1
|
Sehgal D, Rathan ND, Özdemir F, Keser M, Akin B, Dababat AA, Koc E, Dreisigacker S, Morgounov A. Genomic wide association study and selective sweep analysis identify genes associated with improved yield under drought in Turkish winter wheat germplasm. Sci Rep 2024; 14:8431. [PMID: 38600135 PMCID: PMC11006659 DOI: 10.1038/s41598-024-57469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated with increased yield under favorable and drought conditions. In addition, selective sweep analysis was conducted to detect signatures of selection in the winter wheat genome driving the differentiation between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought environment due to very low precipitation prior to heading whereas year 2019 was considered as a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection between LR and MV of which 15 were within proximity of known functional genes controlling flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The study outcomes contribute to utilization of LR in breeding winter wheat.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mex-Veracruz, El Batan, CP 56237, Veracruz, Mexico.
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | | | - Fatih Özdemir
- Bahri Dagdas International Agricultural Research Institute, Konya, Turkey
| | - Mesut Keser
- International Center for Agricultural Research in Dry Areas (ICARDA), Ankara, Turkey
| | - Beyhan Akin
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | | | - Emrah Koc
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mex-Veracruz, El Batan, CP 56237, Veracruz, Mexico
| | - Alexey Morgounov
- Scientific Production Center of Grain, Shortandy, Astana reg., 010000, Kazakhstan.
| |
Collapse
|
2
|
Tyrka M, Krajewski P, Bednarek PT, Rączka K, Drzazga T, Matysik P, Martofel R, Woźna-Pawlak U, Jasińska D, Niewińska M, Ługowska B, Ratajczak D, Sikora T, Witkowski E, Dorczyk A, Tyrka D. Genome-wide association mapping in elite winter wheat breeding for yield improvement. J Appl Genet 2023; 64:377-391. [PMID: 37120451 PMCID: PMC10457411 DOI: 10.1007/s13353-023-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Increased grain yield (GY) is the primary breeding target of wheat breeders. We performed the genome-wide association study (GWAS) on 168 elite winter wheat lines from an ongoing breeding program to identify the main determinants of grain yield. Sequencing of Diversity Array Technology fragments (DArTseq) resulted in 19,350 single-nucleotide polymorphism (SNP) and presence-absence variation (PAV) markers. We identified 15 main genomic regions located in ten wheat chromosomes (1B, 2B, 2D, 3A, 3D, 5A, 5B, 6A, 6B, and 7B) that explained from 7.9 to 20.3% of the variation in grain yield and 13.3% of the yield stability. Loci identified in the reduced genepool are important for wheat improvement using marker-assisted selection. We found marker-trait associations between three genes involved in starch biosynthesis and grain yield. Two starch synthase genes (TraesCS2B03G1238800 and TraesCS2D03G1048800) and a sucrose synthase gene (TraesCS3D03G0024300) were found in regions of QGy.rut-2B.2, QGy.rut-2D.1, and QGy.rut-3D, respectively. These loci and other significantly associated SNP markers found in this study can be used for pyramiding favorable alleles in high-yielding varieties or to improve the accuracy of prediction in genomic selection.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Kinga Rączka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| | - Tadeusz Drzazga
- Małopolska Plant Breeding Ltd, Sportowa 21, 55-040, Kobierzyce, Poland
| | - Przemysław Matysik
- Plant Breeding Strzelce Group IHAR Ltd, Główna 20, 99-307, Strzelce, Poland
| | - Róża Martofel
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | - Dorota Jasińska
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | | | | | - Teresa Sikora
- DANKO Plant Breeders Ltd, Ks. Strzybnego 23, 47-411, Rudnik, Poland
| | - Edward Witkowski
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Ada Dorczyk
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Dorota Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| |
Collapse
|
3
|
Tehseen MM, Tonk FA, Tosun M, Amri A, Sansaloni CP, Kurtulus E, Yazbek M, Al-Sham'aa K, Ozseven I, Safdar LB, Shehadeh A, Nazari K. Genome-wide association study of resistance to PstS2 and Warrior races of Puccinia striiformis f. sp. tritici (stripe rust) in bread wheat landraces. THE PLANT GENOME 2021; 14:e20066. [PMID: 33615748 DOI: 10.1002/tpg2.20066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/20/2023]
Abstract
Stripe or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici is a major threat to bread wheat production worldwide. The breakdown in resistance of certain major genes and newly emerging aggressive races of stripe rusts pose serious concerns in all main wheat growing areas of the world. To identify new sources of resistance and associated QTL for effective utilization in future breeding programs an association mapping (AM) panel comprising of 600 bread wheat landraces collected from eight different countries conserved at ICARDA gene bank were evaluated for seedling and adult plant resistance against the PstS2 and Warrior races of stripe rust at the Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey during 2016, 2018 and 2019. A set of 25,169 informative SNP markers covering the whole genome were used to examine the population structure, linkage disequilibrium and marker-trait associations in the AM panel. The genome-wide association study (GWAS) was carried out using a Mixed Linear Model (MLM). We identified 47 SNP markers across 19 chromosomes with significant SNP-trait associations for both seedling stage and adult plant resistance. The threshold of significance for all SNP-trait associations was determined by the false discovery rate (q) ≤ 0.05. Three genomic regions (QYr.1D_APR, QYr.3A_seedling and QYr.7D_seedling) identified in this study do not correspond to previously reported Yr genes or QTL, suggesting new genomic regions for stripe rust resistance.
Collapse
Affiliation(s)
| | | | - Muzaffer Tosun
- Department of Field Crops, Ege University, Izmir, Turkey
| | - Ahmed Amri
- ICARDA-PreBreeding & Genebank Operations, Biodiversity and Crop Improvement Program, Rabat, Morocco
| | | | - Ezgi Kurtulus
- Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), P.O. Box 35661, Menemen, Izmir, Turkey
| | - Mariana Yazbek
- ICARDA-Genetic Resources, PreBreeding & Genebank Operations, Biodiversity and Crop Improvement Program, Terbol, Lebanon
| | | | - Izzet Ozseven
- Agean Agricultural Research Institute, Regional Cereal Rust Research Center (RCRRC), P.O. Box 35661, Menemen, Izmir, Turkey
| | - Luqman Bin Safdar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Shehadeh
- ICARDA-Genetic Resources, PreBreeding & Genebank Operations, Biodiversity and Crop Improvement Program, Terbol, Lebanon
| | - Kumarse Nazari
- Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), P.O. Box 35661, Menemen, Izmir, Turkey
| |
Collapse
|
4
|
Tehseen MM, Istipliler D, Kehel Z, Sansaloni CP, da Silva Lopes M, Kurtulus E, Muazzam S, Nazari K. Genetic Diversity and Population Structure Analysis of Triticum aestivum L. Landrace Panel from Afghanistan. Genes (Basel) 2021; 12:genes12030340. [PMID: 33668962 PMCID: PMC7996569 DOI: 10.3390/genes12030340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/27/2022] Open
Abstract
Landraces are a potential source of genetic diversity and provide useful genetic resources to cope with the current and future challenges in crop breeding. Afghanistan is located close to the centre of origin of hexaploid wheat. Therefore, understanding the population structure and genetic diversity of Afghan wheat landraces is of enormous importance in breeding programmes for the development of high-yielding cultivars as well as broadening the genetic base of bread wheat. Here, a panel of 363 bread wheat landraces collected from seven north and north-eastern provinces of Afghanistan were evaluated for population structure and genetic diversity using single nucleotide polymorphic markers (SNPs). The genotyping-by-sequencing of studied landraces after quality control provided 4897 high-quality SNPs distributed across the genomes A (33.75%), B (38.73%), and D (27.50%). The population structure analysis was carried out by two methods using model-based STRUCTURE analysis and cluster-based discriminant analysis of principal components (DAPC). The analysis of molecular variance showed a higher proportion of variation within the sub-populations compared with the variation observed as a whole between sub-populations. STRUCTURE and DAPC analysis grouped the majority of the landraces from Badakhshan and Takhar together in one cluster and the landraces from Baghlan and Kunduz in a second cluster, which is in accordance with the micro-climatic conditions prevalent within the north-eastern agro-ecological zone. Genetic distance analysis was also studied to identify differences among the Afghan regions; the strongest correlation was observed for the Badakhshan and Takhar (0.003), whereas Samangan and Konarha (0.399) showed the highest genetic distance. The population structure and genetic diversity analysis highlighted the complex genetic variation present in the landraces which were highly correlated to the geographic origin and micro-climatic conditions within the agro-climatic zones of the landraces. The higher proportions of admixture could be attributed to historical unsupervised exchanges of seeds between the farmers of the central and north-eastern provinces of Afghanistan. The results of this study will provide useful information for genetic improvement in wheat and is essential for association mapping and genomic prediction studies to identify novel sources for resistance to abiotic and biotic stresses.
Collapse
Affiliation(s)
| | - Deniz Istipliler
- Department of Field Crops, Ege University, Bornova, Izmir 35100, Turkey; (M.M.T.); (D.I.)
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), ICARDA-PreBreeding & Genebank Operations, Rabat 10000, Morocco;
| | - Carolina P. Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco C.P. 56237, Mexico;
| | - Marta da Silva Lopes
- IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain;
| | - Ezgi Kurtulus
- International Center for Agricultural Research in the Dry Areas (ICARDA), Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), Menemen, Izmir 35661, Turkey;
| | - Sana Muazzam
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Kumarse Nazari
- International Center for Agricultural Research in the Dry Areas (ICARDA), Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), Menemen, Izmir 35661, Turkey;
- Correspondence:
| |
Collapse
|
5
|
Vikram P, Sehgal D, Sharma A, Bhavani S, Gupta P, Randhawa M, Pardo N, Basandra D, Srivastava P, Singh S, Sood T, Sansaloni CP, Rahman H, Singh S. Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust. PLoS One 2021; 16:e0246015. [PMID: 33513167 PMCID: PMC7846011 DOI: 10.1371/journal.pone.0246015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Deploying under-utilized landraces in wheat breeding has been advocated to accelerate genetic gains in current era of genomics assisted breeding. Mexican bread wheat landraces (Creole wheats) represent an important resource for the discovery of novel alleles including disease resistance. A core set of 1,098 Mexican landraces was subjected to multi-location testing for rust diseases in India, Mexico and Kenya. The landrace core set showed a continuous variation for yellow (YR) and stem rust (SR) disease severity. Principal component analysis differentiated Mexican landraces into three groups based on their respective collection sites. Linkage disequilibrium (LD) decay varied from 10 to 32 Mb across chromosomes with an averge of 23Mb across whole genome. Genome-wide association analysis revealed marker-trait associations for YR resistance in India and Mexico as well as for SR resistance in Kenya. In addition, significant additive-additive interaction effects were observed for both YR and SR resistance including genomic regions on chromosomes 1BL and 3BS, which co-locate with pleiotropic genes Yr29/Lr46/Sr58/Pm39/Ltn2 and Sr2/Yr30/Lr27, respectively. Study reports novel genomic associations for YR (chromosomes 1AL, 2BS, and 3BL) and SR (chromosomes 2AL, 4DS, and 5DS). The novel findings in Creole wheat landraces can be efficiently utilized for the wheat genetic improvement.
Collapse
Affiliation(s)
- Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
- International Center for Biosaline Agriculture, Academic Ciy, Dubai, UAE
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Achala Sharma
- Department Plant Breeding & Genetics, Punjab Agriculture University, Ludhiana, India
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Priyanka Gupta
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, Rabat, Morocco
| | - Mandeep Randhawa
- CIMMYT—World Agroforestry Centre (ICRAF), Gigiri, Nairobi, Kenya
| | - Neftali Pardo
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Daisy Basandra
- Department Plant Breeding & Genetics, CSK HPKV Palampur, H.P. India
| | - Puja Srivastava
- Department Plant Breeding & Genetics, Punjab Agriculture University, Ludhiana, India
| | - Sanjay Singh
- ICAR-National Institute of Plant Biotechnology, Pusa, New Delhi, India
| | - Tanvi Sood
- Department Plant Breeding & Genetics, CSK HPKV Palampur, H.P. India
| | | | - Hifzur Rahman
- International Center for Biosaline Agriculture, Academic Ciy, Dubai, UAE
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| |
Collapse
|
6
|
Kokhmetova A, Sehgal D, Ali S, Atishova M, Kumarbayeva M, Leonova I, Dreisigacker S. Genome-Wide Association Study of Tan Spot Resistance in a Hexaploid Wheat Collection From Kazakhstan. Front Genet 2021; 11:581214. [PMID: 33505423 PMCID: PMC7831376 DOI: 10.3389/fgene.2020.581214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is a serious foliar disease of wheat in Kazakhstan with reported yield losses as high as 50% during epidemic years. Here, we report the evaluation of a collection of 191 hexaploid spring and winter wheat lines for tan spot resistance and its underlying genetic architecture using genome-wide association study (GWAS). Our wheat collection comprised candidate varieties from Kazakhstan, Russia, and CIMMYT. It was genotyped using the DArTseq technology and phenotyped for resistance to tan spot at seedling and adult plant stages in Kazakhstan. DArTseq SNPs revealed high genetic diversity (average polymorphic information content = 0.33) in the panel and genome-wide linkage disequilibrium decay at 22 Mb (threshold r2 = 0.1). Principal component analysis revealed a clear separation of Eurasian germplasm from CIMMYT and IWWIP lines. GWAS identified 34 marker-trait associations (MTA) for resistance to tan spot and the amount of phenotypic variation explained by these MTA ranged from 4% to 13.7%. Our results suggest the existence of novel valuable resistant alleles on chromosomes 3BS, and 5DL and 6AL for resistance to Race 1 and Race 5, respectively, in addition to known genes tsn1 and tsc2. On chromosome 6AL, a genomic region spanning 3 Mb was identified conferring resistance to both Race 1 and Race 5. Epistatic interaction of associated loci was revealed on chromosomes 1B, 5B, 7B, 5A, and 6A contributing to additional variation of 3.2–11.7%. Twenty-five lines with the best allele combinations of SNPs associated with resistance to both races have been identified as candidates for future variety release and breeding. The results of the present study will be further validated in other independent genetic backgrounds to be able to use markers in breeding.
Collapse
Affiliation(s)
- Alma Kokhmetova
- Laboratory of Breeding and Genetics, Institute of Plant Biology and Biotechnology (IPBB), Almaty, Kazakhstan.,Faculty of Agronomy, Kazakh National Agrarian University, Almaty, Kazakhstan
| | - Deepmala Sehgal
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Makpal Atishova
- Laboratory of Breeding and Genetics, Institute of Plant Biology and Biotechnology (IPBB), Almaty, Kazakhstan
| | - Madina Kumarbayeva
- Laboratory of Breeding and Genetics, Institute of Plant Biology and Biotechnology (IPBB), Almaty, Kazakhstan.,Faculty of Agronomy, Kazakh National Agrarian University, Almaty, Kazakhstan
| | - Irina Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
7
|
Wang Y, Yu C, Cheng Y, Yao F, Long L, Wu Y, Li J, Li H, Wang J, Jiang Q, Li W, Pu Z, Qi P, Ma J, Deng M, Wei Y, Chen X, Chen G, Kang H, Jiang Y, Zheng Y. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics 2021; 22:34. [PMID: 33413106 PMCID: PMC7791647 DOI: 10.1186/s12864-020-07331-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit; and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
8
|
Sehgal D, Mondal S, Crespo-Herrera L, Velu G, Juliana P, Huerta-Espino J, Shrestha S, Poland J, Singh R, Dreisigacker S. Haplotype-Based, Genome-Wide Association Study Reveals Stable Genomic Regions for Grain Yield in CIMMYT Spring Bread Wheat. Front Genet 2020; 11:589490. [PMID: 33335539 PMCID: PMC7737720 DOI: 10.3389/fgene.2020.589490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 01/16/2023] Open
Abstract
We untangled key regions of the genetic architecture of grain yield (GY) in CIMMYT spring bread wheat by conducting a haplotype-based, genome-wide association study (GWAS), together with an investigation of epistatic interactions using seven large sets of elite yield trials (EYTs) consisting of a total of 6,461 advanced breeding lines. These lines were phenotyped under irrigated and stress environments in seven growing seasons (2011-2018) and genotyped with genotyping-by-sequencing markers. Genome-wide 519 haplotype blocks were constructed, using a linkage disequilibrium-based approach covering 14,036 Mb in the wheat genome. Haplotype-based GWAS identified 7, 4, 10, and 15 stable (significant in three or more EYTs) associations in irrigated (I), mild drought (MD), severe drought (SD), and heat stress (HS) testing environments, respectively. Considering all EYTs and the four testing environments together, 30 stable associations were deciphered with seven hotspots identified on chromosomes 1A, 1B, 2B, 4A, 5B, 6B, and 7B, where multiple haplotype blocks were associated with GY. Epistatic interactions contributed significantly to the genetic architecture of GY, explaining variation of 3.5-21.1%, 3.7-14.7%, 3.5-20.6%, and 4.4- 23.1% in I, MD, SD, and HS environments, respectively. Our results revealed the intricate genetic architecture of GY, controlled by both main and epistatic effects. The importance of these results for practical applications in the CIMMYT breeding program is discussed.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Govindan Velu
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | - Jesse Poland
- Kansas State University, Manhattan, KS, United States
| | - Ravi Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | |
Collapse
|
9
|
Bánfalvi Á, Németh R, Bagdi A, Gergely S, Rakszegi M, Bedő Z, Láng L, Vida G, Tömösközi S. A novel approach to the characterization of old wheat (Triticum aestivum L.) varieties by complex rheological analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4409-4417. [PMID: 32388854 DOI: 10.1002/jsfa.10479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lines of the internationally recognized old Hungarian Bánkúti 1201 variety are important genetic resources for breeding programmes. Their protein composition and gluten dependent technological traits have been comprehensively studied, however, little information is available about their carbohydrate dependent viscous properties. The aim of this work was to obtain comprehensive rheological characterization of all sublines of Bánkúti 1201 maintained at Martonvásár and to investigate their variability if the carbohydrate dependent viscous behaviour was also included in the analyses. RESULTS The majority of the lines reflected the famously good mixing quality of Bánkúti, however, much higher diversity of pasting behaviour was detected. Cluster analysis of the Mixolab data was performed resulting in four sample groups. Since several lines of similar mixing properties had significantly different pasting characteristics, it was assumed that classification was mainly based on the viscous properties. From each cluster two to three representative samples were selected for wider examination using conventional testing methods. These results also supported the higher variability of pasting behaviour of the lines, which can be critical for end product quality. The members of the second cluster can be highlighted due to their waxy wheat like behaviour. CONCLUSIONS Possible reasons for the great variability of pasting behaviour could be the compositional and structural differences of starch and other carbohydrates (e.g. arabinoxylans). Complex rheological characterization and study of molecular background can provide information about important traits from the point of view of technology and product development, which are unknown in the case of old wheat varieties and landraces. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ágnes Bánfalvi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics (BME), Budapest, Hungary
| | - Renáta Németh
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics (BME), Budapest, Hungary
| | - Attila Bagdi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics (BME), Budapest, Hungary
| | - Szilveszter Gergely
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics (BME), Budapest, Hungary
| | - Marianna Rakszegi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Zoltán Bedő
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - László Láng
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Gyula Vida
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Sándor Tömösközi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics (BME), Budapest, Hungary
| |
Collapse
|
10
|
Sehgal D, Rosyara U, Mondal S, Singh R, Poland J, Dreisigacker S. Incorporating Genome-Wide Association Mapping Results Into Genomic Prediction Models for Grain Yield and Yield Stability in CIMMYT Spring Bread Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:197. [PMID: 32194596 PMCID: PMC7064468 DOI: 10.3389/fpls.2020.00197] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Untangling the genetic architecture of grain yield (GY) and yield stability is an important determining factor to optimize genomics-assisted selection strategies in wheat. We conducted in-depth investigation on the above using a large set of advanced bread wheat lines (4,302), which were genotyped with genotyping-by-sequencing markers and phenotyped under contrasting (irrigated and stress) environments. Haplotypes-based genome-wide-association study (GWAS) identified 58 associations with GY and 15 with superiority index Pi (measure of stability). Sixteen associations with GY were "environment-specific" with two on chromosomes 3B and 6B with the large effects and 8 associations were consistent across environments and trials. For Pi, 8 associations were from chromosomes 4B and 7B, indicating 'hot spot' regions for stability. Epistatic interactions contributed to an additional 5-9% variation on average. We further explored whether integrating consistent and robust associations identified in GWAS as fixed effects in prediction models improves prediction accuracy. For GY, the model accounting for the haplotype-based GWAS loci as fixed effects led to up to 9-10% increase in prediction accuracy, whereas for Pi this approach did not provide any advantage. This is the first report of integrating genetic architecture of GY and yield stability into prediction models in wheat.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Umesh Rosyara
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Suchismita Mondal
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Ravi Singh
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| |
Collapse
|
11
|
Sehgal D, Dreisigacker S. Haplotypes-based genetic analysis: benefits and challenges. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.37-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The increasing availability of Single Nucleotide Polymorphisms (SNPs) discovered by Next Generation Sequencing will enable a range of new genetic analyses in crops, which was not possible before. Concomitantly, researchers will face the challenge of handling large data sets at the whole-genome level. By grouping thousands of SNPs into a few hundred haplotype blocks, complexity of the data can be reduced with fewer statistical tests and a lower probability of spurious associations. Owing to the strong genome structure present in breeding lines of most crops, the deployment of haplotypes could be a powerful complement to improve efficiency of marker-assisted and genomic selection. This review describes in brief the commonly used approaches to construct haplotype blocks and some examples in animals and crops are cited where haplotype-based dissection of traits were proven beneficial. Some important considerations and facts while working with haplotypes in crops are reviewed at the end.
Collapse
Affiliation(s)
- D. Sehgal
- International Center for Maize and Wheat Improvement (CIMMYT)
| | - S. Dreisigacker
- International Center for Maize and Wheat Improvement (CIMMYT)
| |
Collapse
|
12
|
Sehgal D, Mondal S, Guzman C, Garcia Barrios G, Franco C, Singh R, Dreisigacker S. Validation of Candidate Gene-Based Markers and Identification of Novel Loci for Thousand-Grain Weight in Spring Bread Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1189. [PMID: 31616457 PMCID: PMC6775465 DOI: 10.3389/fpls.2019.01189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/29/2019] [Indexed: 05/14/2023]
Abstract
Increased thousand-grain weight (TGW) is an important breeding target for indirectly improving grain yield (GY). Fourteen reported candidate genes known to enhance TGW were evaluated in two independent and existing datasets of wheat at CIMMYT, the Elite Yield Trial (EYT) from 2015 to 2016 (EYT2015-16) and the Wheat Association Mapping Initiative (WAMI) panel, to study their allele effects on TGW and to verify their suitability for marker-assisted selection. Of these, significant associations were detected for only one gene (TaGs3-D1) in the EYT2015-16 and two genes (TaTGW6 and TaSus1) in WAMI. The reported favorable alleles of TaGs3-D1 and TaTGW6 genes decreased TGW in the datasets. A haplotype-based genome wide association study was implemented to identify the genetic determinants of TGW on a large set of CIMMYT germplasm (4,302 lines comprising five EYTs), which identified 15 haplotype blocks to be significantly associated with TGW. Four of them, identified on chromosomes 4A, 6A, and 7A, were associated with TGW in at least three EYTs. The locus on chromosome 6A (Hap-6A-13) had the largest effect on TGW and additionally GY with increases of up to 2.60 g and 258 kg/ha, respectively. Discovery of novel TGW loci described in our study expands the opportunities for developing diagnostic markers and for multi-gene pyramiding to derive new allele combinations for enhanced TGW and GY in CIMMYT wheat.
Collapse
Affiliation(s)
| | | | - Carlos Guzman
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Ravi Singh
- Department of Bioscience, CIMMYT, Texcoco, Mexico
| | - Susanne Dreisigacker
- Department of Bioscience, CIMMYT, Texcoco, Mexico
- *Correspondence: Susanne Dreisigacker,
| |
Collapse
|
13
|
Abstract
Landraces are key elements of agricultural biodiversity that have long been considered a source of useful traits. Their importance goes beyond subsistence agriculture and the essential need to preserve genetic diversity, because landraces are farmer-developed populations that are often adapted to environmental conditions of significance to tackle environmental concerns. It is therefore increasingly important to identify adaptive traits in crop landraces and understand their molecular basis. This knowledge is potentially useful for promoting more sustainable agricultural techniques, reducing the environmental impact of high-input cropping systems, and diminishing the vulnerability of agriculture to global climate change. In this review, we present an overview of the opportunities and limitations offered by landraces’ genomics. We discuss how rapid advances in DNA sequencing techniques, plant phenotyping, and recombinant DNA-based biotechnology encourage both the identification and the validation of the genomic signature of local adaptation in crop landraces. The integration of ‘omics’ sciences, molecular population genetics, and field studies can provide information inaccessible with earlier technological tools. Although empirical knowledge on the genetic and genomic basis of local adaptation is still fragmented, it is predicted that genomic scans for adaptation will unlock an intraspecific molecular diversity that may be different from that of modern varieties.
Collapse
|
14
|
Joining smallholder farmers' traditional knowledge with metric traits to select better varieties of Ethiopian wheat. Sci Rep 2017; 7:9120. [PMID: 28831033 PMCID: PMC5567301 DOI: 10.1038/s41598-017-07628-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 07/11/2017] [Indexed: 11/11/2022] Open
Abstract
Smallholder farming communities face highly variable climatic conditions that threaten locally adapted, low-input agriculture. The benefits of modern crop breeding may fail to reach their fields when broadly adapted genetic materials do not address local requirements. To date, participatory methods only scratched the surface of the exploitability of farmers’ traditional knowledge in breeding. In this study, 30 smallholder farmers in each of two locations in Ethiopia provided quantitative evaluations of earliness, spike morphology, tillering capacity and overall quality on 400 wheat genotypes, mostly traditional varieties, yielding altogether 192,000 data points. Metric measurements of ten agronomic traits were simultaneously collected, allowing to systematically break down farmers’ preferences on quantitative phenotypes. Results showed that the relative importance of wheat traits differed by gender and location. Farmer traits were variously contributed by metric traits, and could only partially be explained by them. Eventually, farmer trait values were used to produce a ranking of the 400 wheat varieties identifying the trait combinations most desired by farmers. The study scale and methods lead to a better understanding of the quantitative basis of Ethiopian smallholder farmer preference in wheat, broadening the discussion for the future of local, sustainable breeding efforts accommodating farmers’ knowledge.
Collapse
|