1
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
2
|
Xie B, Luo A. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Front Cell Dev Biol 2022; 10:903781. [PMID: 35557952 PMCID: PMC9089908 DOI: 10.3389/fcell.2022.903781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.
Collapse
Affiliation(s)
- Bingteng Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| |
Collapse
|
3
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
4
|
Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R. Assessing kinetics and recruitment of DNA repair factors using high content screens. Cell Rep 2021; 37:110176. [PMID: 34965416 PMCID: PMC8763642 DOI: 10.1016/j.celrep.2021.110176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/08/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.
Collapse
Affiliation(s)
- Barbara Martinez-Pastor
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| | - Giorgia G Silveira
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuchao Gu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Lance S Davidow
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Gadea Mata
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Sylvana Hassanieh
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Narkhyun Bae
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D.Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA
| | - Diego Megias
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alejo Efeyan
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
He D, Damaris RN, Li M, Khan I, Yang P. Advances on Plant Ubiquitylome-From Mechanism to Application. Int J Mol Sci 2020; 21:E7909. [PMID: 33114409 PMCID: PMC7663383 DOI: 10.3390/ijms21217909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins enable modulation of their structure, function, localization and turnover. To date, over 660 PTMs have been reported, among which, reversible PTMs are regarded as the key players in cellular signaling. Signaling mediated by PTMs is faster than re-initiation of gene expression, which may result in a faster response that is particularly crucial for plants due to their sessile nature. Ubiquitylation has been widely reported to be involved in many aspects of plant growth and development and it is largely determined by its target protein. It is therefore of high interest to explore new ubiquitylated proteins/sites to obtain new insights into its mechanism and functions. In the last decades, extensive protein profiling of ubiquitylation has been achieved in different plants due to the advancement in ubiquitylated proteins (or peptides) affinity and mass spectrometry techniques. This obtained information on a large number of ubiquitylated proteins/sites helps crack the mechanism of ubiquitylation in plants. In this review, we have summarized the latest advances in protein ubiquitylation to gain comprehensive and updated knowledge in this field. Besides, the current and future challenges and barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA;
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| |
Collapse
|
6
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
7
|
He D, Li M, Damaris RN, Bu C, Xue J, Yang P. Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1430-1447. [PMID: 31677306 DOI: 10.1111/tpj.14593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, cells embark on extensive post-transcriptional and post-translational modifications (PTM), providing a perfect platform to study these events in embryo rebooting from relative quiescenct to highly active state. PR-619, a deubiquitylase inhibitor, delayed the rice seed germination and resulted in the accumulation of ubiquitylated proteins, which indicated the protein ubiquitylation is involved in this process. Using the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry, a list of 2576 lysine ubiquitylated (Kub) sites in 1171 proteins was compiled for rice embryos at 0, 12 and 24 h after imbibition (HAI). Of these, the abundance of 1419 Kub sites in 777 proteins changed significantly. Most of them substantially increased within the first 12 HAI, which is similar to the dynamic state previously observed for protein phosphorylation, implying that the first 12 HAI are essential for subsequent switch during rice seed germination. We also quantitatively analyzed the embryo proteome in these samples. Generally, a specific protein's abundance in the ubiquitylome was uncorrelated to that in the proteome. The differentially ubiquitinated proteins were greatly enriched in the categories of protein processing, DNA and RNA processing/regulation related, signaling, and transport. The DiGly footprint of the Kub sites was significantly reduced on K48, a linkage typically associated with proteasome-mediated degradation. These observations suggest ubiquitylation may modulate the protein function more than providing 26S degradation signals in the early stage of rice seed germination. Revealing this comprehensive ubiquitylome greatly increases our understanding of this critical PTM during seed germination.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rebecca N Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chen Bu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Jianyou Xue
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
8
|
Singh K, Baird M, Fischer R, Chaitankar V, Seifuddin F, Chen YC, Tunc I, Waterman CM, Pirooznia M. Misregulation of ELK1, AP1, and E12 Transcription Factor Networks Is Associated with Melanoma Progression. Cancers (Basel) 2020; 12:E458. [PMID: 32079144 PMCID: PMC7072154 DOI: 10.3390/cancers12020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
Melanoma is among the most malignant cutaneous cancers and when metastasized results in dramatically high mortality. Despite advances in high-throughput gene expression profiling in cancer transcriptomic studies, our understanding of mechanisms driving melanoma progression is still limited. We present here an in-depth bioinformatic analysis of the melanoma RNAseq, chromatin immunoprecipitation (ChIP)seq, and single-cell (sc)RNA seq data to understand cancer progression. Specifically, we have performed a consensus network analysis of RNA-seq data from clinically re-grouped melanoma samples to identify gene co-expression networks that are conserved in early (stage 1) and late (stage 4/invasive) stage melanoma. Overlaying the fold-change information on co-expression networks revealed several coordinately up or down-regulated subnetworks that may play a critical role in melanoma progression. Furthermore, by incorporating histone lysine-27 acetylation information and highly expressed genes identified from the single-cell RNA data from melanoma patient samples, we present a comprehensive list of pathways, putative protein-protein interactions (PPIs) and transcription factor (TF) networks that are driving cancer progression. From this analysis, we have identified Elk1, AP1 and E12 TF networks that coordinately change expression in late melanoma when compared to early melanoma, implicating these TFs in melanoma progression. Additionally, the sumoylation-associated interactome is upregulated in invasive melanoma. Together, this bioinformatic analysis potentially implicates a combination of TF networks and PPIs in melanoma progression, which if confirmed in the experimental systems, could be used as targets for drug intervention in melanoma.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Michelle Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Robert Fischer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Vijender Chaitankar
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| |
Collapse
|
9
|
Deshar R, Yoo W, Cho EB, Kim S, Yoon JB. RNF8 mediates NONO degradation following UV-induced DNA damage to properly terminate ATR-CHK1 checkpoint signaling. Nucleic Acids Res 2019; 47:762-778. [PMID: 30445466 PMCID: PMC6344893 DOI: 10.1093/nar/gky1166] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022] Open
Abstract
RNF8 plays a critical role in DNA damage response (DDR) to initiate ubiquitination-dependent signaling. To better characterize the role of RNF8 in UV-induced DDR, we searched for novel substrates of RNF8 and identified NONO as one intriguing substrate. We found that: (i) RNF8 ubiquitinates NONO and (ii) UV radiation triggers NONO ubiquitination and its subsequent degradation. Depletion of RNF8 inhibited UV-induced degradation of NONO, suggesting that RNF8 targets NONO for degradation in response to UV damage. In addition, we found that 3 NONO lysine residues (positions 279, 290 and 295) are important for conferring its instability in UV-DDR. Depletion of RNF8 or expression of NONO with lysine to arginine substitutions at positions 279, 290 and 295 prolonged CHK1 phosphorylation over an extended period of time. Furthermore, expression of the stable mutant, but not wild-type NONO, induced a prolonged S phase following UV exposure. Stable cell lines expressing the stable NONO mutant showed increased UV sensitivity in a clonogenic survival assay. Since RNF8 recruitment to the UV-damaged sites is dependent on ATR, we propose that RNF8-mediated NONO degradation and subsequent inhibition of NONO-dependent chromatin loading of TOPBP1, a key activator of ATR, function as a negative feedback loop critical for turning off ATR-CHK1 checkpoint signaling in UV-DDR.
Collapse
Affiliation(s)
- Rakesh Deshar
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Sungjoo Kim
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
10
|
Allegra A, Innao V, Allegra AG, Pugliese M, Di Salvo E, Ventura-Spagnolo E, Musolino C, Gangemi S. Lymphocyte Subsets and Inflammatory Cytokines of Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Int J Mol Sci 2019; 20:ijms20112822. [PMID: 31185596 PMCID: PMC6600674 DOI: 10.3390/ijms20112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023] Open
Abstract
Almost all multiple myeloma (MM) cases have been demonstrated to be linked to earlier monoclonal gammopathy of undetermined significance (MGUS). Nevertheless, there are no identified characteristics in the diagnosis of MGUS that have been helpful in differentiating subjects whose cancer may progress to a malignant situation. Regarding malignancy, the role of lymphocyte subsets and cytokines at the beginning of neoplastic diseases is now incontestable. In this review, we have concentrated our attention on the equilibrium between the diverse lymphocyte subsets and the cytokine system and summarized the current state of knowledge, providing an overview of the condition of the entire system in MGUS and MM. In an age where the therapy of neoplastic monoclonal gammopathies largely relies on drugs capable of acting on the immune system (immunomodulants, immunological checkpoint inhibitors, CAR-T), detailed knowledge of the the differences existing in benign and neoplastic forms of gammopathy is the main foundation for the adequate and optimal use of new drugs.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Marta Pugliese
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Elvira Ventura-Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, 90127 Palermo, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| |
Collapse
|
11
|
Cai J, Wei X, Zhang G, Sui Y, Zhuang J, Liu Z, Sun H. Association of SENPs single-nucleotide polymorphism and breast cancer in Chinese population. Medicine (Baltimore) 2019; 98:e14168. [PMID: 30732133 PMCID: PMC6380865 DOI: 10.1097/md.0000000000014168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMO-specific Cysteine Proteases (SENPs) have involvement in the initiation and progression of human cancers. In the present study, we evaluated the association of SENPs polymorphism with susceptibility as well as clinicopathologic features and patients' response of breast cancer (BC) in a Chinese population.We genotyped SENP1 (rs61918808), SENP2 (rs6762208), SENP7 (rs61697963) by sequencing in a case-control study including 210 BC patients and 225 healthy volunteers. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assume the association strength.No significant association was found between polymorphism of the 3 SENPs and BC susceptibility. However, SENP1 rs61918808 (C>T) and SENP7 rs61697963 (A>C) was associated with HER-2 expression (P < .05). SENP2 rs6762208(C>A) was correlated with increasing risk of lymph node metastases (P < .05). Among the patients who received neoadjuvant chemotherapy, T allele and TT genotype of SENP1 rs61918808 were less likely to achieve pCR (P < .05).We first reported SENPs variants were not associated with BC risk in Chinese population, but presented specific effect on clinicopathological features of BC. Moreover, SENP1 rs61918808 may be a predictor for the clinical response in local advanced BC patients who received neoadjuvant chemotherapy.
Collapse
Affiliation(s)
| | | | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, PR China
| | | | | | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, PR China
| | | |
Collapse
|
12
|
Marsh DJ, Dickson KA. Writing Histone Monoubiquitination in Human Malignancy-The Role of RING Finger E3 Ubiquitin Ligases. Genes (Basel) 2019; 10:genes10010067. [PMID: 30669413 PMCID: PMC6356280 DOI: 10.3390/genes10010067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
There is growing evidence highlighting the importance of monoubiquitination as part of the histone code. Monoubiquitination, the covalent attachment of a single ubiquitin molecule at specific lysines of histone tails, has been associated with transcriptional elongation and the DNA damage response. Sites function as scaffolds or docking platforms for proteins involved in transcription or DNA repair; however, not all sites are equal, with some sites resulting in actively transcribed chromatin and others associated with gene silencing. All events are written by E3 ubiquitin ligases, predominantly of the RING (really interesting new gene) finger type. One of the most well-studied events is monoubiquitination of histone H2B at lysine 120 (H2Bub1), written predominantly by the RING finger complex RNF20-RNF40 and generally associated with active transcription. Monoubiquitination of histone H2A at lysine 119 (H2AK119ub1) is also well-studied, its E3 ubiquitin ligase constituting part of the Polycomb Repressor Complex 1 (PRC1), RING1B-BMI1, associated with transcriptional silencing. Both modifications are activated as part of the DNA damage response. Histone monoubiquitination is a key epigenomic event shaping the chromatin landscape of malignancy and influencing how cells respond to DNA damage. This review discusses a number of these sites and the E3 RING finger ubiquitin ligases that write them.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Kristie-Ann Dickson
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| |
Collapse
|
13
|
Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers (Basel) 2018; 10:cancers10030059. [PMID: 29495465 PMCID: PMC5876634 DOI: 10.3390/cancers10030059] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs). While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.
Collapse
|
14
|
Yang Z, Wa QD, Lu C, Pan W, Lu ZΜ, Ao J. miR‑328‑3p enhances the radiosensitivity of osteosarcoma and regulates apoptosis and cell viability via H2AX. Oncol Rep 2017; 39:545-553. [PMID: 29207178 PMCID: PMC5783622 DOI: 10.3892/or.2017.6112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/26/2017] [Indexed: 11/11/2022] Open
Abstract
Osteosarcoma is a kind of high-risk sarcoma of the skeleton typically observed in people under 25 years old. Currently, radiotherapy is widely applied in cancer treatment. However, osteosarcoma is radioresistant and accordingly new, more effective radiosensitizers are needed. miRNAs have been reported to play an important role in osteosarcoma radiosensitivity. We examined the modulating effect of miR-328-3p in vivo and in vitro. miR-328-3p was downregulated in HOS-2R cells. The overexpression of miR-328-3p enhanced the radiosensitivity of osteosarcoma cells. miR-328-3p inhibited proliferation and promoted apoptosis in osteosarcoma cells under radiation conditions. In cells overexpressing miR-328-3p, H2AX expression was downregulated. We found that miR-328-3p targets H2AX and inhibits its expression. It was concluded, that miR-328-3p enhances the radiosensitization of osteosarcoma following X-ray irradiation, and determined that it directly targets H2AX to regulate radiosensitization.
Collapse
Affiliation(s)
- Zhen Yang
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, P.R. China
| | - Qing-De Wa
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, P.R. China
| | - Chao Lu
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, P.R. China
| | - Wei Pan
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, P.R. China
| | - Zi-Μo Lu
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, P.R. China
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, P.R. China
| |
Collapse
|
15
|
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res 2017; 808:62-73. [PMID: 28843435 DOI: 10.1016/j.mrfmmm.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.
Collapse
Affiliation(s)
- Elodie Bournique
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Marina Dall'Osto
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France.
| |
Collapse
|
16
|
Bethea CL, Mueller K, Reddy AP, Kohama SG, Urbanski HF. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques. PLoS One 2017; 12:e0178788. [PMID: 28628658 PMCID: PMC5476244 DOI: 10.1371/journal.pone.0178788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022] Open
Abstract
The beneficial effects of bioidentical ovarian steroid hormone therapy (HT) during the perimenopause are gaining recognition. However, the positive effects of estrogen (E) plus or minus progesterone (P) administration to ovariectomized (Ovx) lab animals were recognized in multiple systems for years before clinical trials could adequately duplicate the results. Moreover, very large numbers of women are often needed to find statistically significant results in clinical trials of HT; and there are still opposing results being published, especially in neural and cardiovascular systems. One of the obvious differences between human and animal studies is diet. Laboratory animals are fed a diet that is low in fat and refined sugar, but high in micronutrients. In the US, a large portion of the population eats what is known as a "western style diet" or WSD that provides calories from 36% fat, 44% carbohydrates (includes 18.5% sugars) and 18% protein. Unfortunately, obesity and diabetes have reached epidemic proportions and the percentage of obese women in clinical trials may be overlooked. We questioned whether WSD and obesity could decrease the positive neural effects of estradiol (E) in the serotonin system of old macaques that were surgically menopausal. Old ovo-hysterectomized female monkeys were fed WSD for 2.5 years, and treated with placebo, Immediate E (ImE) or Delayed E (DE). Compared to old Ovx macaques on primate chow and treated with placebo or E, the WSD-fed monkeys exhibited greater individual variance and blunted responses to E-treatment in the expression of genes related to serotonin neurotransmission, CRH components in the midbrain, synapse assembly, DNA repair, protein folding, ubiquitylation, transport and neurodegeneration. For many of the genes examined, transcript abundance was lower in WSD-fed than chow-fed monkeys. In summary, an obesogenic diet for 2.5 years in old surgically menopausal macaques blunted or increased variability in E-induced gene expression in the dorsal raphe. These results suggest that with regard to function and viability in the dorsal raphe, HT may not be as beneficial for obese women as normal weight women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kevin Mueller
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Arubala P. Reddy
- Department of Internal Medicine, Texas Technical University Health Sciences Center School of Medicine, Lubbock, TX, United States of America
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
17
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
18
|
Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 2016; 8:v8060161. [PMID: 27322308 PMCID: PMC4926181 DOI: 10.3390/v8060161] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
Collapse
Affiliation(s)
- Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, The Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
19
|
Cipolla L, Maffia A, Bertoletti F, Sabbioneda S. The Regulation of DNA Damage Tolerance by Ubiquitin and Ubiquitin-Like Modifiers. Front Genet 2016; 7:105. [PMID: 27379156 PMCID: PMC4904029 DOI: 10.3389/fgene.2016.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in the presence of an unrepaired template. One of such mechanisms is called post-replication repair (PRR) and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error-free and in an error-prone manner. In light of these two possible outcomes, PRR needs to be tightly controlled in order to prevent the accumulation of mutations leading ultimately to genome instability. Post-translational modifications of PRR proteins provide the framework for this regulation with ubiquitylation and SUMOylation playing a pivotal role in choosing which pathway to activate, thus controlling the different outcomes of damage bypass. The proliferating cell nuclear antigen (PCNA), the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by ubiquitin, and SUMO controls both the error-free and error-prone branches of PRR. Furthermore, a significant number of polymerases are involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how ubiquitin and ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they control the recruitment of different proteins to the replication fork.
Collapse
Affiliation(s)
- Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Antonio Maffia
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Federica Bertoletti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| |
Collapse
|
20
|
Minakawa Y, Atsumi Y, Shinohara A, Murakami Y, Yoshioka KI. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication. Genes Cells 2016; 21:789-97. [PMID: 27251002 DOI: 10.1111/gtc.12381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/26/2016] [Indexed: 01/31/2023]
Abstract
H2AX is expressed at very low levels in quiescent normal cells in vivo and in vitro. Such cells repair DNA double-strand breaks (DSBs) induced by γ-irradiation through a transient stabilization of H2AX. However, the resultant cells accumulate small numbers of irreparable (or persistent) DSBs via an unknown mechanism. We found that quiescent cells that had repaired DSBs directly induced by γ-rays were prone to accumulate DSBs during the subsequent DNA replication. Unlike directly induced DSBs, secondary DSBs were not efficiently repaired, although Rad51 and 53BP1 were recruited to these sites. H2AX was dramatically stabilized in response to DSBs directly caused by γ-rays, enabling γH2AX foci formation and DSB repair, whereas H2AX was barely stabilized in response to secondary DSBs, in which γH2AX foci were small and DSBs were not efficiently repaired. Our results show a pathway that leads to the persistent DSB formation after γ-irradiation.
Collapse
Affiliation(s)
- Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yuko Atsumi
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Shinohara
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasufumi Murakami
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
21
|
Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, Dubois T, Dutreix M, Vincent-Salomon A, Miller KM, Mechta-Grigoriou F. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med 2016; 8:527-49. [PMID: 27006338 PMCID: PMC5123617 DOI: 10.15252/emmm.201505891] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Anti‐cancer drugs often increase reactive oxygen species (ROS) and cause DNA damage. Here, we highlight a new cross talk between chronic oxidative stress and the histone variant H2AX, a key player in DNA repair. We observe that persistent accumulation of ROS, due to a deficient JunD‐/Nrf2‐antioxidant response, reduces H2AX protein levels. This effect is mediated by an enhanced interaction of H2AX with the E3 ubiquitin ligase RNF168, which is associated with H2AX poly‐ubiquitination and promotes its degradation by the proteasome. ROS‐mediated H2AX decrease plays a crucial role in chemosensitivity. Indeed, cycles of chemotherapy that sustainably increase ROS reduce H2AX protein levels in Triple‐Negative breast cancer (TNBC) patients. H2AX decrease by such treatment is associated with an impaired NRF2‐antioxidant response and is indicative of the therapeutic efficiency and survival of TNBC patients. Thus, our data describe a novel ROS‐mediated regulation of H2AX turnover, which provides new insights into genetic instability and treatment efficacy in TNBC patients.
Collapse
Affiliation(s)
- Tina Gruosso
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Virginie Mieulet
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Melissa Cardon
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Brigitte Bourachot
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Flavien Devun
- Institut Curie, CNRS UMR3347, INSERM U1021, University Paris-Sud 11, Orsay, France
| | - Thierry Dubois
- Department of Translational Research, Institut Curie, Paris Cedex 05, France
| | - Marie Dutreix
- Institut Curie, CNRS UMR3347, INSERM U1021, University Paris-Sud 11, Orsay, France
| | | | - Kyle Malcolm Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| |
Collapse
|
22
|
Pellegrino S, Altmeyer M. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress. Front Genet 2016; 7:63. [PMID: 27148359 PMCID: PMC4835507 DOI: 10.3389/fgene.2016.00063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023] Open
Abstract
Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress.
Collapse
Affiliation(s)
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of ZurichZürich, Switzerland
| |
Collapse
|
23
|
Abstract
Histone posttranslational modifications represent a versatile set of epigenetic marks involved not only in dynamic cellular processes, such as transcription and DNA repair, but also in the stable maintenance of repressive chromatin. In this article, we review many of the key and newly identified histone modifications known to be deregulated in cancer and how this impacts function. The latter part of the article addresses the challenges and current status of the epigenetic drug development process as it applies to cancer therapeutics.
Collapse
Affiliation(s)
- James E Audia
- Constellation Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Robert M Campbell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285
| |
Collapse
|
24
|
Nie M, Boddy MN. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability. Biomolecules 2016; 6:14. [PMID: 26927199 PMCID: PMC4808808 DOI: 10.3390/biom6010014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael N Boddy
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Baldock RA, Day M, Wilkinson OJ, Cloney R, Jeggo PA, Oliver AW, Watts FZ, Pearl LH. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX. Cell Rep 2015; 13:2081-9. [PMID: 26628370 PMCID: PMC4688034 DOI: 10.1016/j.celrep.2015.10.074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications--H4K20me2 and H2AK13/K15ub--downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1.
Collapse
Affiliation(s)
- Robert A Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Oliver J Wilkinson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Ross Cloney
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
26
|
ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation. Cell Rep 2015; 13:2728-40. [DOI: 10.1016/j.celrep.2015.11.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/03/2015] [Accepted: 11/17/2015] [Indexed: 01/07/2023] Open
|
27
|
Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. BMC PLANT BIOLOGY 2015; 15:252. [PMID: 26490733 PMCID: PMC4618151 DOI: 10.1186/s12870-015-0614-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/13/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Histone H2B monoubiquitination pathway has been shown to play critical roles in regulating growth/development and stress response in Arabidopsis. In the present study, we explored the involvement of the tomato histone H2B monoubiquitination pathway in defense response against Botrytis cinerea by functional analysis of SlHUB1 and SlHUB2, orthologues of the Arabidopsis AtHUB1/AtHUB2. METHODS We used the TRV-based gene silencing system to knockdown the expression levels of SlHUB1 or SlHUB2 in tomato plants and compared the phenotype between the silenced and the control plants after infection with B. cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Biochemical and interaction properties of proteins were examined using in vitro histone monoubiquitination and yeast two-hybrid assays, respectively. The transcript levels of genes were analyzed by quantitative real time PCR (qRT-PCR). RESULTS The tomato SlHUB1 and SlHUB2 had H2B monoubiquitination E3 ligases activity in vitro and expression of SlHUB1 and SlHUB2 was induced by infection of B. cinerea and Pst DC3000 and by treatment with salicylic acid (SA) and 1-amino cyclopropane-1-carboxylic acid (ACC). Silencing of either SlHUB1 or SlHUB2 in tomato plants showed increased susceptibility to B. cinerea, whereas silencing of SlHUB1 resulted in increased resistance against Pst DC3000. SlMED21, a Mediator complex subunit, interacted with SlHUB1 but silencing of SlMED21 did not affect the disease resistance to B. cinerea and Pst DC3000. The SlHUB1- and SlHUB2-silenced plants had thinner cell wall but increased accumulation of reactive oxygen species (ROS), increased callose deposition and exhibited altered expression of the genes involved in phenylpropanoid pathway and in ROS generation and scavenging system. Expression of genes in the SA-mediated signaling pathway was significantly upregulated, whereas expression of genes in the jasmonic acid (JA)/ethylene (ET)-mediated signaling pathway were markedly decreased in SlHUB1- and SlHUB2-silenced plants after infection of B. cinerea. CONCLUSION VIGS-based functional analyses demonstrate that both SlHUB1 and SlHUB2 contribute to resistance against B. cinerea most likely through modulating the balance between the SA- and JA/ET-mediated signaling pathways.
Collapse
Affiliation(s)
- Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Chung D, Dellaire G. The Role of the COP9 Signalosome and Neddylation in DNA Damage Signaling and Repair. Biomolecules 2015; 5:2388-416. [PMID: 26437438 PMCID: PMC4693240 DOI: 10.3390/biom5042388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/28/2023] Open
Abstract
The maintenance of genomic integrity is an important process in organisms as failure to sense and repair damaged DNA can result in a variety of diseases. Eukaryotic cells have developed complex DNA repair response (DDR) mechanisms to accurately sense and repair damaged DNA. Post-translational modifications by ubiquitin and ubiquitin-like proteins, such as SUMO and NEDD8, have roles in coordinating the progression of DDR. Proteins in the neddylation pathway have also been linked to regulating DDR. Of interest is the COP9 signalosome (CSN), a multi-subunit metalloprotease present in eukaryotes that removes NEDD8 from cullins and regulates the activity of cullin-RING ubiquitin ligases (CRLs). This in turn regulates the stability and turnover of a host of CRL-targeted proteins, some of which have established roles in DDR. This review will summarize the current knowledge on the role of the CSN and neddylation in DNA repair.
Collapse
Affiliation(s)
- Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
29
|
Yang H, Palmbos PL, Wang L, Kim EH, Ney GM, Liu C, Prasad J, Misek DE, Yu X, Ljungman M, Simeone DM. ATDC (Ataxia Telangiectasia Group D Complementing) Promotes Radioresistance through an Interaction with the RNF8 Ubiquitin Ligase. J Biol Chem 2015; 290:27146-27157. [PMID: 26381412 DOI: 10.1074/jbc.m115.665489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Induction of DNA damage by ionizing radiation (IR) and/or cytotoxic chemotherapy is an essential component of cancer therapy. The ataxia telangiectasia group D complementing gene (ATDC, also called TRIM29) is highly expressed in many malignancies. It participates in the DNA damage response downstream of ataxia telangiectasia-mutated (ATM) and p38/MK2 and promotes cell survival after IR. To elucidate the downstream mechanisms of ATDC-induced IR protection, we performed a mass spectrometry screen to identify ATDC binding partners. We identified a direct physical interaction between ATDC and the E3 ubiquitin ligase and DNA damage response protein, RNF8, which is required for ATDC-induced radioresistance. This interaction was refined to the C-terminal portion (amino acids 348-588) of ATDC and the RING domain of RNF8 and was disrupted by mutation of ATDC Ser-550 to alanine. Mutations disrupting this interaction abrogated ATDC-induced radioresistance. The interaction between RNF8 and ATDC, which was increased by IR, also promoted downstream DNA damage responses such as IR-induced γ-H2AX ubiquitination, 53BP1 phosphorylation, and subsequent resolution of the DNA damage foci. These studies define a novel function for ATDC in the RNF8-mediated DNA damage response and implicate RNF8 binding as a key determinant of the radioprotective function of ATDC.
Collapse
Affiliation(s)
- Huibin Yang
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Phillip L Palmbos
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Lidong Wang
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Evelyn H Kim
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gina M Ney
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
| | - Chao Liu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Jayendra Prasad
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - David E Misek
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiaochun Yu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Mats Ljungman
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Diane M Simeone
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
30
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
31
|
Cao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, Liu YX. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice. PLANT PHYSIOLOGY 2015; 168:1389-405. [PMID: 26143250 PMCID: PMC4528728 DOI: 10.1104/pp.114.256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/02/2015] [Indexed: 05/06/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Li'an Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - James Doughty
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| |
Collapse
|
32
|
Potu H, Peterson LF, Pal A, Verhaegen M, Cao J, Talpaz M, Donato NJ. Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway. Oncotarget 2015; 5:5559-69. [PMID: 24980819 PMCID: PMC4170643 DOI: 10.18632/oncotarget.2140] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Usp5 is a deubiquitinase (DUB) previously shown to regulate unanchored polyubiquitin (Ub) chains, p53 transcriptional activity and double-strand DNA repair. In BRAF mutant melanoma cells, Usp5 activity was suppressed by BRAF inhibitor (vemurafenib) in sensitive but not in acquired or intrinsically resistant cells. Usp5 knockdown overcame acquired vemurafenib resistance and sensitized BRAF and NRAS mutant melanoma cells to apoptosis initiated by MEK inhibitor, cytokines or DNA-damaging agents. Knockdown and overexpression studies demonstrated that Usp5 regulates p53 (and p73) levels and alters cell growth and cell cycle distribution associated with p21 induction. Usp5 also regulates the intrinsic apoptotic pathway by modulating p53-dependent FAS expression. A small molecule DUB inhibitor (EOAI3402143) phenocopied the FAS induction and apoptotic sensitization of Usp5 knockdown and fully blocked melanoma tumor growth in mice. Overall, our results demonstrate that BRAF activates Usp5 to suppress cell cycle checkpoint control and apoptosis by blocking p53 and FAS induction; all of which can be restored by small molecule-mediated Usp5 inhibition. These results suggest that Usp5 inhibition can provide an alternate approach in recovery of diminished p53 (or p73) function in melanoma and can add to the targeted therapies already used in the treatment of melanoma.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Luke F Peterson
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Anupama Pal
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Monique Verhaegen
- Department of Dermatology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Juxiang Cao
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Moshe Talpaz
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Nicholas J Donato
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| |
Collapse
|
33
|
Levy-Cohen G, Blank M. Functional analysis of protein ubiquitination. Anal Biochem 2015; 484:37-9. [PMID: 25963895 DOI: 10.1016/j.ab.2015.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022]
Abstract
Alterations in the protein ubiquitination can lead to the development of serious pathological conditions and diseases and, therefore, are under extensive investigation. Here we detail the revised/updated version of two approaches for analyzing the functional activities of the ubiquitin transferring system and target protein ubiquitination. These approaches permit the analysis of protein ubiquitination within the cellular environment as well as in a tube when the purified components are used. The updates introduced in the protocols allow both to increase the sensitivity of the assays and to reduce the false positives often experienced in the analyses.
Collapse
Affiliation(s)
- Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, Safed 1321504, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, Safed 1321504, Israel.
| |
Collapse
|
34
|
WANG MAOXIN, CHEN XIANMING, CHEN HUI, ZHANG XIAN, LI JIANZHONG, GONG HONGXUN, SHIYAN CHEN, YANG FAN. RNF8 plays an important role in the radioresistance of human nasopharyngeal cancer cells in vitro. Oncol Rep 2015; 34:341-9. [DOI: 10.3892/or.2015.3958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
|
35
|
Brown JS, Lukashchuk N, Sczaniecka-Clift M, Britton S, le Sage C, Calsou P, Beli P, Galanty Y, Jackson SP. Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites. Cell Rep 2015; 11:704-14. [PMID: 25921528 PMCID: PMC4431666 DOI: 10.1016/j.celrep.2015.03.058] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/12/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
The activities of many DNA-repair proteins are controlled through reversible covalent modification by ubiquitin and ubiquitin-like molecules. Nonhomologous end-joining (NHEJ) is the predominant DNA double-strand break (DSB) repair pathway in mammalian cells and is initiated by DSB ends being recognized by the Ku70/Ku80 (Ku) heterodimer. By using MLN4924, an anti-cancer drug in clinical trials that specifically inhibits conjugation of the ubiquitin-like protein, NEDD8, to target proteins, we demonstrate that NEDD8 accumulation at DNA-damage sites is a highly dynamic process. In addition, we show that depleting cells of the NEDD8 E2-conjugating enzyme, UBE2M, yields ionizing radiation hypersensitivity and reduced cell survival following NHEJ. Finally, we demonstrate that neddylation promotes Ku ubiquitylation after DNA damage and release of Ku and Ku-associated proteins from damage sites following repair. These studies provide insights into how the NHEJ core complex dissociates from repair sites and highlight its importance for cell survival following DSB induction.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK
| | - Natalia Lukashchuk
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK
| | - Matylda Sczaniecka-Clift
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK
| | - Sébastien Britton
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse-Université Paul Sabatier, Equipe Labellisée Ligue contre le Cancer, 31077 Toulouse, France
| | - Carlos le Sage
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse-Université Paul Sabatier, Equipe Labellisée Ligue contre le Cancer, 31077 Toulouse, France
| | - Petra Beli
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Yaron Galanty
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK.
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge 2 1QN, UK.
| |
Collapse
|
36
|
McIntyre J, Woodgate R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 2015; 29:166-79. [PMID: 25743599 PMCID: PMC4426011 DOI: 10.1016/j.dnarep.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
Abstract
Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
37
|
Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS One 2015; 10:e0122585. [PMID: 25848798 PMCID: PMC4388590 DOI: 10.1371/journal.pone.0122585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
Shigellosis is a severe diarrheal disease that affects hundreds of thousands of individuals resulting in significant morbidity and mortality worldwide. Shigellosis is caused by Shigella spp., a gram-negative bacterium that uses a Type 3 Secretion System (T3SS) to deliver effector proteins into the cytosol of infected human cells. Shigella infection triggers multiple signaling programs that result in a robust host transcriptional response that includes the induction of multiple proinflammatory cytokines. PML nuclear bodies (PML-NBs) are dynamic subnuclear structures that coordinate immune signaling programs and have a demonstrated role in controlling viral infection. We show that PML-NB number increases upon Shigella infection. We examined the effects of Shigella infection on SUMOylation and found that upon Shigella infection the localization of SUMOylated proteins is altered and the level of SUMOylated proteins decreases. Although Shigella infection does not alter the abundance of SUMO activating enzymes SAE1 or SAE2, it dramatically decreases the level of the SUMO conjugating enzyme Ubc9. All Shigella-induced alterations to the SUMOylation system are dependent upon a T3SS. Thus, we demonstrate that Shigella uses one or more T3SS effectors to influence both PML-NB number and the SUMOylation machinery in human cells.
Collapse
|
38
|
Corredor Z, Stoyanova E, Rodríguez-Ribera L, Coll E, Silva I, Diaz JM, Ballarin J, Marcos R, Pastor S. Genomic damage as a biomarker of chronic kidney disease status. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:301-312. [PMID: 25234591 DOI: 10.1002/em.21911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Patients suffering from chronic kidney disease (CKD) exhibit a high incidence of cancer and cardiovascular diseases, as well as high levels of genomic damage. To confirm the association of CKD with genomic damage we have carried out the largest study to date addressing this issue, using a total of 602 subjects (187 controls, 206 pre-dialysis CKD patients and 209 CKD patients in hemodialysis). DNA oxidative damage was measured in all individuals using the comet assay. Our results indicate that CKD patients have significantly higher levels of DNA damage than controls, but no significant differences were observed between pre-hemodialysis (pre-HD) and hemodialysis (HD) patients. When oxidative damage was measured, no differences were observed between patients and controls, although HD patients showed significantly higher levels of oxidative damage than pre-HD patients. In addition, a positive relationship was demonstrated between genomic damage and all-cause mortality. Our study confirms that genomic damage can be predictive of prognosis in CKD patients, with high levels of DNA damage indicating a poor prognosis in HD patients.
Collapse
Affiliation(s)
- Zuray Corredor
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Preuss KD, Pfreundschuh M, Weigert M, Fadle N, Regitz E, Kubuschok B. Sumoylated HSP90 is a dominantly inherited plasma cell dyscrasias risk factor. J Clin Invest 2014; 125:316-23. [PMID: 25485683 DOI: 10.1172/jci76802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
Posttranslationally modified proteins serve as autoimmunogenic targets in a wide spectrum of autoimmune diseases. Here, we identified a posttranslationally modified paraprotein target (paratargs) in monoclonal gammopathies of undetermined significance (MGUS), multiple myelomas (MM), and Waldenstrom's macroglobulinemias (WM) using protein macroarrays that were sumoylated and screened for reactivity with paraproteins from MGUS, MM, and WM patients. We found that paraproteins from a proportion of European, African-American, and Japanese patients specifically reacted with the sumoylated heat-shock protein 90 β isoform-α (HSP90-SUMO1, where SUMO indicates small ubiquitin-like modifier), while no reactivity with HSP90-SUMO1 was detected in over 800 controls. HSP90-SUMO1 was present in blood cells from all patients with HSP90-SUMO1-binding paraproteins. We determined that the HSP90-SUMO1 carrier state is autosomal-dominantly inherited and caused by the inability of SUMO peptidase sentrin/SUMO-specific protease 2 (SENP2) to desumoylate HSP90-SUMO1. HSP90-SUMO1 was detected in a small percentage of healthy individuals from all backgrounds; however, only MGUS, MM, and WM patients who were HSP90-SUMO1 carriers produced HSP90-SUMO1-specific paraproteins, suggesting that sumoylated HSP90 promotes pathogenesis of these diseases through chronic antigenic stimulation. This study demonstrates that harboring HSP90-SUMO1 identifies healthy individuals at risk for plasma cell dyscrasias and that dominant inheritance of posttranslationally modified autoantigenic paratargs is one of the strongest molecular defined risk factors for MGUS, MM, and WM.
Collapse
|
40
|
Zhang X, Wang N, Chen P, Gao M, Liu J, Wang Y, Zhao T, Li Y, Gai J. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis. PLoS One 2014; 9:e111120. [PMID: 25364908 PMCID: PMC4218711 DOI: 10.1371/journal.pone.0111120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.
Collapse
Affiliation(s)
- Xiaolian Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pei Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengmeng Gao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yufeng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115:116-27. [PMID: 25130533 PMCID: PMC4250295 DOI: 10.1016/j.nlm.2014.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
42
|
Zhang Z, Yang H, Wang H. The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-tunes cellular response to DNA damage. J Biol Chem 2014; 289:32883-94. [PMID: 25305019 DOI: 10.1074/jbc.m114.599605] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone ubiquitination at DNA double strand breaks facilitates the recruitment of downstream repair proteins; however, how the ubiquitination is dynamically regulated during repair and terminated after repair is not well understood. Here we report that the histone H2A deubiquitinase USP16 interacts with HERC2, fine-tunes the ubiquitin signal during repair, and importantly, is required for terminating the ubiquitination signal after repair. HERC2 interacts with the coiled-coil domain of USP16 through its C-terminal HECT domain. HERC2 knockdown affects the levels of ubiquitinated H2A through the action of USP16. In response to DNA damage, USP16 levels increase, and this increase is dependent on HERC2. Increased USP16 serves as a negative regulator for DNA damage-induced ubiquitin foci formation and affects downstream factor recruitment and DNA damage response. The functional significance of USP16 is further manifested in human Down syndrome patient cells, which contain three copies of USP16 genes and have altered cellular response to DNA damage. Finally, we demonstrated that USP16 could deubiquitinate both H2A Lys-119 and H2A Lys-15 ubiquitination in vitro. Therefore, this study identifies USP16 as a critical regulator of DNA damage response and H2A Lys-15 ubiquitination as a potential target of USP16.
Collapse
Affiliation(s)
- Zhuo Zhang
- From the Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Huirong Yang
- From the Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294 and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hengbin Wang
- From the Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| |
Collapse
|
43
|
Long DT, Joukov V, Budzowska M, Walter JC. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol Cell 2014; 56:174-85. [PMID: 25219499 DOI: 10.1016/j.molcel.2014.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
The tumor suppressor protein BRCA1 promotes homologous recombination (HR), a high-fidelity mechanism to repair DNA double-strand breaks (DSBs) that arise during normal replication and in response to DNA-damaging agents. Recent genetic experiments indicate that BRCA1 also performs an HR-independent function during the repair of DNA interstrand crosslinks (ICLs). Here we show that BRCA1 is required to unload the CMG helicase complex from chromatin after replication forks collide with an ICL. Eviction of the stalled helicase allows leading strands to be extended toward the ICL, followed by endonucleolytic processing of the crosslink, lesion bypass, and DSB repair. Our results identify BRCA1-dependent helicase unloading as a critical, early event in ICL repair.
Collapse
Affiliation(s)
- David T Long
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Joukov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Magda Budzowska
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Long L, Furgason M, Yao T. Generation of nonhydrolyzable ubiquitin-histone mimics. Methods 2014; 70:134-8. [PMID: 25063569 DOI: 10.1016/j.ymeth.2014.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/11/2014] [Indexed: 12/30/2022] Open
Abstract
Histone proteins undergo various types of post-translational modifications (PTMs) to regulate dynamic processes in the cell, including replication, transcription and DNA damage repair. One type of histone PTM is the attachment of a small protein, ubiquitin (Ub). In eukaryotic organisms, a single Ub is attached to specific lysine residues of histones H2A and H2B in a modification that, unlike many other forms of ubiquitination in the cell, does not signal degradation. Instead, both attachment and removal of Ub to these histones has been shown to affect gene transcription, pre-mRNA splicing, and DNA damage repair, but the mechanisms by which histone ubiquitination governs these processes are not well understood. In an effort to identify "readers" of Ub-histones, we developed a straightforward crosslinking strategy to generate nonhydrolyzable Ub-histone mimics. These mimics were assembled into Ub-histone-containing dimers or nucleosomes. We demonstrate that they can be used in pulldown assays to identify proteins that differentiate unmodified and ubiquitinated histones.
Collapse
Affiliation(s)
- Lindsey Long
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Melonnie Furgason
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
45
|
Kuo CY, Li X, Kong XQ, Luo C, Chang CC, Chung Y, Shih HM, Li KK, Ann DK. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Krüppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress. J Biol Chem 2014; 289:20757-72. [PMID: 24907272 DOI: 10.1074/jbc.m114.555672] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response.
Collapse
Affiliation(s)
- Ching-Ying Kuo
- From the Department of Molecular Pharmacology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Xu Li
- From the Department of Molecular Pharmacology and
| | - Xiang-Qian Kong
- the Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Cheng Luo
- the Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Che-Chang Chang
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, and
| | - Yiyin Chung
- From the Department of Molecular Pharmacology and
| | - Hsiu-Ming Shih
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, and
| | - Keqin Kathy Li
- the State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin II Road, Shanghai 200025, China
| | - David K Ann
- From the Department of Molecular Pharmacology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010,
| |
Collapse
|
46
|
SUMOylation proteins in breast cancer. Breast Cancer Res Treat 2014; 144:519-30. [PMID: 24584753 DOI: 10.1007/s10549-014-2897-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Small Ubiquitin-like Modifier proteins (or SUMO) modify the function of protein substrates involved in various cellular processes including DNA damage response (DDR). It is becoming apparent that dysregulated SUMO contribute to carcinogenesis by affecting post-transcriptional modification of key proteins. It is hypothesised that SUMO contributes to the aggressive nature of breast cancer particularly those associated with features similar to breast carcinoma arising in patients with BRCA1 germline mutations. This study aims to assess the clinical and biological significance of three members of SUMO in a well-characterised annotated series of BC with emphasis on DDR. The study cohort comprised primary operable invasive BC including tumours from patients with known BRCA1 germline mutations. SUMO proteins PIAS1, PIAS4 and UBC9 were assessed using immunohistochemistry utilising tissue microarray technology. Additionally, their expression was assessed using reverse phase protein microarray utilising different cell lines. PIAS1 and UBC9 showed cytoplasmic and/or nuclear expression while PIAS4 was detected only in the nuclei. There was a correlation between subcellular localisation and expression of the nuclear transport protein KPNA2. Tumours showing positive nuclear/negative cytoplasmic expression of SUMO featured good prognostic characteristics including lower histologic grade and had a good outcome. Strong correlation with DDR-related proteins including BRCA1, Rad51, ATM, CHK1, DNA-PK and KU70/KU80 was observed. Correlation with ER and BRCA1 was confirmed using RPPA on cell lines. SUMO proteins seem to play important role in BC. Not only expression but also subcellular location is associated with BC phenotype.
Collapse
|
47
|
Richard P, Manley JL. SETX sumoylation: A link between DNA damage and RNA surveillance disrupted in AOA2. Rare Dis 2014; 2:e27744. [PMID: 25054092 PMCID: PMC4091563 DOI: 10.4161/rdis.27744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
Senataxin (SETX) is a putative RNA:DNA helicase that is mutated in two distinct juvenile neurological disorders, AOA2 and ALS4. SETX is involved in the response to oxidative stress and is suggested to resolve R loops formed at transcription termination sites or at sites of collisions between the transcription and replication machineries. R loops are hybrids between RNA and DNA that are believed to lead to DNA damage and genomic instability. We discovered that Rrp45, a core component of the exosome, is a SETX-interacting protein and that the interaction depends on modification of SETX by sumoylation. Importantly, we showed that AOA2 but not ALS4 mutations prevented both SETX sumoylation and the Rrp45 interaction. We also found that upon replication stress induction, SETX and Rrp45 co-localize in nuclear foci that constitute sites of R-loop formation generated by transcription and replication machinery collisions. We suggest that SETX links transcription, DNA damage and RNA surveillance, and discuss here how this link can be relevant to AOA2 disease.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences; Columbia University; New York, NY USA
| | - James L Manley
- Department of Biological Sciences; Columbia University; New York, NY USA
| |
Collapse
|
48
|
Feng J, Shen WH. Dynamic regulation and function of histone monoubiquitination in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:83. [PMID: 24659991 PMCID: PMC3952079 DOI: 10.3389/fpls.2014.00083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/22/2014] [Indexed: 05/02/2023]
Abstract
Polyubiquitin chain deposition on a target protein frequently leads to proteasome-mediated degradation whereas monoubiquitination modifies target protein property and function independent of proteolysis. Histone monoubiquitination occurs in chromatin and is in nowadays recognized as one critical type of epigenetic marks in eukaryotes. While H2A monoubiquitination (H2Aub1) is generally associated with transcription repression mediated by the Polycomb pathway, H2Bub1 is involved in transcription activation. H2Aub1 and H2Bub1 levels are dynamically regulated via deposition and removal by specific enzymes. We review knows and unknowns of dynamic regulation of H2Aub1 and H2Bub1 deposition and removal in plants and highlight the underlying crucial functions in gene transcription, cell proliferation/differentiation, and plant growth and development. We also discuss crosstalks existing between H2Aub1 or H2Bub1 and different histone methylations for an ample mechanistic understanding.
Collapse
Affiliation(s)
| | - Wen-Hui Shen
- *Correspondence: Wen-Hui Shen, Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France e-mail:
| |
Collapse
|
49
|
Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, Horikoshi Y, Ikura T, Ikura M, Kanaar R, Igarashi K, Saitoh H, Kurumizaka H, Tashiro S. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci 2013; 126:5284-92. [PMID: 24046452 DOI: 10.1242/jcs.133744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic information encoded in chromosomal DNA is challenged by intrinsic and exogenous sources of DNA damage. DNA double-strand breaks (DSBs) are extremely dangerous DNA lesions. RAD51 plays a central role in homologous DSB repair, by facilitating the recombination of damaged DNA with intact DNA in eukaryotes. RAD51 accumulates at sites containing DNA damage to form nuclear foci. However, the mechanism of RAD51 accumulation at sites of DNA damage is still unclear. Post-translational modifications of proteins, such as phosphorylation, acetylation and ubiquitylation play a role in the regulation of protein localization and dynamics. Recently, the covalent binding of small ubiquitin-like modifier (SUMO) proteins to target proteins, termed SUMOylation, at sites containing DNA damage has been shown to play a role in the regulation of the DNA-damage response. Here, we show that the SUMOylation E2 ligase UBC9, and E3 ligases PIAS1 and PIAS4, are required for RAD51 accretion at sites containing DNA damage in human cells. Moreover, we identified a SUMO-interacting motif (SIM) in RAD51, which is necessary for accumulation of RAD51 at sites of DNA damage. These findings suggest that the SUMO-SIM system plays an important role in DNA repair, through the regulation of RAD51 dynamics.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|