914 DOI: 10.14814/phy2.12906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) locus encodes a 37-kD protein that is a key regulatory component of the polycomb regulatory complex 1 (PRC1). When overexpressed in various cancer types, the BMI1 protein induces cell growth and promotes tumor growth in vitro and in vivo. Curcumin, a major phytochemical in turmeric (Curcuma longa), inhibits the proliferation and survival of many types of cancer cells, both in vitro and in vivo, and has been reported to reduce BMI1 expression in breast cancer cells. In this study, effects of curcumin and two analogs (bisdemethoxycurcumin and dimethoxycurcumin) on BMI1 expression were evaluated in DLD-1 colorectal cancer cells. Bisdemethoxycurcumin (BDMC) is naturally occurring in turmeric, whereas dimethoxycurcumin (DMC) is a synthetic analog of curcumin. All three compounds reduced cell survival, but only the natural compound downregulated BMI1 protein expression; curcumin significantly reduced BMI1 levels more than bisdemethoxycurcumin and dimethoxycurcumin. In addition, curcumin and BDMC inhibit survival of the DLD-1 colorectal cancer cells by inducing apoptosis, whereas DMC inhibits survival by a mechanism other than apoptosis.
Collapse
Affiliation(s)
- Temitope A Adeyeni
- Department of Biomedical Laboratory Science, Saint Louis University, St. Louis, Missouri Department of Health Science and Informatics, Saint Louis University, St. Louis, Missouri
| | - Natasha Khatwani
- Department of Biomedical Laboratory Science, Saint Louis University, St. Louis, Missouri
| | - KayKay San
- Department of Biomedical Laboratory Science, Saint Louis University, St. Louis, Missouri
| | | |
Collapse
|
15
|
Expression profiling indicating low selenium-sensitive microRNA levels linked to cell cycle and cell stress response pathways in the CaCo-2 cell line. Br J Nutr 2017; 117:1212-1221. [PMID: 28571588 DOI: 10.1017/s0007114517001143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Se is an essential micronutrient for human health, and fluctuations in Se levels and the potential cellular dysfunction associated with it may increase the risk for disease. Although Se has been shown to influence several biological pathways important in health, little is known about the effect of Se on the expression of microRNA (miRNA) molecules regulating these pathways. To explore the potential role of Se-sensitive miRNA in regulating pathways linked with colon cancer, we profiled the expression of 800 miRNA in the CaCo-2 human adenocarcinoma cell line in response to a low-Se (72 h at <40 nm) environment using nCounter direct quantification. These data were then examined using a range of in silico databases to identify experimentally validated miRNA-mRNA interactions and the biological pathways involved. We identified ten Se-sensitive miRNA (hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-205-5p, hsa-miR-200c-3p, hsa-miR-99b-5p, hsa-miR-302d-3p, hsa-miR-373-3p, hsa-miR-483-3p, hsa-miR-512-5p and hsa-miR-4454), which regulate 3588 mRNA in key pathways such as the cell cycle, the cellular response to stress, and the canonical Wnt/β-catenin, p53 and ERK/MAPK signalling pathways. Our data show that the effects of low Se on biological pathways may, in part, be due to these ten Se-sensitive miRNA. Dysregulation of the cell cycle and of the stress response pathways due to low Se may influence key genes involved in carcinogenesis.
Collapse
|
16
|
Zeljic K, Supic G, Magic Z. New insights into vitamin D anticancer properties: focus on miRNA modulation. Mol Genet Genomics 2017; 292:511-524. [DOI: 10.1007/s00438-017-1301-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
17
|
Gavrilas LI, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D. The Role of Bioactive Dietary Components in Modulating miRNA Expression in Colorectal Cancer. Nutrients 2016; 8:nu8100590. [PMID: 27681738 PMCID: PMC5083978 DOI: 10.3390/nu8100590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and considered to be one of the most diet-related types of cancer. Extensive research has been conducted but still the link between diet and colorectal cancer is complex. Recent studies have highlight microRNAs (miRNAs) as key players in cancer-related pathways in the context of dietary modulation. MicroRNAs are involved in most biological processes related to tumor development and progression; therefore, it is of great interest to understand the underlying mechanisms by which dietary patterns and components influence the expression of these powerful molecules in colorectal cancer. In this review, we discuss relevant dietary patterns in terms of miRNAs modulation in colorectal cancer, as well as bioactive dietary components able to modify gene expression through changes in miRNA expression. Furthermore, we emphasize on protective components such as resveratrol, curcumin, quercetin, α-mangostin, omega-3 fatty acids, vitamin D and dietary fiber, with a focus on the molecular mechanisms in the context of prevention and even treatment. In addition, several bioactive dietary components that have the ability to re-sensitize treatment resistant cells are described.
Collapse
Affiliation(s)
- Laura I Gavrilas
- Department of Bromatology, Hygiene, Nutrition, University of Medicine and Pharmacy "Iuliu Hatieganu", Marinescu Street 23, Cluj-Napoca 400337, Romania.
| | - Corina Ionescu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, University of Medicine and Pharmacy "Iuliu Hatieganu", Louis Pasteur Street 6, Cluj-Napoca 400349, Romania.
| | - Oana Tudoran
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
| | - Cosmin Lisencu
- Department of Surgical and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, University of Medicine and Pharmacy "Iuliu Hatieganu", Marinescu Street 23, Cluj-Napoca 400337, Romania.
| |
Collapse
|
18
|
Singer AW, Selvin S, Block G, Golden C, Carmichael SL, Metayer C. Maternal prenatal intake of one-carbon metabolism nutrients and risk of childhood leukemia. Cancer Causes Control 2016; 27:929-40. [PMID: 27294727 DOI: 10.1007/s10552-016-0773-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/04/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Folate, vitamins B12 and B6, riboflavin, and methionine are critical nutrients for the one-carbon metabolism cycle involved in DNA synthesis and epigenetic processes. We examined the association between maternal intake of these nutrients before pregnancy and risk of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) in a matched case-control study. METHODS Maternal dietary intake and vitamin supplement use in the year before pregnancy was assessed by food frequency questionnaire for 681 ALL cases, 103 AML cases, and 1076 controls. Principal component analysis was used to construct a variable representing combined nutrient intake, and conditional logistic regression estimated the odds ratio (OR) and 95% confidence interval (CI) for the association of ALL and AML with the principal component and each nutrient. RESULTS Higher maternal intake of one-carbon metabolism nutrients from food and supplements combined was associated with reduced risk of ALL (OR for one-unit change in the principal component = 0.91, CI 0.84-0.99) and possibly AML (OR for the principal component = 0.83, CI 0.66-1.04). When analyzed separately, intake of supplements high in these nutrients was associated with a reduced risk of ALL in children of Hispanic women only. CONCLUSIONS In conclusion, these data suggest that higher maternal intake of one-carbon metabolism nutrients may reduce risk of childhood leukemia.
Collapse
Affiliation(s)
- Amanda W Singer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 460, Berkeley, CA, 94704, USA.
| | - Steve Selvin
- Division of Epidemiology, School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 460, Berkeley, CA, 94704, USA
| | - Gladys Block
- Division of Epidemiology, School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 460, Berkeley, CA, 94704, USA
| | | | - Suzan L Carmichael
- Division of Neonatology and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 460, Berkeley, CA, 94704, USA
| |
Collapse
|
19
|
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35 Suppl:S25-S54. [PMID: 25892662 PMCID: PMC4898971 DOI: 10.1016/j.semcancer.2015.02.006] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States.
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Jamal Mahajna
- MIGAL-Galilee Technology Center, Cancer Drug Discovery Program, Kiryat Shmona, Israel
| | - Maria Marino
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dipali Sharma
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj K Saxena
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Neetu Singh
- Tissue and Cell Culture Unit, CSIR-Central Drug Research Institute, Council of Scientific & Industrial Research, Lucknow, India
| | | | - Shanchun Guo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sophie Chen
- Department of Research and Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey GU2 7YG, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Asfar S Azmi
- Department of Pathology, Karmonas Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| |
Collapse
|
20
|
Food Deprivation Affects the miRNome in the Lactating Goat Mammary Gland. PLoS One 2015; 10:e0140111. [PMID: 26473604 PMCID: PMC4608672 DOI: 10.1371/journal.pone.0140111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Nutrition affects milk composition thus influencing its nutritional properties. Nutrition also modifies the expression of mammary genes, whose regulation is not fully understood. MicroRNAs (miRNA) are small non coding RNA which are important post-transcriptional regulators of gene expression by targeting messenger RNAs. Our goal was to characterize miRNA whose expression is regulated by nutrition in the lactating goat mammary gland, which may provide clues to deciphering regulations of the biosynthesis and secretion of milk components. Methodology/principal findings Using high-throughput sequencing technology, miRNomes of the lactating mammary gland were established from lactating goats fed ad libitum or deprived of food for 48h affecting milk production and composition. High throughput miRNA sequencing revealed 30 miRNA with an expression potentially modulated by food deprivation; 16 were down-regulated and 14 were up-regulated. Diana-microT predictive tools suggested a potential role for several nutriregulated miRNA in lipid metabolism. Among the putative targets, 19 were previously identified as differently expressed genes (DEG). The functions of these 19 DEG revealed, notably, their involvement in tissue remodelling. Conclusion/significance In conclusion, this study offers the first evidence of nutriregulated miRNA in the ruminant mammary gland. Characterization of these 30 miRNA could contribute to a clearer understanding of gene regulation in the mammary gland in response to nutrition.
Collapse
|
21
|
Ross SA, Davis CD. The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 2015; 34:305-36. [PMID: 25033062 DOI: 10.1146/annurev-nutr-071813-105729] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the molecular mechanisms that inform how diet and dietary supplements influence health and disease is an active research area. One such mechanism concerns the role of diet in modulating the activity and function of microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that are involved in posttranscriptional gene silencing and have been shown to control gene expression in diverse biological processes including development, differentiation, cell proliferation, metabolism, and inflammation as well as in human diseases. Recent evidence described in this review highlights how dietary factors may influence cancer, cardiovascular disease, type 2 diabetes mellitus, obesity, and nonalcoholic fatty liver disease through modulation of miRNA expression. Additionally, circulating miRNAs are emerging as putative biomarkers of disease, susceptibility, and perhaps dietary exposure. Research needs to move beyond associations in cells and animals to understanding the direct effects of diet and dietary supplements on miRNA expression and function in human health and disease.
Collapse
Affiliation(s)
- Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892;
| | | |
Collapse
|
22
|
Agbarya A, Ruimi N, Epelbaum R, Ben-Arye E, Mahajna J. Natural products as potential cancer therapy enhancers: A preclinical update. SAGE Open Med 2014; 2:2050312114546924. [PMID: 26770737 PMCID: PMC4607199 DOI: 10.1177/2050312114546924] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/18/2014] [Indexed: 12/23/2022] Open
Abstract
Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.
Collapse
Affiliation(s)
- Abed Agbarya
- Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Nili Ruimi
- Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Epelbaum
- Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Eran Ben-Arye
- Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Integrative Oncology Program, The Oncology Service, Lin Medical center, Clalit Health Services, Haifa and Western Galilee District, Israel
| | - Jamal Mahajna
- Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Nutritional Sciences, Tel-Hai College, Kiryat Shmona, Israel
| |
Collapse
|
23
|
Mazzio EA, Soliman KFA. Epigenetics and nutritional environmental signals. Integr Comp Biol 2014; 54:21-30. [PMID: 24861811 DOI: 10.1093/icb/icu049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| |
Collapse
|
24
|
Cufí S, Bonavia R, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, Martin-Castillo B, Barrajón-Catalán E, Visa J, Segura-Carretero A, Joven J, Bosch-Barrera J, Micol V, Menendez JA. Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo. Sci Rep 2014; 3:2459. [PMID: 23963283 PMCID: PMC3748425 DOI: 10.1038/srep02459] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023] Open
Abstract
The flavolignan silibinin was studied for its ability to restore drug sensitivity to EGFR-mutant NSCLC xenografts with epithelial-to-mesenchymal transition (EMT)-driven resistance to erlotinib. As a single agent, silibinin significantly decreased the tumor volumes of erlotinib-refractory NSCLC xenografts by approximately 50%. Furthermore, the complete abrogation of tumor growth was observed with the co-treatment of erlotinib and silibinin. Silibinin fully reversed the EMT-related high miR-21/low miR-200c microRNA signature and repressed the mesenchymal markers SNAIL, ZEB, and N-cadherin observed in erlotinib-refractory tumors. Silibinin was sufficient to fully activate a reciprocal mesenchymal-to-epithelial transition (MET) in erlotinib-refractory cells and prevent the highly migratogenic phenotype of erlotinib-resistant NSCLC cells. Given that the various mechanisms of resistance to erlotinib result from EMT, regardless of the EGFR mutation status, a water-soluble, silibinin-rich milk thistle extract might be a suitable candidate therapy for upcoming clinical trials aimed at preventing or reversing NSCLC progression following erlotinib treatment.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ahmad A, Li Y, Bao B, Kong D, Sarkar FH. Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 2013; 58:79-86. [PMID: 24272883 DOI: 10.1002/mnfr.201300528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|