1
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
2
|
Ventresca S, Lepri FR, Criscuolo S, Bottaro G, Novelli A, Loche S, Cappa M. Case report: Long term response to growth hormone in a child with Silver-Russell syndrome-like phenotype due to a novel paternally inherited IGF2 variant. Front Endocrinol (Lausanne) 2024; 15:1364234. [PMID: 38596219 PMCID: PMC11002242 DOI: 10.3389/fendo.2024.1364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Silver-Russell syndrome (SRS, OMIM, 180860) is a rare genetic disorder with a wide spectrum of symptoms. The most common features are intrauterine growth retardation (IUGR), poor postnatal development, macrocephaly, triangular face, prominent forehead, body asymmetry, and feeding problems. The diagnosis of SRS is based on a combination of clinical features. Up to 60% of SRS patients have chromosome 7 or 11 abnormalities, and <1% show abnormalities in IGF2 signaling pathway genes (IGF2, HMGA2, PLAG1 and CDKN1C). The underlying genetic cause remains unknown in about 40% of cases (idiopathic SRS). We report a novel IGF2 variant c.[-6-2A>G] (NM_000612) in a child with severe IUGR and clinical features of SRS and confirm the utility of targeted exome sequencing in patients with negative results to common genetic analyses. In addition, we report that long-term growth hormone treatment improves height SDS in this patient.
Collapse
Affiliation(s)
- Silvia Ventresca
- Pediatric Section, University Hospital Arcispedale Sant’Anna, University of Ferrara, Ferrara, Italy
- Endocrinology and Diabetology Unit, Pediatric University Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Sabrina Criscuolo
- Endocrinology and Diabetology Unit, Pediatric University Department, Bambino Gesù Children’s Hospital, Rome, Italy
- Pediatric University Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giorgia Bottaro
- Endocrinology and Diabetology Unit, Pediatric University Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Sandro Loche
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Almeida VT, Chehimi SN, Gasparini Y, Nascimento AM, Carvalho GF, Montenegro MM, Zanardo ÉA, Dias AT, Assunção NA, Kim CA, Kulikowski LD. Cri-du-Chat Syndrome: Revealing a Familial Atypical Deletion in 5p. Mol Syndromol 2023; 13:527-536. [PMID: 36660031 PMCID: PMC9843554 DOI: 10.1159/000524371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/29/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Cri-du-chat syndrome is generally diagnosed when patients present a high-pitched cry at birth, microcephaly, ocular hypertelorism, and prominent nasal bridge. The karyotype is useful to confirm deletions in the short arm of chromosome 5 (5p-) greater than 10 Mb. In cases of smaller deletions, it is necessary to resort to other molecular techniques such as fluorescence in situ hybridization, multiplex ligation-dependent probe amplification (MLPA) or genomic array. Case Presentation We report a family with an atypical deletion in 5p (mother and 2 children) and variable phenotypes compared with the literature. We applied a P064 MLPA kit to evaluate 5p- in the mother and the 2 children, and we used the Infinium CytoSNP-850K BeadChip genomic array to evaluate the siblings, an 11-year-old boy and a 13-year-old girl, to better define the 5p breakpoints. Both children presented a high-pitched cry at birth, but they did not present any of the typical physical features of 5p- syndrome. The MLPA technique with 5 probes for the 5p region revealed that the patients and their mother presented an atypical deletion with only 4 probes deleted (TERT_ex2, TERT_ex13, CLPTM1L, and IRX4). The genomic array performed in the siblings' samples revealed a 6.2-Mb terminal deletion in 5p15.33p15.32, which was likely inherited from their mother, who presented similar molecular features, seen in MLPA. Discussion The sparing of the CTNND2 gene, which is associated with cerebral development, in both siblings may explain why these 2 patients had features such as better communication skills which most patients with larger 5p deletions usually do not present. In addition, both patients had smaller deletions than those found in patients with a typical 5p- phenotype. This report demonstrates the utility of genomic arrays as a diagnostic tool to better characterize atypical deletions in known syndromes such as 5p- syndrome, which will allow a better understanding of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Vanessa T. Almeida
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil,*Vanessa T. Almeida,
| | - Samar N. Chehimi
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Yanca Gasparini
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amom M. Nascimento
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gleyson F.S. Carvalho
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marília M. Montenegro
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Évelin Aline Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alexandre T. Dias
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Nilson A. Assunção
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Chong A. Kim
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leslie D. Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Loid P, Lipsanen-Nyman M, Ala-Mello S, Hannula-Jouppi K, Kere J, Mäkitie O, Muurinen M. Case report: A novel de novo IGF2 missense variant in a Finnish patient with Silver-Russell syndrome. Front Pediatr 2022; 10:969881. [PMID: 36268036 PMCID: PMC9578642 DOI: 10.3389/fped.2022.969881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Silver-Russell syndrome (SRS, OMIM 180860) is a rare imprinting disorder characterized by intrauterine and postnatal growth restriction, feeding difficulties in early childhood, characteristic facial features, and body asymmetry. The molecular cause most commonly relates to hypomethylation of the imprinted 11p15.5 IGF2/H19 domain but remains unknown in about 40% of the patients. Recently, heterozygous paternally inherited pathogenic variants in IGF2, the gene encoding insulin-like growth factor 2 (IGF2), have been identified in patients with SRS. We report a novel de novo missense variant in IGF2 (c.122T > G, p.Leu41Arg) on the paternally derived allele in a 16-year-old boy with a clinical diagnosis of SRS. The missense variant was identified by targeted exome sequencing and predicted pathogenic by multiple in silico tools. It affects a highly conserved residue on a domain that is important for binding of other molecules. Our finding expands the spectrum of disease-causing variants in IGF2. Targeted exome sequencing is a useful diagnostic tool in patients with negative results of common diagnostic tests for SRS.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Marita Lipsanen-Nyman
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Sirpa Ala-Mello
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Katariina Hannula-Jouppi
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
6
|
Wang H, Huo L, Wang Y, Sun W, Gu W. Usher syndrome type 2A complicated with glycogen storage disease type 3 due to paternal uniparental isodisomy of chromosome 1 in a sporadic patient. Mol Genet Genomic Med 2021; 9:e1779. [PMID: 34405590 PMCID: PMC8580083 DOI: 10.1002/mgg3.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/01/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The condition of uniparental disomy (UPD) occurs when an individual inherits two copies of a chromosome, or part of a chromosome, from one parent. Most cases of uniparental heterodisomy (UPhD) do not cause diseases, whereas cases of uniparental isodisomy (UPiD), while rare, may be pathogenic. Theoretically, UPiD may cause rare genetic diseases in a homozygous recessive manner. METHODS A 4-year-old girl presented with congenital hearing loss, developmental delay, hepatomegaly, and other clinical features. She and her parents were genetically tested using trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNV-seq). In addition, we built a structural model to further examine the pathogenicity of the UPiD variants. RESULTS Trio-WES identified a paternal UPiD in chromosome 1, and two homozygous pathogenic variants AGL c.4284T>G/p.Tyr1428* and USH2A c.6528T>A/p.Tyr2176* in the UPiD region. We further analyzed the pathogenicity of these two variations. The patient was diagnosed with Usher syndrome type 2A (USH2A) and glycogen storage disease type III (GSD3). CONCLUSIONS Our study reports a rare case of a patient carrying two pathogenic variants of different genes caused by paternal UPiD, supporting the potential application of Trio-WES in detecting and facilitating the diagnosis of UPD.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yajian Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| | - Weiwei Sun
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| |
Collapse
|
7
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Liao J, Zeng TB, Pierce N, Tran DA, Singh P, Mann JR, Szabó PE. Prenatal correction of IGF2 to rescue the growth phenotypes in mouse models of Beckwith-Wiedemann and Silver-Russell syndromes. Cell Rep 2021; 34:108729. [PMID: 33567274 PMCID: PMC7968144 DOI: 10.1016/j.celrep.2021.108729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting disorders manifesting as aberrant fetal growth and severe postnatal-growth-related complications. Based on the insulator model, one-third of BWS cases and two-thirds of SRS cases are consistent with misexpression of insulin-like growth factor 2 (IGF2), an important facilitator of fetal growth. We propose that the IGF2-dependent BWS and SRS cases can be identified by prenatal diagnosis and can be prevented by prenatal intervention targeting IGF2. We test this hypothesis using our mouse models of IGF2-dependent BWS and SRS. We find that genetically normalizing IGF2 levels in a double rescue experiment corrects the fetal overgrowth phenotype in the BWS model and the growth retardation in the SRS model. In addition, we pharmacologically rescue the BWS growth phenotype by reducing IGF2 signaling during late gestation. This animal study encourages clinical investigations to target IGF2 for prenatal diagnosis and prenatal prevention in human BWS and SRS. Liao et al. use mouse models to test a prenatal approach for correcting growth anomalies in two imprinting diseases, BWS and SRS. They find that cases where the fetal growth factor IGF2 is misregulated can be diagnosed, and growth can be corrected by prenatally adjusting IGF2 or its signaling output.
Collapse
Affiliation(s)
- Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Diana A Tran
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School, City of Hope, Duarte, CA 91010, USA
| | - Purnima Singh
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Jeffrey R Mann
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
9
|
Novel Variant in PLAG1 in a Familial Case with Silver-Russell Syndrome Suspicion. Genes (Basel) 2020; 11:genes11121461. [PMID: 33291420 PMCID: PMC7762056 DOI: 10.3390/genes11121461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Silver-Russell syndrome (SRS) is a rare growth-related genetic disorder that is mainly associated with prenatal and postnatal growth retardation. Molecular causes are not clear in all cases, the most common ones being loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). However, pathogenic variants in genes such as CDKN1C, HMGA2, IGF2, or PLAG1 have also been described. Previously, two families and one sporadic case have been reported with PLAG1 alterations. Here, we present a case of a female with clinical suspicion of SRS (i.e., intrauterine and postnatal growth retardation, triangular face, psychomotor delay, speech delay, feeding difficulties). No alterations in methylation or copy number were detected at chromosomes 11p15 and 7 using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The custom panel study by next-generation sequencing (NGS) revealed a frameshift variant in the PLAG1 gene (NM_002655.3:c.551delA; p.(Lys184Serfs *45)). Familial studies confirmed that the variant was inherited from the mother and it was also present in other family members. New evidence of pathogenic alterations in the HMGA2-PLAG1-IGF2 pathway suggest the importance of studying and taking into account these genes as alternative molecular causes of Silver-Russell syndrome.
Collapse
|
10
|
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol 2020; 518:111035. [PMID: 32941924 DOI: 10.1016/j.mce.2020.111035] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The insulin-like growth factor (IGF) system comprises two ligands, IGF-I and IGF-II, that regulate multiple physiological processes, including mammalian development, metabolism and growth, through the type 1 IGF receptor (IGF-1R). The growth hormone (GH)-IGF-I axis is the major regulator of longitudinal growth. IGF-II is expressed in many tissues, notably the placenta, to regulate human pre- and post-natal growth and development. This review provides a brief introduction to the IGF system and summarizes findings from reports arising from recent larger genomic sequencing studies of human genetic mutations in IGF1 and IGF2 and genes of proteins regulating IGF action, namely the IGF-1R, IGF-1R signaling pathway components and the IGF binding proteins (IGFBPs). A perspective on the effect of homozygous mutations on structure and function of the IGFs and IGF-1R is also given and this is related to the effects on growth.
Collapse
Affiliation(s)
- Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - Andrew J Blyth
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Binder G, Ziegler J, Schweizer R, Habhab W, Haack TB, Heinrich T, Eggermann T. Novel mutation points to a hot spot in CDKN1C causing Silver-Russell syndrome. Clin Epigenetics 2020; 12:152. [PMID: 33076988 PMCID: PMC7574352 DOI: 10.1186/s13148-020-00945-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pathogenic CDKN1C gain-of-function variants on the maternal allele were initially reported as a cause of IMAGe syndrome characterized by intrauterine growth retardation, metaphyseal dysplasia, primary adrenal insufficiency and genital anomalies. Recently, a maternally inherited CDKN1C missense mutation (p.Arg279Leu) was identified in several members of a single family clinically diagnosed with Silver-Russell syndrome (SRS) but without adrenal insufficiency. Thereafter, two half siblings from UK with familial SRS were described who carried the same mutation. This specific amino acid change is located within a narrow functional region containing the mutations previously associated with IMAGe syndrome. RESULTS Here, we describe a third familial case with maternally inherited SRS due to a missense variant affecting the same amino acid position 279 but leading to a different amino acid substitution (p. (Arg279Ser)). The two affected family members (mother and son) presented with the complete SRS phenotype (both Netchine-Harbison CSS score 5 of 6) but without body asymmetry or adrenal insufficiency. CONCLUSIONS In comparison with loss-of-function genomic IGF2 mutations, CDKN1C gain-of-function mutations are a less frequent cause of SRS and seem to affect a cluster of few amino acids.
Collapse
Affiliation(s)
- Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Julian Ziegler
- Pediatric Endocrinology, University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany
| | - Roland Schweizer
- Pediatric Endocrinology, University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany
| | - Wisam Habhab
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Jiménez KM, Morel A, Parada-Niño L, Alejandra González-Rodriguez M, Flórez S, Bolívar-Salazar D, Becerra-Bayona S, Aguirre-García A, Gómez-Murcia T, Fernanda Castillo L, Carlosama C, Ardila J, Vaiman D, Serrano N, Laissue P. Identifying new potential genetic biomarkers for HELLP syndrome using massive parallel sequencing. Pregnancy Hypertens 2020; 22:181-190. [PMID: 33059327 DOI: 10.1016/j.preghy.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a frequently occurring multisystemic disease affecting ~5% of pregnancies. PE patients may develop HELLP syndrome (haemolysis, elevated liver enzymes, and low platelet), a mother and foetus life-threatening condition. Research into HELLP's genetic origin has been relatively unsuccessful, mainly because normal placental function and blood pressure regulation involve the fine-regulation of hundreds of genes. OBJECTIVE To identify new genes and mutations constituting potential biomarkers for HELLP syndrome. STUDY DESIGN The present case-control study involved whole-exome sequencing of 79 unrelated HELLP women. Candidate variants were screened in a control population constituted by 176 individuals. Stringent bioinformatics filters were used for selecting potentially etiological sequence variants in a subset of 487 genes. We used robust in silico mutation modelling for predicting the potential effect on protein structure. RESULTS We identified numerous sequence variants in genes related to angiogenesis/coagulation/blood pressure regulation, cell differentiation/communication/adhesion, cell cycle and transcriptional gene regulation, extracellular matrix biology, lipid metabolism and immunological response. Five sequence variants generated premature stop codons in genes playing an essential role in placental physiology (STOX1, PDGFD, IGF2, MMP1 and DNAH11). Six variants (ERAP1- p.Ile915Thr, ERAP2- p.Leu837Ser, COMT-p.His192Gln, CSAD-p.Pro418Ser, CDH1- p.Ala298Thr and CCR2-p.Met249Lys) led to destabilisation of protein structure as they had significant energy and residue interaction-related changes. We identified at least two mutations in 57% of patients, arguing in favour of a polygenic origin for the HELLP syndrome. CONCLUSION Our results provide novel evidence regarding PE/HELLP's genetic origin, leading to new biomarkers, having potential clinical usefulness, being proposed.
Collapse
Affiliation(s)
- Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Adrien Morel
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Parada-Niño
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María Alejandra González-Rodriguez
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Stephanie Flórez
- Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - David Bolívar-Salazar
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Angel Aguirre-García
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Gómez-Murcia
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Fernanda Castillo
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Carlosama
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Javier Ardila
- Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Vaiman
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Norma Serrano
- Research Centre, Fundación Cardiovascular de Colombia (FCV), Bucaramanga, Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014 Paris, France; Orphan Diseases Group, Biopas Laboratoires, Bogotá, Colombia.
| |
Collapse
|
13
|
Xu J, Zhang A, Huang F. Biallelic mutations in carbamoyl phosphate synthetase 1 induced hyperammonemia in a neonate: A case report. Exp Ther Med 2020; 20:623-629. [PMID: 32537019 DOI: 10.3892/etm.2020.8717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present report was to describe the clinical presentation, diagnosis, and treatment of a case of carbamoyl phosphate synthetase 1 (CPS1) deficiency in a neonate, specifically, a 3 day-old female who visited Hunan Provincial People's Hospital due to anorexia and lethargy for 1 day. Physical and laboratory examination, and MRI were undertaken. Whole exome sequencing (WES) was applied for molecular etiology identification. Sanger sequencing was utilized to validate the variants detected by WES. Structural modeling was conducted for pathogenic analysis. Clinical examination revealed increased intracranial pressure, hyperammonemia, reduced citrulline, and increased glutamic acid levels. WES identified compound heterozygosity of c.713G>C, p.Arg238Pro and c.2339G>A, p.Arg780His in CPS1 (NCBI reference sequence, NM_001875.4) as candidate pathogenic variants. Sanger sequencing validated these variants. Structural modeling further confirmed the pathogenesis of these mutations. In conclusion, CPS1 deficiency in neonates is a serious condition that may be misdiagnosed due to severe infection. WES can be a helpful tool in facilitating the diagnosis of this disease.
Collapse
Affiliation(s)
- Jun Xu
- Department of Neonatology, Children's Medical Center, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Aimin Zhang
- Department of Neonatology, Children's Medical Center, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Furong Huang
- Department of Neonatology, Children's Medical Center, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
14
|
Absent digit in Russell-Silver syndrome: expanding the clinical spectrum of a well known syndrome. Clin Dysmorphol 2020; 29:118-120. [PMID: 31895057 DOI: 10.1097/mcd.0000000000000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Masunaga Y, Inoue T, Yamoto K, Fujisawa Y, Sato Y, Kawashima-Sonoyama Y, Morisada N, Iijima K, Ohata Y, Namba N, Suzumura H, Kuribayashi R, Yamaguchi Y, Yoshihashi H, Fukami M, Saitsu H, Kagami M, Ogata T. IGF2 Mutations. J Clin Endocrinol Metab 2020; 105:5572642. [PMID: 31544945 DOI: 10.1210/clinem/dgz034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE IGF2 is a paternally expressed growth-promoting gene. Here, we report five cases with IGF2 mutations and review IGF2 mutation-positive patients described in the literature. We also compare clinical features between patients with IGF2 mutations and those with H19/IGF2:IG-DMR epimutations. RESULTS We recruited five cases with IGF2 mutations: case 1 with a splice site mutation (c.-6-1G>C) leading to skipping of exon 2 and cases 2-5 with different missense mutations (p.(Cys70Tyr), p.(Cys71Arg), p.(Cys33Ser), and p.(Cys45Ser)) affecting cysteine residues involved in the S-S bindings. All the mutations resided on the paternally inherited allele, and the mutation of case 5 was present in a mosaic condition. Clinical assessment revealed Silver-Russell syndrome (SRS) phenotype with Netchine-Harbison scores of ≥5/6 in all the apparently nonmosaic 14 patients with IGF2 mutations (cases 1-4 described in this study and 10 patients reported in the literature). Furthermore, compared with H19/IGF2:IG-DMR epimutations, IGF2 mutations were associated with low frequency of hemihypoplasia, high frequency of feeding difficulty and/or reduced body mass index, and mild degree of relative macrocephaly, together with occasional development of severe limb malformations, high frequency of cardiovascular anomalies and developmental delay, and low serum IGF-II values. CONCLUSIONS This study indicates that IGF2 mutations constitute a rare but important cause of SRS. Furthermore, while both IGF2 mutations and H19/IGF2:IG-DMR epimutations lead to SRS, a certain degree of phenotypic difference is observed between the two groups, probably due to the different IGF2 expression pattern in target tissues.
Collapse
Affiliation(s)
- Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuhiro Sato
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuki Kawashima-Sonoyama
- Division of Pediatrics and Perinatology, Faculty of Medicine Tottori University, Yonago, Japan
| | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University, Mibu, Japan
| | | | - Yu Yamaguchi
- Department of Genetics, Gunma Children's Medical Center, Shibukawa, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
16
|
Xia CL, Lyu Y, Li C, Li H, Zhang ZT, Yin SW, Mao Y, Li W, Kong LY, Liang B, Jiang HK, Li-Ling J, Liu CX, Wei J. Rare De Novo IGF2 Variant on the Paternal Allele in a Patient With Silver-Russell Syndrome. Front Genet 2019; 10:1161. [PMID: 31803239 PMCID: PMC6872539 DOI: 10.3389/fgene.2019.01161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Silver–Russell syndrome (SRS) is a rare, well-recognized disorder characterized by growth restriction, including intrauterine and postnatal growth. Most SRS cases are caused by hypomethylation of the paternal imprinting center 1 (IC1) in chromosome 11p15.5 and maternal uniparental disomy in chromosome 7 (UPD7). Here, we report on a Chinese family with a 4 year old male proband presenting with low birth weight, growth retardation, short stature, a narrow chin, delayed bone age, and speech delays, as a result of a rare molecular etiology. Whole-exome sequencing was conducted, and a novel de novo IGF2 splicing variant, NM_000612.4: c.157+5G > A, was identified on the paternal allele. In vitro functional analysis by RT-PCR and Sanger sequencing revealed that the variant leads to an aberrant RNA transcript lacking exon 2. Our results further confirm the IGF2 variant mediates SRS and expand the pathogenic variant and phenotypic spectrum of IGF2-mediated SRS. The results indicate that, beyond DNA methylation and UPD7 and CDKN1C variant tests, IGF2 gene screening should also be considered for SRS molecular diagnoses.
Collapse
Affiliation(s)
- Chun-Ling Xia
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Yuan Lyu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Chuang Li
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Huan Li
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Zhi-Tao Zhang
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Shao-Wei Yin
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Yan Mao
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Wen Li
- Basecare Medical Device Co., Ltd., Suzhou, China
| | | | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Kun Jiang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jesse Li-Ling
- Jinxin Research Institute of Reproductive Medicine and Genetics, Jinjiang Maternal and Children's Health Care Hospital, Chengdu, China
| | - Cai-Xia Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Jun Wei
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning Centre for Prenatal Diagnosis, Research Center of China Medical University Birth Cohort, Department of Gynecology & Obstetrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| |
Collapse
|
17
|
Vasques GA, Andrade NLM, Correa FA, Jorge AAL. Update on new GH-IGF axis genetic defects. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:608-617. [PMID: 31939486 PMCID: PMC10522240 DOI: 10.20945/2359-3997000000191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022]
Abstract
The somatotropic axis is the main hormonal regulator of growth. Growth hormone (GH), also known as somatotropin, and insulin-like growth factor 1 (IGF-1) are the key components of the somatotropic axis. This axis has been studied for a long time and the knowledge of how some molecules could promote or impair hormones production and action has been growing over the last decade. The enhancement of large-scale sequencing techniques has expanded the spectrum of known genes and several other candidate genes that could affect the GH-IGF1-bone pathway. To date, defects in more than forty genes were associated with an impairment of the somatotropic axis. These defects can affect from the secretion of GH to the bioavailability and action of IGF-1. Affected patients present a large heterogeneous group of conditions associated with growth retardation. In this review, we focus on the description of the GH-IGF axis genetic defects reported in the last decade. Arch Endocrinol Metab. 2019;63(6):608-17.
Collapse
Affiliation(s)
- Gabriela A. Vasques
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Nathalia L. M. Andrade
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernanda A. Correa
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Alexander A. L. Jorge
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
20
|
Adachi M, Fukami M, Kagami M, Sho N, Yamazaki Y, Tanaka Y, Asakura Y, Hanakawa J, Muroya K. Severe in utero under-virilization in a 46,XY patient with Silver-Russell syndrome with 11p15 loss of methylation. J Pediatr Endocrinol Metab 2019; 32:191-196. [PMID: 30676999 DOI: 10.1515/jpem-2018-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Abstract
Background Silver-Russell syndrome (SRS) is characterized by growth retardation and variable features including macrocephaly, body asymmetry, and genital manifestations such as cryptorchidism in 46,XY patients. Case presentation The patient was born at 39 weeks with a birth weight of 1344 g. Subtle clitoromegaly warranted a thorough evaluation, which disclosed 46,XY karyotype, bilateral undescended testes, and a rudimentary uterus. Because of severe under-virilization, the patient was assigned as female. Failure to thrive, macrocephaly, and body asymmetry led to the diagnosis of SRS, confirmed by marked hypomethylation of H19/IGF2 intergenic differentially methylated region (IG-DMR). From age 9 years, progressive virilization occurred, which necessitated luteinizing hormone-releasing hormone analog (LHRHa) treatment. Gonadal resection at 15 years revealed immature testes with mostly Sertoli-cell-only tubules. Panel analysis for 46,XY-differences of sex development (DSD) failed to detect any pathogenic variants. Conclusions This is the second reported case of molecularly proven 46,XY SRS accompanied by severe under-virilization. SRS should be included in the differential diagnosis of 46,XY-DSD.
Collapse
Affiliation(s)
- Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Noriko Sho
- Department of Child and Adolescent Psychiatry, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yuichiro Yamazaki
- Department of Urology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukichi Tanaka
- Division of Diagnostic Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Asakura
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Junko Hanakawa
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
21
|
Germline Epigenetic Testing of Imprinting Disorders in a Diagnostic Setting. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
22
|
Vado Y, Errea-Dorronsoro J, Llano-Rivas I, Gorria N, Pereda A, Gener B, Garcia-Naveda L, Perez de Nanclares G. Cri-du-chat syndrome mimics Silver-Russell syndrome depending on the size of the deletion: a case report. BMC Med Genomics 2018; 11:124. [PMID: 30587166 PMCID: PMC6307281 DOI: 10.1186/s12920-018-0441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Silver-Russell Syndrome (SRS) is a rare growth-related genetic disorder mainly characterized by prenatal and postnatal growth failure. Although molecular causes are not clear in all cases, the most common mechanisms involved in SRS are loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). CASE PRESENTATION We present a girl with clinical suspicion of SRS (intrauterine and postnatal growth retardation, prominent forehead, triangular face, mild psychomotor delay, transient neonatal hypoglycemia, mild hypotonia and single umbilical artery). Methylation and copy number variations at chromosomes 11 and 7 were studied by methylation-specific multiplex ligation-dependent probe amplification and as no alterations were found, molecular karyotyping was performed. A deletion at 5p15.33p15.2 was identified (arr[GRCh37] 5p15.33p15.2(25942-11644643)× 1), similar to those found in patients with Cri-du-chat Syndrome (CdCS). CdCS is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-), whose main feature is a high-pitched mewing cry in infancy, accompanied by multiple congenital anomalies, intellectual disability, microcephaly and facial dysmorphism. CONCLUSIONS The absence of some CdCS features in the current patient could be due to the fact that in her case the critical regions responsible do not lie within the identified deletion. In fact, a literature review revealed a high degree of concordance between the clinical manifestations of the two syndromes.
Collapse
Affiliation(s)
- Yerai Vado
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba Spain
| | - Javier Errea-Dorronsoro
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
| | - Isabel Llano-Rivas
- Service of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia Spain
| | - Nerea Gorria
- Service of Pediatric Neurology, BioAraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Araba Spain
| | - Arrate Pereda
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
| | - Blanca Gener
- Service of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia Spain
| | - Laura Garcia-Naveda
- Service of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group. Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
23
|
Tong W, Wang Y, Lu Y, Ye T, Song C, Xu Y, Li M, Ding J, Duan Y, Zhang L, Gu W, Zhao X, Yang XA, Jin D. Whole-exome Sequencing Helps the Diagnosis and Treatment in Children with Neurodevelopmental Delay Accompanied Unexplained Dyspnea. Sci Rep 2018; 8:5214. [PMID: 29581464 PMCID: PMC5980106 DOI: 10.1038/s41598-018-23503-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodevelopmental delay accompanied unexplained dyspnea is a highly lethal disease in clinic. This study is to investigate the performance characteristics of trio whole exome sequencing (Trio-WES) in a pediatric setting by presenting our patient cohort and displaying the diagnostic yield. A total of 31 pediatric patients showing neurodevelopmental delay accompanied unexplained dyspnea were admitted to our hospital and referred for molecular genetic testing using Trio-WES. Eight genes namely MMACHC, G6PC, G6PT, ETFDH, OTC, NDUFAF5, SLC22A5, and MAGEL2 were suspected to be responsible for the onset of the clinical symptoms and 6 variants were novel. Standard interpretation according to ACMG guideline showed that the variants were pathogenic. Finally, diagnosis of methylmalonic aciduria and homocystinuria, glycogen storage disease, ornithine transcarbamylase deficiency, glutaric acidemia II, mitochondrial complex 1 deficiency, carnitine deficiency, and Schaaf-Yang syndrome was made in 12 out of the 31 patients. Trio-WES is an effective means for molecular diagnosis of infantile neurodevelopmental delay accompanied unexplained dyspnea. As for molecular etiology identification, when routine potential monogenetic inheritance patterns including de novo, autosomal recessive, autosomal dominant, and X-linked recessive inheritance analysis is negative, physicians should take into account imprinted genes.
Collapse
Affiliation(s)
- Wenjia Tong
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Yajian Wang
- Joy Orient Translational Medicine Research Center Co., Ltd, Beijing, 100875, P.R. China
| | - Yun Lu
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, P.R. China
| | - Tongsheng Ye
- Neonatal Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Conglei Song
- Department of Neurology, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Yuanyuan Xu
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Min Li
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Jie Ding
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Yuanyuan Duan
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Le Zhang
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Weiyue Gu
- Joy Orient Translational Medicine Research Center Co., Ltd, Beijing, 100875, P.R. China
| | - Xiaoling Zhao
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Xiu-An Yang
- Beijing Scientific Operation Biotechnology Co., Ltd., Beijing, 100121, P.R. China. .,Cardiac Center Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Danqun Jin
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China.
| |
Collapse
|
24
|
Domené HM, Fierro-Carrión G. Genetic disorders of GH action pathway. Growth Horm IGF Res 2018; 38:19-23. [PMID: 29249625 DOI: 10.1016/j.ghir.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 11/24/2022]
Abstract
While insensitivity to GH (GHI) is characterized by low IGF-I levels, normal or elevated GH levels, and lack of IGF-I response to GH treatment, IGF-I resistance is characterized by elevated IGF-I levels with normal/high GH levels. Several genetic defects are responsible for impairment of GH and IGF-I actions resulting in short stature that could affect intrauterine growth or be present in the postnatal period. The genetic defects affecting GH and/or IGF-I action can be divided into five different groups: GH insensitivity by defects affecting the GH receptor (GHR), the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1), the synthesis of insulin-like growth factors (IGF1, IGF2), the transport/bioavailability of IGFs (IGFALS, PAPPA2), and defects affecting IGF-I sensitivity (IGF1R). Complete GH insensitivity (GHI) was first reported by Zvi Laron and his colleagues in patients with classical appearance of GH deficiency, but presenting elevated levels of GH. The association of GH insensitivity with several clinical sings of immune-dysfunction and autoimmune dysregulation are characteristic of molecular defects in the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1). Gene mutations in the IGF1 and IGF2 genes have been described in patients presenting intrauterine growth retardation and postnatal short stature. Molecular defects have also been reported in the IGFALS gene, that encodes the acid-labile subunit (ALS), responsible to stabilize circulating IGF-I in ternary complexes, and more recently in the PAPPA2 gen that encodes the pregnancy-associated plasma protein-A2, a protease that specifically cleaves IGFBP-3 and IGFBP-5 regulating the accessibility of IGFs to their target tissues. Mutations in the IGF1R gene resulted in IGF-I insensitivity in patients with impaired intrauterine and postnatal growth. These studies have revealed novel molecular mechanisms of GH insensitivity/primary IGF-I deficiency beyond the GH receptor gene. In addition, they have also underlined the importance of several players of the GH-IGF axis in the complex system that promotes human growth.
Collapse
Affiliation(s)
- Horacio M Domené
- Centro de Investigaciones Endocrinológicas (CEDIE-CONICET), "Dr. César Bergadá", División de Endocrinología, Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina.
| | - Gustavo Fierro-Carrión
- Escuela de Medicina, Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
25
|
Heide S, Chantot-Bastaraud S, Keren B, Harbison MD, Azzi S, Rossignol S, Michot C, Lackmy-Port Lys M, Demeer B, Heinrichs C, Newfield RS, Sarda P, Van Maldergem L, Trifard V, Giabicani E, Siffroi JP, Le Bouc Y, Netchine I, Brioude F. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet 2017; 55:205-213. [PMID: 29223973 DOI: 10.1136/jmedgenet-2017-104919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/11/2017] [Accepted: 11/04/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.
Collapse
Affiliation(s)
- Solveig Heide
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Sandra Chantot-Bastaraud
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Boris Keren
- Département de Génétique, APHP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Salah Azzi
- Nuclear Dynamics ISPG, Babraham Institute, Cambridge, UK
| | - Sylvie Rossignol
- Service de Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Caroline Michot
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Marilyn Lackmy-Port Lys
- Unité de Génétique Clinique, Centre de Compétences Maladies Rares Anomalies du développement, Centre Hospitalier Universitaire Pointe-a-Pitre Abymes, Pointe-a-Pitre, France
| | - Bénédicte Demeer
- Service de Génétique Clinique et Oncogénétique, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France
| | - Claudine Heinrichs
- Service d'Endocrinologie Pédiatrique, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ron S Newfield
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California San Diego, San Diego, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Pierre Sarda
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Lionel Van Maldergem
- CHU, Centre de Génétique Humaine Besançon, Université de Franche-Comté, Besançon, France
| | - Véronique Trifard
- Service de Pédiatrie, CH de La Roche sur Yon, La Roche sur Yon, France
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Yves Le Bouc
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| |
Collapse
|