1
|
Lee S, Kang S, Heo J, Hong Y, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:838-855. [PMID: 37970505 PMCID: PMC10640957 DOI: 10.5187/jast.2022.e127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 11/17/2023]
Abstract
The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.
Collapse
Affiliation(s)
- Sooyeon Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Suyeon Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jubi Heo
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeojin Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Thi Hao Vu
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology,
National Institute of Veterinary Research, Hanoi 100000, Viet
Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology
Laboratory, Agricultural Research Services, United States Department of
Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
2
|
Li H, Li J, Zhai Y, Zhang L, Cui P, Feng L, Yan W, Fu X, Tian Y, Wang H, Yang X. Gga-miR-30d regulates infectious bronchitis virus infection by targeting USP47 in HD11 cells. Microb Pathog 2020; 141:103998. [PMID: 31982568 PMCID: PMC7125550 DOI: 10.1016/j.micpath.2020.103998] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Avian infectious bronchitis virus (IBV) is a coronavirus which infects chickens and causes severe economic losses to the poultry industry worldwide. MicroRNAs (miRNAs) are important intracellular regulators and play a pivotal role in viral infections. In previous studies, we have revealed that IBV infection caused a significant down-regulation of gga-miR-30d expression in chicken kidneys. In present study, we investigated the role of gga-miR-30d in the process of IBV infection of HD11 cell line in vitro. By transfecting the mimics and inhibitor of gga-miR-30d, it was found that overexpressed gga-miR-30d inhibited IBV replication. Contrarily, low-expressed gga-miR-30d promoted IBV replication. In addition, dual-luciferase reporter assays revealed that ubiquitin-specific protease 47 (USP47), a deubiquitinase-encoding gene, was a target for gga-miR-30d. This is the first study demonstrating that miRNAs regulate IBV replication by regulating the deubiquitinating enzyme (DUBs). Gga-miR-30d, a microRNA encoded by HD11 cells, regulates IBV infection by targeting USP47. This is the first study demonstrating that miRNAs regulate IBV replication by regulating the deubiquitinating enzyme (DUBs). Our results highlight the importance of the ubiquitin-deubiquitinase system in virus-cell interactions.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Jianan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yaru Zhai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Lan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Pengfei Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Lan Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Wenjun Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xue Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yiming Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
3
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
4
|
Trobaugh DW, Sun C, Bhalla N, Gardner CL, Dunn MD, Klimstra WB. Cooperativity between the 3' untranslated region microRNA binding sites is critical for the virulence of eastern equine encephalitis virus. PLoS Pathog 2019; 15:e1007867. [PMID: 31658290 PMCID: PMC6936876 DOI: 10.1371/journal.ppat.1007867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV), a mosquito-borne RNA virus, is one of the most acutely virulent viruses endemic to the Americas, causing between 30% and 70% mortality in symptomatic human cases. A major factor in the virulence of EEEV is the presence of four binding sites for the hematopoietic cell-specific microRNA, miR-142-3p, in the 3’ untranslated region (3’ UTR) of the virus. Three of the sites are “canonical” with all 7 seed sequence residues complimentary to miR-142-3p while one is “non-canonical” and has a seed sequence mismatch. Interaction of the EEEV genome with miR-142-3p limits virus replication in myeloid cells and suppresses the systemic innate immune response, greatly exacerbating EEEV neurovirulence. The presence of the miRNA binding sequences is also required for efficient EEEV replication in mosquitoes and, therefore, essential for transmission of the virus. In the current studies, we have examined the role of each binding site by point mutagenesis of the seed sequences in all combinations of sites followed by infection of mammalian myeloid cells, mosquito cells and mice. The resulting data indicate that both canonical and non-canonical sites contribute to cell infection and animal virulence, however, surprisingly, all sites are rapidly deleted from EEEV genomes shortly after infection of myeloid cells or mice. Finally, we show that the virulence of a related encephalitis virus, western equine encephalitis virus, is also dependent upon miR-142-3p binding sites. Eastern equine encephalitis virus (EEEV) is one of the most acutely virulent mosquito-borne viruses in the Americas. A major determinant of EEEV virulence is a mammalian microRNA (miRNA) that is primarily expressed in hematopoietic cells, miR-142-3p. Like miRNA suppression of host mRNA, miR-142-3p binds to the 3’ untranslated region (UTR) of the EEEV genome only in myeloid cells suppressing virus replication and the induction of the innate immune response. In this study, we used point mutations in all four miR-142-3p binding sites in the EEEV 3’ UTR to understand the mechanism behind this miRNA suppression. We observed that decreasing the number of miR-142-3p binding sites leads to virus escape and ultimately attenuation in vivo. Furthermore, another virus, western equine encephalitis virus, also encodes miR-142-3p binding sites that contribute to virulence in vivo. These results provide insight into the mechanism of how cell-specific miRNAs can mediate suppression of virus replication.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Aedes
- Animals
- Binding Sites/genetics
- Cell Line
- Cricetinae
- Encephalitis Virus, Eastern Equine/genetics
- Encephalitis Virus, Eastern Equine/immunology
- Encephalitis Virus, Eastern Equine/pathogenicity
- Encephalitis Virus, Western Equine/genetics
- Encephalitis Virus, Western Equine/immunology
- Encephalitis Virus, Western Equine/pathogenicity
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/virology
- Female
- Immunity, Innate/immunology
- L Cells
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- MicroRNAs/genetics
- RAW 264.7 Cells
- Virulence/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Derek W. Trobaugh
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Chengqun Sun
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Nishank Bhalla
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - William B. Klimstra
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
- * E-mail:
| |
Collapse
|
5
|
Bondada MS, Yao Y, Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA 2019; 5:ncrna5010024. [PMID: 30871221 PMCID: PMC6468363 DOI: 10.3390/ncrna5010024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that fine-tune the responses of the cell by modulating the cell transcriptome and gene expression. MicroRNA 155 (miR-155) is a conserved multifunctional miRNA involved in multiple roles including the modulation of the immune responses. When deregulated, miR-155 can also contribute to cancer as has been demonstrated in several human malignancies such as diffuse large B cell lymphoma, chronic lymphocytic leukemia, as well as in Epstein⁻Barr virus (EBV)-induced B cell transformation. Avian oncogenic viruses such as Marek's disease virus (MDV), avian leukosis virus (ALV), and reticuloendotheliosis virus (REV) that account for more than 90% of cancers in avian species, also make use of the miR-155 pathway during oncogenesis. While oncogenic retroviruses, such as ALV, activate miR-155 by insertional activation, acutely transforming retroviruses use transduced oncogenes such as v-rel to upregulate miR-155 expression. MDV on the other hand, encodes a functional miR-155 ortholog mdv1-miR-M4, similar to the miR-155 ortholog kshv-miR-K11 present in Kaposi's sarcoma-associated herpesvirus (KSHV). We have shown that mdv1-miR-M4 is critical for the induction of MDV-induced lymphomas further demonstrating the oncogenic potential of miR-155 pathway in cancers irrespective of the diverse etiology. In this review, we discuss on our current understanding of miR-155 function in virus-induced lymphomas focusing primarily on avian oncogenic viruses.
Collapse
Affiliation(s)
- Megha Sravani Bondada
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yongxiu Yao
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Venugopal Nair
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom..
| |
Collapse
|
6
|
Zhang X, Yan Y, Lin W, Li A, Zhang H, Lei X, Dai Z, Li X, Li H, Chen W, Chen F, Ma J, Xie Q. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol 2019; 16:118-132. [PMID: 30608205 DOI: 10.1080/15476286.2018.1564462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) are evolutionarily conserved and widely present, but their functions remain largely unknown. Recent development has highlighted the importance of circRNAs as the sponge of microRNA (miRNA) in cancer. We previously reported that gga-miR-375 was downregulated in the liver tumors of chickens infected with avian leukosis virus subgroup J (ALV-J) by microRNA microarray assay. It can be reasonably assumed in accordance with previous studies that the gga-miR-375 may be related to circRNAs. However, the question as to which circRNA acts as the sponge for gga-miR-375 remains to be answered. In this study, circRNA sequencing results revealed that a circRNA Vav3 termed circ-Vav3 was upregulated in the liver tumors of chickens infected with ALV-J. In addition, RNA immunoprecipitation (RIP), biotinylated RNA pull-down and RNA-fluorescence in situ hybridization (RNA-FISH) experiments were conducted to confirm that circ-Vav3 serves as the sponge of gga-miR-375. Furthermore, we confirmed through dual luciferase reporter assay that YAP1 is the target gene of gga-miR-375. The effect of the sponge function of circ-Vav3 on its downstream genes has been further verified by our conclusion that the sponge function of circ-Vav3 can abrogate gga-miR-375 target gene YAP1 and increase the expression level of YAP1. We further confirmed that the circ-Vav3/gga-miR-375/YAP1 axis induces epithelial-mesenchymal transition (EMT) through influencing EMT markers to promote tumorigenesis. Finally, clinical ALV-J-induced tumor livers were collected to detect core gene expression levels to provide a proof to the concluded tumorigenic mechanism. Together, our results suggest that circ-Vav3/gga-miR-375/YAP1 axis is another regulator of tumorigenesis.
Collapse
Affiliation(s)
- Xinheng Zhang
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Yiming Yan
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Wencheng Lin
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Aijun Li
- e College of science and engineering , Jinan University , Guangzhou , P. R. China
| | - Huanmin Zhang
- f USDA, Agriculture Research Service , Avian Disease and Oncology Laboratory , East Lansing , MI , USA
| | - Xiaoya Lei
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Zhenkai Dai
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Xinjian Li
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Hongxin Li
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Weiguo Chen
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Feng Chen
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Jingyun Ma
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Qingmei Xie
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| |
Collapse
|
7
|
Ai D, Huang R, Wen J, Li C, Zhu J, Xia LC. Integrated metagenomic data analysis demonstrates that a loss of diversity in oral microbiota is associated with periodontitis. BMC Genomics 2017; 18:1041. [PMID: 28198672 PMCID: PMC5310281 DOI: 10.1186/s12864-016-3254-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Background Periodontitis is an inflammatory disease affecting the tissues supporting teeth (periodontium). Integrative analysis of metagenomic samples from multiple periodontitis studies is a powerful way to examine microbiota diversity and interactions within host oral cavity. Methods A total of 43 subjects were recruited to participate in two previous studies profiling the microbial community of human subgingival plaque samples using shotgun metagenomic sequencing. We integrated metagenomic sequence data from those two studies, including six healthy controls, 14 sites representative of stable periodontitis, 16 sites representative of progressing periodontitis, and seven periodontal sites of unknown status. We applied phylogenetic diversity, differential abundance, and network analyses, as well as clustering, to the integrated dataset to compare microbiological community profiles among the different disease states. Results We found alpha-diversity, i.e., mean species diversity in sites or habitats at a local scale, to be the single strongest predictor of subjects’ periodontitis status (P < 0.011). More specifically, healthy subjects had the highest alpha-diversity, while subjects with stable sites had the lowest alpha-diversity. From these results, we developed an alpha-diversity logistic model-based naive classifier able to perfectly predict the disease status of the seven subjects with unknown periodontal status (not used in training). Phylogenetic profiling resulted in the discovery of nine marker microbes, and these species are able to differentiate between stable and progressing periodontitis, achieving an accuracy of 94.4%. Finally, we found that the reduction of negatively correlated species is a notable signature of disease progression. Conclusions Our results consistently show a strong association between the loss of oral microbiota diversity and the progression of periodontitis, suggesting that metagenomics sequencing and phylogenetic profiling are predictive of early periodontitis, leading to potential therapeutic intervention. Our results also support a keystone pathogen-mediated polymicrobial synergy and dysbiosis (PSD) model to explain the etiology of periodontitis. Apart from P. gingivalis, we identified three additional keystone species potentially mediating the progression of periodontitis progression based on pathogenic characteristics similar to those of known keystone pathogens.
Collapse
Affiliation(s)
- Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Ruocheng Huang
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jin Wen
- Department of Prosthodontics, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chao Li
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jiangping Zhu
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Li Charlie Xia
- Department of Medicine, Stanford University School of Medicine, 269 Campus Dr., Stanford, CA, 94305, USA. .,Department of Statistics, The Wharton School, University of Pennsylvania, 3730 Walnut Street, Philadelphia, PA, 19014, USA.
| |
Collapse
|
8
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jing Y, Guo S, Zhang X, Sun A, Tao F, Ju H, Qian H. Effects of small interfering RNA interference of connexin 37 on subcutaneous gastric tumours in mice. Mol Med Rep 2014; 10:2955-60. [PMID: 25310476 DOI: 10.3892/mmr.2014.2609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of small interfering (si)RNA interference of connexin 37 (Cx37) on subcutaneous gastric tumours in mice. Constructed lentiviruses carrying siRNA against Cx37 significantly knocked down Cx37 mRNA and protein expression in vitro. A total of 60 mice with gastric cancer were randomly divided into the Cx37 siRNA group, the mock‑siRNA group and the control group. Cx37 siRNA, mock‑siRNA and saline were separately injected (with the lentiviruses transfected into the gastric cancer cells). Following six weeks, the Cx37 mRNA expression, Cx37 protein expression and tumor apoptosis were detected using semiquantitative reverse transcription‑polymerase chain reaction, western blot analysis and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labelling, respectively. Six weeks following lentiviral transfection, the Cx37 mRNA levels in the Cx37 siRNA group, mock‑siRNA group and saline group decreased to 42, 63 and 67%, respectively (P<0.05). The mock‑siRNA group demonstrated no significant change in Cx37 levels compared with the control group. Western blot analysis revealed lower Cx37 protein levels in the Cx37‑RNAi group than in the other groups (0.21±0.07 vs. 0.65±0.06 vs. 0.54±0.07), and that the apoptotic index of the Cx37‑RNAi group was higher than those of the mock‑siRNA and control groups (19.7±5.1 vs. 9.8±6.4 vs. 10.5±7.2%, 11.1±6.9; P<0.05). In conclusion, it was demonstrated that Cx37 siRNA is correlated with gastric cancer. Interference of Cx37 effectively reduces Cx37 mRNA and protein expression and promotes tumour apoptosis.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Suxia Guo
- Department of Cardiology, The Affiliated People's Hospital of Nanjing Medical University in Wuxi and People's Hospital of Wuxi City, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaoping Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Aijing Sun
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
10
|
Molnár J, Póti Á, Pipek O, Krzystanek M, Kanu N, Swanton C, Tusnády GE, Szallasi Z, Csabai I, Szüts D. The genome of the chicken DT40 bursal lymphoma cell line. G3 (BETHESDA, MD.) 2014; 4:2231-40. [PMID: 25227228 PMCID: PMC4232548 DOI: 10.1534/g3.114.013482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
The chicken DT40 cell line is a widely used model system in the study of multiple cellular processes due to the efficiency of homologous gene targeting. The cell line was derived from a bursal lymphoma induced by avian leukosis virus infection. In this study we characterized the genome of the cell line using whole genome shotgun sequencing and single nucleotide polymorphism array hybridization. The results indicate that wild-type DT40 has a relatively normal karyotype, except for whole chromosome copy number gains, and no karyotype variability within stocks. In a comparison to two domestic chicken genomes and the Gallus gallus reference genome, we found no unique mutational processes shaping the DT40 genome except for a mild increase in insertion and deletion events, particularly deletions at tandem repeats. We mapped coding sequence mutations that are unique to the DT40 genome; mutations inactivating the PIK3R1 and ATRX genes likely contributed to the oncogenic transformation. In addition to a known avian leukosis virus integration in the MYC gene, we detected further integration sites that are likely to de-regulate gene expression. The new findings support the hypothesis that DT40 is a typical transformed cell line with a relatively intact genome; therefore, it is well-suited to the role of a model system for DNA repair and related processes. The sequence data generated by this study, including a searchable de novo genome assembly and annotated lists of mutated genes, will support future research using this cell line.
Collapse
Affiliation(s)
- János Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Marcin Krzystanek
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nnennaya Kanu
- Cancer Research UK London Research Institute, London, WCA2 3PX, United Kingdom
| | - Charles Swanton
- Cancer Research UK London Research Institute, London, WCA2 3PX, United Kingdom
| | - Gábor E Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark Children's Hospital Informatics Program at the Harvard-Massachusetts Institutes of Technology Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, MA 02115
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
11
|
WU DEYAO, LI MIN, WANG LINMAO, ZHOU YUNFENG, ZHOU JIAN, PAN HUIXING, QU PING. microRNA-145 inhibits cell proliferation, migration and invasion by targeting matrix metallopeptidase-11 in renal cell carcinoma. Mol Med Rep 2014; 10:393-8. [DOI: 10.3892/mmr.2014.2149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/17/2014] [Indexed: 11/05/2022] Open
|