1
|
Qu B, Li Z, Hu W. Exploration of metformin-based drug combination for mitigating diabetes-associated atherosclerotic diseases. World J Diabetes 2025; 16:100533. [PMID: 40236872 PMCID: PMC11947926 DOI: 10.4239/wjd.v16.i4.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
Diabetes mellitus is a substantial global health threat due to its high prevalence and its serious complications. The hyperglycemic state causes damage to vascular endothelial cells and disturbance of lipid metabolism, thus contributing to the development of vascular disorders, especially atherosclerotic diseases. Aggressive glycemic control combined with vascular intervention is critical to the prevention and treatment of diabetes-associated atherosclerosis. It is suggested that metformin should be combined with hypoglycemic agents with proven vascular benefits for treating type 2 diabetes (T2DM) complicated with atherosclerotic diseases. Clinical studies indicates that the preferred combination is metformin with either glucagon-like peptide-1 receptor agonist or sodium/glucose cotransporter-2 inhibitor, which could offer additional vascular benefits and reduce the risk of atherosclerotic complications. Likewise, combination therapy with metformin and hypolipidemic agents has also shown additive effects on glucose control and lipid-lowering in patients with both diabetes and dyslipidemia, whereas extensive clinical trials using atherosclerotic-associated outcomes are required to support the vascular benefits. Moreover, co-administration of metformin with systemic antioxidant or anti-inflammatory therapy may also provide additional vascular benefits as indicated by several animal studies. For instance, a recent study found that additional supplementation of cholecalciferol and taurine enhanced metformin efficacy in controlling diabetes while reducing the risk of associated atherosclerotic complications. However, these potential benefits remain need validation by the evidence from clinical studies. Despite the limitations, such as heterogeneity across different patient populations, and deficiency in long-term outcomes, such efforts can contribute to finding optimal drug combinations to improve the management of T2DM and reduce its atherosclerotic complications.
Collapse
Affiliation(s)
- Biao Qu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
2
|
Rai V, Deepu V, Agrawal DK. Targeting RAGE-signaling pathways in the repair of rotator-cuff injury. Mol Cell Biochem 2025; 480:2539-2554. [PMID: 39395136 PMCID: PMC11961478 DOI: 10.1007/s11010-024-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Rotator cuff injury (RCI) is a common musculoskeletal problem that can have a significant impact on the quality of life and functional abilities of those affected. Novel therapies, including proteomics-based, stem cells, platelet-rich plasma, and exosomes, are being developed to promote rotator-cuff healing. The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor that is expressed on several cell types and is implicated in several physiologic and pathological processes, such as tissue repair, inflammation, and degeneration. Because of its capacity to bind with a variety of ligands and initiate signaling pathways that lead to inflammatory responses in RCI, RAGE plays a crucial role in inflammation. In this critical review article, we discussed the role of RAGE-mediated persistent inflammation in RCI followed by novel factors including PKCs, TIRAP, DIAPH1, and factors related to muscle injury with their therapeutic potential in RCI. These factors involve various aspects of muscle injury and signaling and the possibility of targeting these factors to improve the clinical outcomes in RCI still needs further investigation.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
3
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
4
|
Radziszewski M, Galus R, Łuszczyński K, Winiarski S, Wąsowski D, Malejczyk J, Włodarski P, Ścieżyńska A. The RAGE Pathway in Skin Pathology Development: A Comprehensive Review of Its Role and Therapeutic Potential. Int J Mol Sci 2024; 25:13570. [PMID: 39769332 PMCID: PMC11676465 DOI: 10.3390/ijms252413570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored. This review synthesizes current findings on RAGE's involvement in the pathophysiology of skin diseases, including conditions such as psoriasis, atopic dermatitis, and lichen planus, focusing on its roles in inflammatory signaling, tissue remodeling, and skin cancer progression. Additionally, it examines RAGE-modulating treatments investigated in dermatological contexts, highlighting their potential as therapeutic options. Given RAGE's significance in a variety of skin conditions, further research into its mediated pathways may uncover new opportunities for targeted interventions in skin-specific RAGE signaling.
Collapse
Affiliation(s)
- Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| | - Sebastian Winiarski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Dariusz Wąsowski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Paweł Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
5
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
6
|
Liu H, Wei G, Wang T, Hou Y, Hou B, Li X, Wang C, Sun M, Su M, Guo Z, Wang L, Kang N, Li M, Jia Z. Angelica keiskei water extract Mitigates Age-Associated Physiological Decline in Mice. Redox Rep 2024; 29:2305036. [PMID: 38390941 PMCID: PMC10896161 DOI: 10.1080/13510002.2024.2305036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
| | - Gang Wei
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Tongxing Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Yunlong Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Bin Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Xiaoyan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Chao Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Mingzhe Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Min Su
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhifang Guo
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Lu Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Ning Kang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Mengnan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhenhua Jia
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, People’s Republic of China
- High-Level TCM Key Disciplines of National Administration of Traditional Chinese, Shijiazhuang, People's Republic of China
| |
Collapse
|
7
|
Shi J, Guan Y, Song H, Zhu L, Li J, Li Q, Hou N, Han F, Wang M, Zhang K, Shan M, Sun X, Qiu H. Exploring heparin's protective mechanism against AGEs induced endothelial injury. iScience 2024; 27:111084. [PMID: 39493878 PMCID: PMC11530820 DOI: 10.1016/j.isci.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Advanced glycation end products (AGEs) in diabetes can cause endothelial damage. Heparin, widely known as a recognized anticoagulant, is also a multifunctional therapeutic drug. This study investigated whether heparin could ameliorate AGEs-induced endothelial injury. Remarkably, heparin effectively attenuated this cellular damage and assumed a reparative role. Furthermore, heparin inhibited the AGEs-RAGE-NFκB axis, thereby mitigating endothelial inflammatory injury. Comprehensive proteome and knockdown experiments suggested that heparin may exert a positive influence on cell growth and further alleviate pathological damage by upregulating the expression of LYAR (cell growth-regulating nucleolar protein). Diabetic mouse model was also used to further verify the changes of endothelial tissue in diabetic state and heparin intervention. In summary, these findings demonstrate that heparin has the potential to ameliorate AGEs-induced endothelial injury, opening new avenues for exploring the expanded therapeutic roles of heparin and its potential application in the management of diabetes and its associated complications.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yudong Guan
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Hongwei Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingjing Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qinying Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ming Shan
- Medical Research Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, P.R. China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
8
|
Younis RL, El-Gohary RM, Ghalwash AA, Hegab II, Ghabrial MM, Aboshanady AM, Mostafa RA, El-Azeem AHA, Farghal EE, Belal AAE, Khattab H. Luteolin Mitigates D-Galactose-Induced Brain Ageing in Rats: SIRT1-Mediated Neuroprotection. Neurochem Res 2024; 49:2803-2820. [PMID: 38987448 PMCID: PMC11365848 DOI: 10.1007/s11064-024-04203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.
Collapse
Affiliation(s)
- Reham L Younis
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Islam Ibrahim Hegab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Maram M Ghabrial
- Anatomy & Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Azza M Aboshanady
- Anatomy & Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Raghad A Mostafa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alaa H Abd El-Azeem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E Farghal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa A E Belal
- Neuropsychiatry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
9
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
10
|
Balgobin S, Basak S, Teoh CW, Noone D. Hypertension in diabetes. Pediatr Nephrol 2024; 39:1739-1758. [PMID: 37831122 DOI: 10.1007/s00467-023-06163-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Diabetes mellitus, a disease that affects hundreds of millions of people worldwide, is increasing in prevalence in all age groups, including children and adolescents. Much of the morbidity and mortality associated with diabetes is closely related to hypertension, often coincident with diabetes. Comorbid hypertension and diabetes often worsen the outcomes of each other, likely rooted in some overlapping pathogenic mechanisms. In this educational review, we will discuss the shared pathophysiology of diabetes and hypertension, particularly in regard to inflammation and oxidative stress, the sympathetic nervous system, vascular remodeling, and the renin-angiotensin-aldosterone system (RAAS). We will also review current hypertension diagnosis and management guidelines from many international jurisdictions for both adult and paediatric populations in the setting of diabetes. Many of these guidelines highlight the use and utility of RAAS blockers in this clinical scenario; however, on review of the evidence for their use, several meta-analyses and systematic reviews fail to demonstrate superiority of RAAS blockers over other anti-hypertensive medications. Finally, we discuss several new anti-hypertensive medications, review their mechanisms of action, and highlight some of the evidence for their use in the setting of hypertension and diabetes.
Collapse
Affiliation(s)
- Steve Balgobin
- Division of Paediatric Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Sanjukta Basak
- Pediatric Endocrinologist, BC Children's Hospital, Vancouver, BC, Canada
- Division of Endocrinology & Metabolism, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chia Wei Teoh
- Division of Paediatric Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Damien Noone
- Division of Paediatric Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
12
|
Li SJ, Gao X, Wang ZH, Li J, Zeng LT, Dang YM, Ma YQ, Zhang LQ, Wang QY, Zhang YM, Liu HL, Qi RM, Cai JP. Cell-free DNA methylation patterns in aging and their association with inflamm-aging. Epigenomics 2024; 16:715-731. [PMID: 38869474 PMCID: PMC11318736 DOI: 10.1080/17501911.2024.2340958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: Liquid biopsies analyzing cell-free DNA (cfDNA) methylation in plasma offer a noninvasive diagnostic for diseases, with the potential of aging biomarkers underexplored. Methods: Utilizing enzymatic methyl-seq (EM-seq), this study assessed cfDNA methylation patterns in aging with blood from 35 healthy individuals. Results: It found aging signatures, including higher cfDNA levels and variations in fragment sizes, plus approximately 2000 age-related differentially methylated CpG sites. A biological age predictive model based on 48 CpG sites showed a strong correlation with chronological age, verified by two datasets. Age-specific epigenetic shifts linked to inflammation were revealed through differentially methylated regions profiling and Olink proteomics. Conclusion: These findings suggest cfDNA methylation as a potential aging biomarker and might exacerbate immunoinflammatory reactivity in older individuals.
Collapse
Affiliation(s)
- Si-Jia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, PR China
| | - Xin Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, PR China
| | - Zi-Hui Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, PR China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Ya-Min Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, PR China
| | - Ya-Qing Ma
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Ying-Min Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Hong-Lei Liu
- School of Biomedical Engineering, Capital Medical University, 100730, PR China
| | - Ruo-Mei Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, PR China
| |
Collapse
|
13
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
14
|
Jujic A, Engström G, Nilsson PM, Johansson M. Accumulation of advanced glycation end products in skin and increased vascular ageing in the general population: the Malmö Offspring Study. J Hypertens 2024; 42:530-537. [PMID: 38088420 PMCID: PMC10842672 DOI: 10.1097/hjh.0000000000003627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Advanced glycation end product (AGE) is an established risk marker for diabetic vascular disease, and associated with the degree of diabetes complications, renal failure, and atherosclerosis in middle-aged and older individuals. The relationship between AGEs and aortic stiffness has not been thoroughly examined in the younger general population. We aimed to evaluate the association between AGEs and aortic stiffness in the general population of young and middle-aged adults. METHODS We analysed cross-sectionally 2518 participants from a Swedish population-based cohort, the Malmö Offspring Study (mean age 41.8 ± 14.5 years, 52.2%). Advanced glycation end-products (AGEs) were measured by a well validated, noninvasive method using skin autofluorescence with AGE-Reader. Aortic stiffness was assessed by carotid-femoral pulse wave velocity (PWV) and augmentation index (Aix) was calibrated to a standard heart rate of 75 bpm at the arteria radialis using SphygmoCor. Multivariable linear regression was performed stratified by age to analyse the association between skin AGE and aortic stiffness. RESULTS Increased levels of AGEs were significantly associated with higher direct measurements of aortic stiffness (vascular ageing) in younger individuals (PWV β 0.55 m/s, P < 0.001) after adjustment for traditional cardiometabolic risk factors, however, not in older individuals (PWV β 0.23 m/s, P = 0.10). Indirect vascular ageing was also significantly associated with higher levels of AGEs in both younger (Aix β 7.78, P < 0.001) and older individuals (Aix β 3.69, P < 0.001). CONCLUSION Higher levels of skin autofluorescence-AGEs are positively associated with increased vascular ageing in younger adults from the general population, independent of cardiometabolic risk factors.
Collapse
Affiliation(s)
- Amra Jujic
- Department of Clinical Sciences, Lund University
- Department of Cardiology, Skåne University Hospital
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | | | | | - Madeleine Johansson
- Department of Clinical Sciences, Lund University
- Department of Cardiology, Skåne University Hospital
| |
Collapse
|
15
|
Gutowska K, Koźniewski K, Wąsowski M, Jonas MI, Bartoszewicz Z, Lisik W, Jonas M, Binda A, Jaworski P, Tarnowski W, Noszczyk B, Puzianowska-Kuźnicka M, Czajkowski K, Kuryłowicz A. AGER-1 Long Non-Coding RNA Levels Correlate with the Expression of the Advanced Glycosylation End-Product Receptor, a Regulator of the Inflammatory Response in Visceral Adipose Tissue of Women with Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:17447. [PMID: 38139276 PMCID: PMC10743952 DOI: 10.3390/ijms242417447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The advanced glycosylation end-product receptor (AGER) is involved in the development of metabolic inflammation and related complications in type 2 diabetes mellitus (T2DM). Tissue expression of the AGER gene (AGER) is regulated by epigenetic mediators, including a long non-coding RNA AGER-1 (lncAGER-1). This study aimed to investigate whether human obesity and T2DM are associated with an altered expression of AGER and lncAGER-1 in adipose tissue and, if so, whether these changes affect the local inflammatory milieu. The expression of genes encoding AGER, selected adipokines, and lncAGER-1 was assessed using real-time PCR in visceral (VAT) and subcutaneous (SAT) adipose tissue. VAT and SAT samples were obtained from 62 obese (BMI > 40 kg/m2; N = 24 diabetic) and 20 normal weight (BMI = 20-24.9 kg/m2) women, while a further 15 SAT samples were obtained from patients who were 18 to 24 months post-bariatric surgery. Tissue concentrations of adipokines were measured at the protein level using an ELISA-based method. Obesity was associated with increased AGER mRNA levels in SAT compared to normal weight status (p = 0.04) and surgical weight loss led to their significant decrease compared to pre-surgery levels (p = 0.01). Stratification by diabetic status revealed that AGER mRNA levels in VAT were higher in diabetic compared to non-diabetic women (p = 0.018). Elevated AGER mRNA levels in VAT of obese diabetic patients correlated with lncAGER-1 (p = 0.04, rs = 0.487) and with interleukin 1β (p = 0.008, rs = 0.525) and resistin (p = 0.004, rs = 0.6) mRNA concentrations. In conclusion, obesity in women is associated with increased expression of AGER in SAT, while T2DM is associated with increased AGER mRNA levels and pro-inflammatory adipokines in VAT.
Collapse
Affiliation(s)
- Klaudia Gutowska
- II Department of Obstetrics and Gynecology, Warsaw Medical University, 00-315 Warsaw, Poland; (K.G.); (K.C.)
| | - Krzysztof Koźniewski
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.K.); (M.I.J.); (M.P.-K.)
| | - Michał Wąsowski
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland;
| | - Marta Izabela Jonas
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.K.); (M.I.J.); (M.P.-K.)
| | - Zbigniew Bartoszewicz
- Department of Internal Medicine and Endocrinology, The Medical University of Warsaw, 02- 097 Warsaw, Poland;
| | - Wojciech Lisik
- Department of General and Transplantation Surgery, The Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Maurycy Jonas
- Department of General Surgery, Barska Hospital, 02-315 Warsaw, Poland;
| | - Artur Binda
- Department of General, Oncological and Bariatric Surgery, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland; (A.B.); (P.J.); (W.T.)
| | - Paweł Jaworski
- Department of General, Oncological and Bariatric Surgery, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland; (A.B.); (P.J.); (W.T.)
| | - Wiesław Tarnowski
- Department of General, Oncological and Bariatric Surgery, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland; (A.B.); (P.J.); (W.T.)
| | - Bartłomiej Noszczyk
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland;
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.K.); (M.I.J.); (M.P.-K.)
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-826 Warsaw, Poland
| | - Krzysztof Czajkowski
- II Department of Obstetrics and Gynecology, Warsaw Medical University, 00-315 Warsaw, Poland; (K.G.); (K.C.)
| | - Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.K.); (M.I.J.); (M.P.-K.)
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland;
| |
Collapse
|
16
|
Krisanits BA, Schuster R, Randise J, Nogueira LM, Lane JT, Panguluri GA, Li H, Helke K, Cuitiño MC, Koivisto C, Spruill L, Ostrowski MC, Anderson SM, Turner DP, Findlay VJ. Pubertal exposure to dietary advanced glycation end products disrupts ductal morphogenesis and induces atypical hyperplasia in the mammary gland. Breast Cancer Res 2023; 25:118. [PMID: 37803429 PMCID: PMC10559657 DOI: 10.1186/s13058-023-01714-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are reactive metabolites intrinsically linked with modern dietary patterns. Processed foods, and those high in sugar, protein and fat, often contain high levels of AGEs. Increased AGE levels are associated with increased breast cancer risk, however their significance has been largely overlooked due to a lack of direct cause-and-effect relationship. METHODS To address this knowledge gap, FVB/n mice were fed regular, low AGE, and high AGE diets from 3 weeks of age and mammary glands harvested during puberty (7 weeks) or adulthood (12 weeks and 7 months) to determine the effects upon mammary gland development. At endpoint mammary glands were harvested and assessed histologically (n ≥ 4). Immunohistochemistry and immunofluorescence were used to assess cellular proliferation and stromal fibroblast and macrophage recruitment. The Kruskal-Wallis test were used to compare continuous outcomes among groups. Mammary epithelial cell migration and invasion in response to AGE-mediated fibroblast activation was determined in two-compartment co-culture models. In vitro experiments were performed in triplicate. The nonparametric Wilcoxon rank sum test was used to compare differences between groups. RESULTS Histological analysis revealed the high AGE diet delayed ductal elongation, increased primary branching, as well as increased terminal end bud number and size. The high AGE diet also led to increased recruitment and proliferation of stromal cells to abnormal structures that persisted into adulthood. Atypical hyperplasia was observed in the high AGE fed mice. Ex vivo fibroblasts from mice fed dietary-AGEs retain an activated phenotype and promoted epithelial migration and invasion of non-transformed immortalized and tumor-derived mammary epithelial cells. Mechanistically, we found that the receptor for AGE (RAGE) is required for AGE-mediated increases in epithelial cell migration and invasion. CONCLUSIONS We observed a disruption in mammary gland development when mice were fed a diet high in AGEs. Further, both epithelial and stromal cell populations were impacted by the high AGE diet in the mammary gland. Educational, interventional, and pharmacological strategies to reduce AGEs associated with diet may be viewed as novel disease preventive and/or therapeutic initiatives during puberty.
Collapse
Affiliation(s)
- Bradley A Krisanits
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Reid Schuster
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jaime Randise
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lourdes M Nogueira
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jackson T Lane
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gowtami A Panguluri
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hong Li
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kristi Helke
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Maria C Cuitiño
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- College of Health Sciences, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Christopher Koivisto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David P Turner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Mikaeloff F, Gelpi M, Escos A, Knudsen AD, Høgh J, Benfield T, de Magalhães JP, Nielsen SD, Neogi U. Transcriptomics age acceleration in prolonged treated HIV infection. Aging Cell 2023; 22:e13951. [PMID: 37548368 PMCID: PMC10577541 DOI: 10.1111/acel.13951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Biological aging in people with HIV (PWH) with prolonged successful antiretroviral therapy (ART) is convoluted and poorly defined. Here, we aimed to investigate the transcriptomics age estimator (TAE) in a cohort of 178 PWH on prolonged successful ART with immune reconstitution and viral suppression from the Copenhagen Comorbidity (COCOMO) cohort. We also used 143 clinical, demographical, and lifestyle factors to identify the confounders potentially responsible or associated with age acceleration. Among the PWH, 43% had an accelerated aging process (AAP), and 21% had decelerated aging process (DAP). DAP is linked with older age, European ancestry, and higher use of tenofovir disoproxil/alafenamide fumarate. A directionally class-based gene set enrichment analysis identified the upregulation of inflammatory pathways (e.g., cytokine and Retinoic acid-inducible gene I (RIG-I)-like receptor signaling pathways) and immune response like T-cell receptor signaling, antigen processing, and presentation in AAP and the downregulation of metabolic processes like oxidative phosphorylation, pyruvate metabolism.
Collapse
Affiliation(s)
- Flora Mikaeloff
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Marco Gelpi
- Copenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Alejandra Escos
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | | | - Julie Høgh
- Copenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Thomas Benfield
- Department of Infectious DiseasesCopenhagen University HospitalHvidovreDenmark
| | - João Pedro de Magalhães
- Institute of Inflammation and AgeingUniversity of Birmingham, Queen Elizabeth Hospital, Mindelsohn WayBirminghamUK
| | | | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
18
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Bhattacharya R, Saini S, Ghosh S, Roy P, Ali N, Parvez MK, Al-Dosari MS, Mishra AK, Singh LR. Organosulfurs, S-allyl cysteine and N-acetyl cysteine sequester di-carbonyls and reduces carbonyl stress in HT22 cells. Sci Rep 2023; 13:13071. [PMID: 37567958 PMCID: PMC10421908 DOI: 10.1038/s41598-023-40291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes, characterized by high blood glucose level, is a progressive metabolic disease that leads to serious health complications. One of the major pathological consequences associated with diabetes is the accumulation of highly reactive carbonyl compounds called advanced glycation end products (AGEs). Most of the AGEs are dicarbonyls and have the potential to covalently modify proteins especially at the lysine residues in a non-enzymatic fashion (a process termed as glycation) resulting in the functional impairment and/or toxic gain in function. Therefore, non-toxic small molecules that can inhibit glycation are of interest for the therapeutic intervention of diabetes. In the present communication, we have investigated the effect of organosulfurs (S-allyl cysteine, SAC and N-acetyl cysteine, NAC) that are major principal components of Allium sativa against the glycation of different proteins. We discovered that both SAC and NAC are potent anti-glycating agents. We also found that both SAC and NAC reduce ROS level and inhibit apoptosis caused by protein glycation.
Collapse
Affiliation(s)
- Reshmee Bhattacharya
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsanbuk-Do, Republic of Korea.
| | | |
Collapse
|
20
|
Song H, Ma H, Shi J, Liu Y, Kan C, Hou N, Han J, Sun X, Qiu H. Optimizing glycation control in diabetes: An integrated approach for inhibiting nonenzymatic glycation reactions of biological macromolecules. Int J Biol Macromol 2023; 243:125148. [PMID: 37268079 DOI: 10.1016/j.ijbiomac.2023.125148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Diabetes is a multifactorial disorder that increases mortality and disability due to its complications. A key driver of these complications is nonenzymatic glycation, which generates advanced glycation end-products (AGEs) that impair tissue function. Therefore, effective nonenzymatic glycation prevention and control strategies are urgently needed. This review comprehensively describes the molecular mechanisms and pathological consequences of nonenzymatic glycation in diabetes and outlines various anti-glycation strategies, such as lowering plasma glucose, interfering with the glycation reaction, and degrading early and late glycation products. Diet, exercise, and hypoglycemic medications can reduce the onset of high glucose at the source. Glucose or amino acid analogs such as flavonoids, lysine and aminoguanidine competitively bind to proteins or glucose to block the initial nonenzymatic glycation reaction. In addition, deglycation enzymes such as amadoriase, fructosamine-3-kinase, parkinson's disease protein, glutamine amidotransferase-like class 1 domain-containing 3A and terminal FraB deglycase can eliminate existing nonenzymatic glycation products. These strategies involve nutritional, pharmacological, and enzymatic interventions that target different stages of nonenzymatic glycation. This review also emphasizes the therapeutic potential of anti-glycation drugs for preventing and treating diabetes complications.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jing Han
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
21
|
Gutowska K, Czajkowski K, Kuryłowicz A. Receptor for the Advanced Glycation End Products ( RAGE) Pathway in Adipose Tissue Metabolism. Int J Mol Sci 2023; 24:10982. [PMID: 37446161 DOI: 10.3390/ijms241310982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced glycation end products (AGEs) are mediators in the process of cellular dysfunction in response to hyperglycemia. Numerous data indicate that the accumulation of AGEs in the extracellular matrix plays a key role in the development of obesity-related adipose tissue dysfunction. Through binding of their membrane receptor (RAGE), AGEs affect numerous intracellular pathways and impair adipocyte differentiation, metabolism, and secretory activity. Therefore, inhibiting the production and accumulation of AGEs, as well as interfering with the metabolic pathways they activate, may be a promising therapeutic strategy for restoring normal adipose tissue function and, thus, combating obesity-related comorbidities. This narrative review summarizes data on the involvement of the RAGE pathway in adipose tissue dysfunction in obesity and the development of its metabolic complications. The paper begins with a brief review of AGE synthesis and the RAGE signaling pathway. The effect of the RAGE pathway on adipose tissue development and activity is then presented. Next, data from animal and human studies on the involvement of the RAGE pathway in obesity, diabetes, and cardiovascular diseases are summarized. Finally, therapeutic perspectives based on interference with the RAGE pathway are discussed.
Collapse
Affiliation(s)
- Klaudia Gutowska
- II Faculty and Clinic of Obstetrics and Gynaecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 81, 02-091 Warsaw, Poland
| | - Krzysztof Czajkowski
- II Faculty and Clinic of Obstetrics and Gynaecology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
22
|
Fermented Supernatants of Lactobacillus plantarum GKM3 and Bifidobacterium lactis GKK2 Protect against Protein Glycation and Inhibit Glycated Protein Ligation. Nutrients 2023; 15:nu15020277. [PMID: 36678147 PMCID: PMC9864088 DOI: 10.3390/nu15020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
With age, protein glycation in organisms increases continuously. Evidence from many studies shows that the accumulation of glycated protein is highly correlated with biological aging and the development of aging-related diseases, so developing a dietary agent to attenuate protein glycation is very meaningful. Previous studies have indicated that lactic acid bacteria-fermented products have diverse biological activities especially in anti-aging, so this study was aimed to investigate the inhibitory effect of the fermented supernatants of Lactobacillus plantarum GKM3 (GKM3) and Bifidobacterium lactis GKK2 (GKK2) on protein glycation. The results show that GKM3- and GKK2-fermented supernatants can significantly inhibit protein glycation by capturing a glycation agent (methylglyoxal) and/or protecting functional groups in protein against methylglyoxal-induced responses. GKM3- and GKK2-fermented supernatants can also significantly inhibit the binding of glycated proteins to the receptor for advanced glycation end products (RAGE). In conclusion, lactic acid bacteria fermentation products have the potential to attenuate biological aging by inhibiting protein glycation.
Collapse
|
23
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
24
|
Wang Y, Zu G, Yu Y, Tang J, Han T, Zhang C. Curcumin's mechanism of action against ischemic stroke: A network pharmacology and molecular dynamics study. PLoS One 2023; 18:e0280112. [PMID: 36598916 PMCID: PMC9812305 DOI: 10.1371/journal.pone.0280112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the major global causes of death and disability. Because blood clots block the neural arteries provoking ischemia and hypoxia in the brain tissue, IS results in irreversible neurological damage. Available IS treatments are currently limited. Curcumin has gained attention for many beneficial effects after IS, including neuroprotective and anti-inflammatory; however, its precise mechanism of action should be further explored. With network pharmacology, molecular docking, and molecular dynamics (MD), this study aimed to comprehensively and systematically investigate the potential targets and molecular mechanisms of curcumin on IS. We screened 1096 IS-related genes, 234 potential targets of curcumin, and 97 intersection targets. KEGG and GO enrichment analyses were performed on these intersecting targets. The findings showed that the treatment of IS using curcumin is via influencing 177 potential signaling pathways (AGE-RAGE signaling pathway, p53 signaling pathway, necroptosis, etc.) and numerous biological processes (the regulation of neuronal death, inflammatory response, etc.), and the AGE-RAGE signaling pathway had the largest degree of enrichment, indicating that it may be the core pathway. We also constructed a protein-protein interaction network and a component-target-pathway network using network pharmacology. From these, five key targets were screened: NFKB1, TP53, AKT1, STAT3, and TNF. To predict the binding conformation and intermolecular affinities of the key targets and compounds, molecular docking was used, whose results indicated that curcumin exhibited strong binding activity to the key targets. Moreover, 100 ns MD simulations further confirmed the docking findings and showed that the curcumin-protein complex could be in a stable state. In conclusion, curcumin affects multiple targets and pathways to inhibit various important pathogenic mechanisms of IS, including oxidative stress, neuronal death, and inflammatory responses. This study offers fresh perspectives on the transformation of curcumin to clinical settings and the development of IS therapeutic agents.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Guoxiu Zu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiqin Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- * E-mail: (JT); (TH)
| | - Tao Han
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
- * E-mail: (JT); (TH)
| | - Chengdong Zhang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
A Study on the Protective Effect of sRAGE-MSCs in a Rodent Reperfusion Model of Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232415630. [PMID: 36555270 PMCID: PMC9779272 DOI: 10.3390/ijms232415630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the major leading causes of death in humans globally. Recently, increased levels of recruited macrophages and AGE-albumin were observed in the hearts of humans and animals with acute myocardial infarction. Thus, the purposes of this study were to investigate whether the elevated levels of AGE-albumin from activated macrophage cells are implicated in ischemia-induced cardiomyocyte death and to develop therapeutic strategies for AMI based on its underlying molecular mechanisms with respect to AGEs. The present study demonstrated that activated macrophages and AGE-albumin were observed in heart tissues obtained from humans and rats with AMI incidences. In the cellular model of AMI, it was found that increased expression of AGE-albumin was shown to be co-localized with macrophages, and the presence of AGE-albumin led to increased expression of RAGE through the mitogen-activated protein kinase pathway. After revealing cardiomyocyte apoptosis induced by toxicity of the AGE-RAGE system, sRAGE-secreting MSCs were generated using the CRISPR/Cas9 platform to investigate the therapeutic effects of sRAGE-MSCs in an AMI rat model. Gene-edited sRAGE-MSCs showed greater therapeutic effects against AMI pathogenesis in rat models compared to mock MSCs, and promising results of the functional improvement of stem cells could result in significant improvements in the clinical management of cardiovascular diseases.
Collapse
|
26
|
Fu S, Tang X, Xu Y, Song X, Qian X, Hu Y, Zhang M. Analysis of the Potential Relationship between Aging and Pulmonary Fibrosis Based on Transcriptome. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121961. [PMID: 36556326 PMCID: PMC9788318 DOI: 10.3390/life12121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related interstitial lung disease with a high incidence in the elderly. Although many reports have shown that senescence can initiate pulmonary fibrosis, the relationship between aging and pulmonary fibrosis has not been explained systematically. In our study, young and old rats were intratracheally instilled with bleomycin (1 mg/kg), and the basic pathological indexes were determined using a commercial kit, hematoxylin, and eosin (H&E) and Masson's Trichrome staining, immunohistochemistry, immunohistofluorescence, and q-PCR. Then, the lung tissues of rats were sequenced by next-generation sequencing for transcriptome analysis. Bioinformatics was performed to analyze the possible differences in the mechanism of pulmonary fibrosis between aged and young rats. Finally, the related cytokines were determined by q-PCR and ELISA. The results indicate that pulmonary fibrosis in old rats is more serious than that in young rats under the same conditions. Additionally, transcriptomic and bioinformatics analysis with experimental validation indicate that the differences in pulmonary fibrosis between old and young rats are mainly related to the differential expression of cytokines, extracellular matrix (ECM), and other important signaling pathways. In conclusion, aging mainly affects pulmonary fibrosis through the ECM-receptor interaction, immune response, and chemokines.
Collapse
Affiliation(s)
- San Fu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yiming Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xianrui Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuhui Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yingying Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mian Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: ; Tel.: +86-25-8618-513
| |
Collapse
|
27
|
Klimiuk A, Zalewska A, Knapp M, Skutnik-Radziszewska A, Maciejczyk M. Could inflammation contribute to salivary gland dysfunction in patients with chronic heart failure? Front Immunol 2022; 13:1005981. [PMID: 36300113 PMCID: PMC9589450 DOI: 10.3389/fimmu.2022.1005981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Heart failure (HF) is one of the leading causes of death worldwide. HF results not only in cardiovascular dysfunction, but also numerous pathologies in the oral cavity and salivary glands. The present study is the first to evaluate whether salivary inflammatory and anti-inflammatory factors may be related with the occurrence of hyposalivation in HF patients. We also evaluated the potential of salivary biomarkers in the diagnostics of HF. The study included 30 women with HF and 30 sex- and age-matched healthy controls. We demonstrated significantly higher levels of pro-inflammatory cytokines, anti-inflammatory cytokines, Th1, Th2, Th17, chemokines and growth factors in unstimulated saliva of HF patients compared to controls. However, the results do not indicate dominance of either branch of the immune response. The concentration of selected biomarkers is significantly higher in patients with HF and salivary gland dysfunction compared to patients with normal saliva secretion and healthy subjects (IL-1β, TNF-α, IL-7, IL-13, INF-γ, IL-12, IL-15, IL-5, IL-6, IL-9, IL-17, MCP-1/CCL-2, EOTAXIN/CCL11, RANTES/CCL5, GM-CSF, VEGF, FGF basic, PDFG-BB). Multivariate regression analysis showed that the content of salivary cytokines, chemokines and growth factors is highly dependent on salivary gland function, i.e. salivary flow rate, total protein content and amylase activity. Using receiver operating characteristic (ROC) analysis, we showed that salivary TNF-α, INF-γ, IL-12 and EOTAXIN/CCL11 differentiated patients with HF and hyposalivation with the highest sensitivity and specificity compared to patients with normal salivary secretion and controls. Interestingly, the content of some pro- and anti-inflammatory mediators in saliva significantly exceeds their concentration in plasma. In addition, salivary biomarker levels do not reflect their plasma content, which may suggest a different nature/severity of inflammatory changes at the central (blood) and local (salivary) levels. Although our study was purely observational, the significantly higher concentration of inflammatory parameters in saliva compared to plasma, as well as the lack of saliva-blood correlation, may suggest increased production/secretion of these compounds in salivary cells of HF patients. ROC analysis did not confirm the diagnostic utility of salivary cytokines and chemokines in the differential diagnosis of HF patients.
Collapse
Affiliation(s)
- Anna Klimiuk
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Mateusz Maciejczyk,
| |
Collapse
|
28
|
Qrareya AN, Wise NS, Hodges ER, Mahdi F, Stewart JA, Paris JJ. HIV-1 Tat Upregulates the Receptor for Advanced Glycation End Products and Superoxide Dismutase-2 in the Heart of Transgenic Mice. Viruses 2022; 14:v14102191. [PMID: 36298745 PMCID: PMC9607872 DOI: 10.3390/v14102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disorder (CVD) is a common comorbidity in people living with HIV (PLWH). Although the underlying mechanisms are unknown, virotoxic HIV proteins, such as the trans-activator of transcription (Tat), likely contribute to CVD pathogenesis. Tat expression in mouse myocardium has been found to induce cardiac dysfunction and increase markers of endothelial toxicity. However, the role that Tat may play in the development of CVD pathogenesis is unclear. The capacity for Tat to impact cardiac function was assessed using AC16 human cardiomyocyte cells and adult male and female transgenic mice that conditionally expressed Tat [Tat(+)], or did not [Tat(-)]. In AC16 cardiomyocytes, Tat increased intracellular calcium. In Tat(+) mice, Tat expression was detected in both atrial and ventricular heart tissue. Tat(+) mice demonstrated an increased expression of the receptor for advanced glycation end products and superoxide dismutase-2 (SOD-2) in ventricular tissues compared to Tat(-) controls. No changes in SOD-1 or α-smooth muscle actin were observed. Despite Tat-mediated changes at the cellular level, no changes in echocardiographic measures were detected. Tat(+) mice had a greater proportion of ventricular mast cells and collagen; however, doxycycline exposure offset the latter effect. These data suggest that Tat exposure promotes cellular changes that can precede progression to CVD.
Collapse
Affiliation(s)
- Alaa N. Qrareya
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Nason S. Wise
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Emmanuel R. Hodges
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - James A. Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (J.A.S.J.); (J.J.P.); Tel.: +1-662-915-2309 (J.A.S.J.); +1-662-915-3096 (J.J.P.)
| | - Jason J. Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (J.A.S.J.); (J.J.P.); Tel.: +1-662-915-2309 (J.A.S.J.); +1-662-915-3096 (J.J.P.)
| |
Collapse
|
29
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
30
|
Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Sci 2022; 12:brainsci12091237. [PMID: 36138973 PMCID: PMC9496782 DOI: 10.3390/brainsci12091237] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease is one of the most common age-related neurodegenerative disorders. The main theory of Alzheimer’s disease progress is the amyloid-β cascade hypothesis. However, the initial mechanisms of insoluble forms of amyloid-β formation and hyperphosphorylated tau protein in neurons remain unclear. One of the factors, which might play a key role in senile plaques and tau fibrils generation due to Alzheimer’s disease, is inflammaging, i.e., systemic chronic low-grade age-related inflammation. The activation of the proinflammatory cell phenotype is observed during aging, which might be one of the pivotal mechanisms for the development of chronic inflammatory diseases, e.g., atherosclerosis, metabolic syndrome, type 2 diabetes mellitus, and Alzheimer’s disease. This review discusses the role of the inflammatory processes in developing neurodegeneration, activated during physiological aging and due to various diseases such as atherosclerosis, obesity, type 2 diabetes mellitus, and depressive disorders.
Collapse
|
31
|
Long COVID (PASC) Is Maintained by a Self-Sustaining Pro-Inflammatory TLR4/RAGE-Loop of S100A8/A9 > TLR4/RAGE Signalling, Inducing Chronic Expression of IL-1b, IL-6 and TNFa: Anti-Inflammatory Ezrin Peptides as Potential Therapy. IMMUNO 2022. [DOI: 10.3390/immuno2030033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long COVID, also referred to as Post-Acute Sequelae of COVID (PASC), is probably triggered during SARS-CoV-2 infection and acute COVID-19 by SARS-CoV-2 Spike-protein binding and hyper-activating the cell-membrane expressed Receptor for Advance Glycation End-products (mRAGE) and Toll-Like Receptor 4 (TLR4). SARS-CoV-2 infects lung monocytes by Spike binding to mRAGE (not ACE2). During acute COVID-19, high levels of IL-6 hyper-stimulate S100A8/A9 expression and secretion. Although no viral protein nor mRNA can be detected in half of long COVID (PASC) patients, there is a significant elevation of serum levels of IL-1b, IL-6, TNFa, and S100A8/A9. It appears that a pathological pro-inflammatory feedback loop (the TLR4/RAGE-loop) is established during acute COVID-19, which is maintained by S100A8/A9 > RAGE/TLR4 chronic inflammatory signalling, even after SARS-CoV-2 has been cleared from the body. During long COVID/PASC, Ca2+-binding protein S100A8/A9 chronically stimulates TLR4/RAGE-signalling to induce chronic expression of IL-1b, IL-6 and TNFa. Secreted IL-6 binds to its IL-6R receptor on the surface of other cells and signals via STAT3 and C/EBPb for more S100A8/A9 expression. Secreted IL-1b binds to its receptor IL-1R on other cells, and signals via NFkB for more mRAGE and TLR4 expression. New S100A8/A9 can bind and activate cell-surface mRAGE and TLR4 to stimulate expression of more IL-1b, IL-6 and TNFa. This process establishes a pathogenic pro-inflammatory TLR4/RAGE-loop: IL-1b + IL-6 > IL-1R + IL-6R > TLR4/mRAGE + S100A8/A9 > IL-1b + IL-6, which generates multi-organ inflammation that persists in the blood vessels, the brain, the liver, the heart, the kidneys, the gut and the musculo-skeletal system, and is responsible for all the complex pathologies associated with long COVID/PASC. Chronic expression of IL-1, IL-6 and TNFa is critical for the maintenance of the TLR4/RAGE-loop and persistence of long COVID/PASC. Ezrin peptides are inhibitors of IL-1, IL-6, IL-8 and TNFa expression, so are now being investigated as potential therapy for long COVID/PASC. There is preliminary anecdotal evidence of symptomatic relief (not confirmed yet by formal clinical trials) from a few long COVID/PASC patient volunteers, after treatment with ezrin peptide therapy.
Collapse
|
32
|
Engineering Smooth Muscle to Understand Extracellular Matrix Remodeling and Vascular Disease. Bioengineering (Basel) 2022; 9:bioengineering9090449. [PMID: 36134994 PMCID: PMC9495899 DOI: 10.3390/bioengineering9090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The vascular smooth muscle is vital for regulating blood pressure and maintaining cardiovascular health, and the resident smooth muscle cells (SMCs) in blood vessel walls rely on specific mechanical and biochemical signals to carry out these functions. Any slight change in their surrounding environment causes swift changes in their phenotype and secretory profile, leading to changes in the structure and functionality of vessel walls that cause pathological conditions. To adequately treat vascular diseases, it is essential to understand how SMCs crosstalk with their surrounding extracellular matrix (ECM). Here, we summarize in vivo and traditional in vitro studies of pathological vessel wall remodeling due to the SMC phenotype and, conversely, the SMC behavior in response to key ECM properties. We then analyze how three-dimensional tissue engineering approaches provide opportunities to model SMCs’ response to specific stimuli in the human body. Additionally, we review how applying biomechanical forces and biochemical stimulation, such as pulsatile fluid flow and secreted factors from other cell types, allows us to study disease mechanisms. Overall, we propose that in vitro tissue engineering of human vascular smooth muscle can facilitate a better understanding of relevant cardiovascular diseases using high throughput experiments, thus potentially leading to therapeutics or treatments to be tested in the future.
Collapse
|
33
|
Zhang SY, Liang JJ, Liu YQ. Excessive Zinc Ion Caused PC12 Cell Death Correlating with Inhibition of NOS and Increase of RAGE in Cells. Cell Biochem Biophys 2022; 80:755-761. [PMID: 36068383 DOI: 10.1007/s12013-022-01093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Zinc ion (Zn2+) is an important functional factor; however, excessive Zn2+ can be toxic. To understand the neurotoxicity of excessive Zn2+ and the underlying mechanism, PC12 cells were treated with excessive Zn2+ and Zn2+ plus N, N, N', N'-Tetrakisethylenediamine (TPEN), a zinc ion chelator agent. Trypan blue and 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide (MTT) assays were used to test cell viability; the relative kits were used to detect the activity of NOS synthase and the content of the receptor for advanced glycation end product (RAGE) in cells. We observed that excessive zinc caused PC12 cell damage and that TPEN partially reversed cell damage caused by excessive zinc. In addition, excessive zinc decreased total nitric oxide synthase (TNOS) activity in cells, in which constitutive nitric oxide synthase (cNOS) activity was significantly reduced; however, inducible nitric oxide synthase (iNOS) activity was extremely promoted. Moreover, excessive zinc upregulated the expression of RAGE, and TPEN effectively reversed the increase in RAGE induced by excessive zinc ions. Therefore, we concluded that excessive zinc caused PC12 cell damage, correlating with the inhibition of NOS and increase of RAGE induced in cells.
Collapse
Affiliation(s)
- Sai-Ya Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing-Jing Liang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
34
|
Engineering microbial cell viability for enhancing chemical production by second codon engineering. Metab Eng 2022; 73:235-246. [PMID: 35987432 DOI: 10.1016/j.ymben.2022.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
Abstract
Microbial cell factories offer a promising strategy for the sustainable production of industrial chemicals from renewable biomass feedstock. However, their performance is often limited by poor microbial cell viability (MCV). Here, MCV was engineered to enhance chemical production by optimizing the regulation of lifespan-specific genes to reduce the accumulation of reactive oxygen species (ROS). In Escherichia coli, MCV was improved by reducing ROS accumulation using second codon engineering to regulate hypoxia-inducible transcription factor (arcA), resulting in lysine production up to 213 g L-1 with its productivity 5.90 g L-1·h-1. In Saccharomyces cerevisiae, MCV was increased by decreasing ROS accumulation using second codon engineering to fine-tune ceramide synthase (lag1), leading to glucaric acid production up to 9.50 g L-1 with its productivity 0.057 g L-1·h-1. These results demonstrate that engineering MCV is a potential strategy to boost the performance of microbial cell factories in industrial processes.
Collapse
|
35
|
Berisha A, Shutkind K, Borniger JC. Sleep Disruption and Cancer: Chicken or the Egg? Front Neurosci 2022; 16:856235. [PMID: 35663547 PMCID: PMC9160986 DOI: 10.3389/fnins.2022.856235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is a nearly ubiquitous phenomenon across the phylogenetic tree, highlighting its essential role in ensuring fitness across evolutionary time. Consequently, chronic disruption of the duration, timing, or structure of sleep can cause widespread problems in multiple physiological systems, including those that regulate energy balance, immune function, and cognitive capacity, among others. Many, if not all these systems, become altered throughout the course of cancer initiation, growth, metastatic spread, treatment, and recurrence. Recent work has demonstrated how changes in sleep influence the development of chronic diseases, including cancer, in both humans and animal models. A common finding is that for some cancers (e.g., breast), chronic disruption of sleep/wake states prior to disease onset is associated with an increased risk for cancer development. Additionally, sleep disruption after cancer initiation is often associated with worse outcomes. Recently, evidence suggesting that cancer itself can affect neuronal circuits controlling sleep and wakefulness has accumulated. Patients with cancer often report difficulty falling asleep, difficulty staying asleep, and severe fatigue, during and even years after treatment. In addition to the psychological stress associated with cancer, cancer itself may alter sleep homeostasis through changes to host physiology and via currently undefined mechanisms. Moreover, cancer treatments (e.g., chemotherapy, radiation, hormonal, and surgical) may further worsen sleep problems through complex biological processes yet to be fully understood. This results in a "chicken or the egg" phenomenon, where it is unclear whether sleep disruption promotes cancer or cancer reciprocally disrupts sleep. This review will discuss existing evidence for both hypotheses and present a framework through which the interactions between sleep and cancer can be dissociated and causally investigated.
Collapse
Affiliation(s)
- Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kyle Shutkind
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | | |
Collapse
|
36
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
37
|
Brosius Lutz A, Lucas TA, Carson GA, Caneda C, Zhou L, Barres BA, Buckwalter MS, Sloan SA. An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. J Neuroinflammation 2022; 19:105. [PMID: 35501870 PMCID: PMC9063194 DOI: 10.1186/s12974-022-02462-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood. METHODS We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways. RESULTS Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a. CONCLUSIONS We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration.
Collapse
Affiliation(s)
- Amanda Brosius Lutz
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Tawaun A Lucas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Glenn A Carson
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Christine Caneda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Lu Zhou
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
- Department of Human Genetics, Emory University, 30322, Atlanta, Georgia
| |
Collapse
|
38
|
Xia S, Weng T, Jin R, Yang M, Yu M, Zhang W, Wang X, Han C. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds. BURNS & TRAUMA 2022; 10:tkac001. [PMID: 35291229 PMCID: PMC8918758 DOI: 10.1093/burnst/tkac001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Background Gelatin methacryloyl (GelMA) hydrogels loaded with stem cells have proved to be an effective clinical treatment for wound healing. Advanced glycation end product (AGE), interacting with its particular receptor (AGER), gives rise to reactive oxygen species (ROS) and apoptosis. Curcumin (Cur) has excellent antioxidant activity and regulates intracellular ROS production and apoptosis. In this study, we developed a Cur-incorporated 3D-printed GelMA to insert into adipose-derived stem cells (ADSCs) and applied it to diabetic wounds. Methods GelMA hydrogels with Cur were fabricated and their in vitro effects on ADSCs were investigated. We used structural characterization, western blot, ROS and apoptosis assay to evaluate the antioxidant and anti-apoptotic activity, and assessed the wound healing effects to investigate the mechanism underlying regulation of apoptosis by Cur via the AGE/AGER/nuclear factor-κB (NF-κB) p65 pathway. Results A 10% GelMA scaffold exhibited appropriate mechanical properties and biocompatibility for ADSCs. The circular mesh structure demonstrated printability of 10% GelMA and Cur-GelMA bioinks. The incorporation of Cur into the 10% GelMA hydrogel showed an inhibitory effect on AGEs/AGER/NF-κB p65-induced ROS generation and ADSC apoptosis. Furthermore, Cur-GelMA scaffold promoted cell survival and expedited in vivo diabetic wound healing. Conclusions The incorporation of Cur improved the antioxidant activity of 3D-printed GelMA hydrogel and mitigated AGE/AGER/p65 axis-induced ROS and apoptosis in ADSCs. The effects of scaffolds on wound healing suggested that Cur/GelMA-ADSC hydrogel could be an effective biological material for accelerating wound healing.
Collapse
Affiliation(s)
- Sizhan Xia
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Tingting Weng
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Ronghua Jin
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Min Yang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Meirong Yu
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310000, China
| |
Collapse
|
39
|
Ren X, Lv J, Wang N, Liu J, Gao C, Wu X, Yu Y, Teng Q, Dong W, Kong H, Kong L. Thioredoxin upregulation delays diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Diabetes Res Clin Pract 2022; 185:109788. [PMID: 35182712 DOI: 10.1016/j.diabres.2022.109788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
Abstract
AIMS Autophagy and exosome secretion in photoreceptor and RPE cells play an important role during diabetic retinopathy (DR). Thioredoxin (Trx) upregulation delays diabetes-induced photoreceptor cell degeneration, which the effect of autophagy and exosome secretion on it is unclear. Therefore, we investigated the effect of them on Trx upregulation to delay diabetes-induced photoreceptor cell degeneration and to identify the potential therapy for DR in the future. METHODS Trx-transgenic mice and 661w cell were as models. Retinal function and morphology were evaluated by electroretinography and H&E staining. TUNEL staining was used to evaluate apoptosis. The protein expression was detected by Western blotting. TEM and mRFP-GFP-LC3 method were used to analyze autophagy. RESULTS In vitro and in vivo, Trx upregulation can delay diabetes-induced photoreceptor cell degeneration. Moreover, the expression of LC3 and p62 was decreasing and the expression of Alix and CD63 was increasing after Trx overexpression. However, it was inhibited after AMPK inhibitor treatment. Additionally, secreted exosomes from photoreceptor were phagocytosed by RPE cells to regulate its physiological function. CONCLUSIONS Trx upregulation can delay diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Secreted exosomes from photoreceptor cells could be phagocytosed and degraded by RPE cells in DR.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jinjuan Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Nina Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jiasu Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China; The Second Hospital of Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Chuanzhou Gao
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Xiaoli Wu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Yang Yu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Qiufeng Teng
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Wenkang Dong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Hui Kong
- The Second Hospital of Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| |
Collapse
|
40
|
Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, Akter F, Jahan D, Haque M. Diabetes Mellitus: A Path to Amnesia, Personality, and Behavior Change. BIOLOGY 2022; 11:biology11030382. [PMID: 35336756 PMCID: PMC8945557 DOI: 10.3390/biology11030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diabetes Mellitus (DM) is a metabolic disorder resulting from a disturbance of insulin secretion, action, or both. Hyperglycemia and overproduction of superoxide induce the development and progression of chronic complications of DM. The impact of DM and its complication on the central nervous system (CNS) such as dementia and Alzheimer’s Disease (AD) still remain obscure. In dementia, there is a gradual decline in cognitive function. The incidence of dementia increases with age, and patient become socially, physically, and mentally more vulnerable and dependent. The symptoms often emerge decades after the onset of pathophysiology, thus impairing early therapeutic intervention. Most diabetic subjects who develop dementia are above the age of 65, but diabetes may also cause an increased risk of developing dementia before 65 years. Vascular dementia is the second most common form of dementia after AD. Type 2 DM (T2DM) increases the incidence of vascular dementia (since its covers the vascular system) and AD. The functional and structural integrity of the CNS is altered in T2DM due to increased synthesis of Aβ. Additionally, hyperphosphorylation of Tau protein also results from dysregulation of various signaling cascades in T2DM, thereby causing neuronal damage and AD. There is the prospect for development of a therapy that may help prevent or halt the progress of dementia resulting from T2DM. Abstract Type 2 diabetes mellitus is increasingly being associated with cognition dysfunction. Dementia, including vascular dementia and Alzheimer’s Disease, is being recognized as comorbidities of this metabolic disorder. The progressive hallmarks of this cognitive dysfunction include mild impairment of cognition and cognitive decline. Dementia and mild impairment of cognition appear primarily in older patients. Studies on risk factors, neuropathology, and brain imaging have provided important suggestions for mechanisms that lie behind the development of dementia. It is a significant challenge to understand the disease processes related to diabetes that affect the brain and lead to dementia development. The connection between diabetes mellitus and dysfunction of cognition has been observed in many human and animal studies that have noted that mechanisms related to diabetes mellitus are possibly responsible for aggravating cognitive dysfunction. This article attempts to narrate the possible association between Type 2 diabetes and dementia, reviewing studies that have noted this association in vascular dementia and Alzheimer’s Disease and helping to explain the potential mechanisms behind the disease process. A Google search for “Diabetes Mellitus and Dementia” was carried out. Search was also done for “Diabetes Mellitus”, “Vascular Dementia”, and “Alzheimer’s Disease”. The literature search was done using Google Scholar, Pubmed, Embase, ScienceDirect, and MEDLINE. Keeping in mind the increasing rate of Diabetes Mellitus, it is important to establish the Type 2 diabetes’ effect on the brain and diseases of neurodegeneration. This narrative review aims to build awareness regarding the different types of dementia and their relationship with diabetes.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Uvarsad Gandhinagar, Gujarat 382422, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, Pelotas 96020-010, RS, Brazil;
| | - Govindool Sharaschandra Reddy
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
41
|
Prevention of Protein Glycation by Nanoparticles: Potential Applications in T2DM and Associated Neurodegenerative Diseases. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00954-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Wang S, Jiao F, Border JJ, Fang X, Crumpler RF, Liu Y, Zhang H, Jefferson J, Guo Y, Elliott PS, Thomas KN, Strong LB, Urvina AH, Zheng B, Rijal A, Smith SV, Yu H, Roman RJ, Fan F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am J Physiol Heart Circ Physiol 2022; 322:H246-H259. [PMID: 34951541 PMCID: PMC8759958 DOI: 10.1152/ajpheart.00438.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane J Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Reece F Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Parker S Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Luke B Strong
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Austin H Urvina
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Arjun Rijal
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stanley V Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
43
|
Ahuja P, Waris A, Siddiqui SS, Mukherjee A. Single nucleotide variants of receptor for advanced glycation end-products (AGER) gene: is it a new opening in the risk assessment of diabetic retinopathy?-a review. J Genet Eng Biotechnol 2022; 20:17. [PMID: 35099614 PMCID: PMC8804138 DOI: 10.1186/s43141-022-00297-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common microvascular complication of diabetes. There is strong evidence suggesting that DR has an inheritable component. The interaction between advanced glycation end products (AGEs) and their receptor is integral in the pathogenesis of diabetic retinopathy and its various complications, retinopathy being one of them. OVERVIEW AND METHODOLOGY This review discusses the existing literature on the association between single nucleotide variants (SNV) of AGER gene and the risk of DR. It also discusses the current understanding of the AGE-AGER pathway in diabetic retinopathy. Through our article we have tried to consolidate all the available information about these SNVs associated with diabetic retinopathy in a succinct tabular form. Additionally, a current understanding of the AGE-AGER interaction and its deleterious effects on the cells of the retina has been discussed in detail to provide comprehensive information about the topic to the reader. A literature review was performed on PubMed, Cochrane Library, and Google Scholar for studies to find existing literature on the association between AGER gene SNVs and the risk, progression and severity of developing DR. This article will encourage scientific communication and discussion about possibly devising genetic markers for an important cause of blindness both in developed and developing countries, i.e., diabetic retinopathy. RESULT Based on genetic studies done in Indian and Chinese population G82S(rs2070600) was positively associated with Diabetic Retinopathy. Patients of diabetic retinopathy in Caucasian population had -T374A(rs1800624) polymorphism. + 20T/A was found to be associated with the disease in a study done in UK. Association with G1704T(rs184003) was seen in Chinese and Malaysian population. A Chinese study found its association with CYB242T. -T429C(rs1800625) SNV was not associated with DR in any of the studies. G2245A(rs55640627) was positively associated with the disease process in Malaysian population. It was not associated in Malaysian and Chinese population. Promoter variant rs1051993 has also been found to a susceptible SNV in the Chinese population. CONCLUSION While providing a comprehensive review of the existing information, we would like to emphasize on a large, multi-centric, trial with a much larger and varied population base to definitely determine these single nucleotide variants predisposing diabetic individuals.
Collapse
Affiliation(s)
- Pragya Ahuja
- Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Abdul Waris
- Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Sheelu Shafiq Siddiqui
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| |
Collapse
|
44
|
Jiang T, Bao Y, Su H, Zheng R, Cao L. Mechanisms of Chinese Herbal Medicines for Diabetic Nephropathy Fibrosis Treatment. INTEGRATIVE MEDICINE IN NEPHROLOGY AND ANDROLOGY 2022; 9. [PMCID: PMC9549772 DOI: 10.4103/2773-0387.353727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus that is one of the main causes of end-stage renal disease, causing considerable health problems as well as significant financial burden worldwide. The pathological features of DN include loss of normal nephrons, massive fibroblast and myofibroblast hyperplasia, accumulation of extracellular matrix proteins, thickening of the basement membrane, and tubulointerstitial fibrosis. Renal fibrosis is a final and critical pathological change in DN. Although progress has been made in understanding the pathogenesis of DN fibrosis, current conventional treatment strategies may not be completely effective in preventing the disease’s progression. Traditionally, Chinese herbal medicines (CHMs) composed of natural ingredients have been used for symptomatic relief of DN. Increasing numbers of studies have confirmed that CHMs can exert a renoprotective effect in DN, and antifibrosis has been identified as a key mechanism. In this review, we summarize the antifibrotic efficacy of CHM preparations, single herbal medicines, and their bioactive compounds based on their effects on diminishing the inflammatory response and oxidative stress, regulating transforming growth factor, preventing epithelial-mesenchymal transition, and modulating microRNAs. We intend to provide patients of DN with therapeutic interventions that are complementary to existing options.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Yuhang Bao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Hong Su
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Rendong Zheng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| |
Collapse
|
45
|
Misiakiewicz-Has K, Pilutin A, Wiszniewska B. Influence of hormonal imbalance on the integrity of seminiferous epithelium in the testes of adult rats chronically exposed to letrozole and rats exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. Reprod Biol 2021; 21:100562. [PMID: 34555686 DOI: 10.1016/j.repbio.2021.100562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022]
Abstract
The structural integrity of the germ cells in the seminiferous epithelium and the correct process of spermatogenesis are made possible by proteins that participate in the formation of different types of junctions. This study was performed on samples of the testes of 4 groups (2 experimental and 2 corresponding control) of male Wistar rats. In the first experimental group, the adult rats received letrozole - a nonsteroidal inhibitor of cytochrome P450 aromatase (P450arom). The second experimental group was exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. The aim of this study was to examine the immunoexpression of β-catenin, N-cadherin, occludin, connexin43, annexin V, and advanced glycation end products (AGE) in the seminiferous epithelium of rat testes with chronic estrogen deficiency and of rats exposed to soya isoflavones. Series of sections of the testes were stained using PAS and silver impregnation. Moreover, immunohistochemistry tests were performed. A semi-quantitative determination of protein immunoexpression was performed using Image J. The number of annexin V positive Sertoli cells per tubule were counted manually. Comparisons between the experimental and corresponding control groups were performed using a non-parametric Mann-Whitney U test. The most common alterations were prematurely sloughed germ cells in the lumen of the seminiferous tubules and invaginations of the seminiferous tubules. We observed a lower number of annexin V positive Sertoli cells and a lower expression of N-cadherin and occludin in the seminiferous epithelium of both groups of rats with hormonal imbalances. Moreover, a higher expression of AGE, a lower expression of connexin 43 and a lower amount of reticular fibers in the basal lamina of seminiferous tubules was present in rats treated with letrozole and a higher expression of β-catenin was found in rats exposed to soya isoflavones. The hormonal imbalance between androgens and estrogens resulted in a decreased number of annexin V positive Sertoli cells. This may be associated with a failed clearance of apoptotic germ cells that leads to disturbances in the blood-testis-barrier (BTB) by affecting the expression of junctional proteins in the seminiferous epithelium. Moreover, a decreased level of estrogens was also associated with an increased expression of AGEs and with a changed composition of basal lamina in the seminiferous tubules of rats. These changes could lead to germ cell sloughing and invaginations of the seminiferous tubules.
Collapse
Affiliation(s)
- K Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland.
| | - A Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - B Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|
46
|
Cherepanov SM, Gerasimenko M, Yuhi T, Shabalova A, Zhu H, Yokoyama S, Salmina AB, Munesue SI, Harashima A, Yamamoto Y, Higashida H. An improved sample extraction method reveals that plasma receptor for advanced glycation end-products (RAGE) modulates circulating free oxytocin in mice. Peptides 2021; 146:170649. [PMID: 34543678 DOI: 10.1016/j.peptides.2021.170649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) binds oxytocin (OT) and transports it from the blood to the brain. As RAGE's OT-binding capacity was lost in RAGE knockout (KO) mice, we predicted that circulating concentrations of unbound (free) OT should be elevated compared to wild-type (WT) mice. However, this hypothesis has not yet been investigated. Unfortunately, the evaluation of the dynamics of circulating free and bound plasma OT is unclear in immunoassays, in part because of interference from plasma proteins. A radioimmunoassay (RIA) is considered the gold standard method for overcoming this issue, but is more challenging to implement; thus, commercially available enzyme-linked immunosorbent assays (ELISAs) are more commonly used. Here, we developed a pre-treatment method to remove the interference-causing components from plasma before performing ELISA. The acetonitrile protein precipitation (PPT) approach was reliable, with fewer steps needed to measure free OT concentrations than by solid-phase extraction of plasma samples. PPT-extracted plasma samples yielded higher concentrations of OT in RAGE KO mice than in WT mice using ELISA. After peripheral OT injection, free OT plasma levels spiked immediately then rapidly declined in WT mice, but remained high in KO mice. These results suggest that plasma samples with PPT pre-treatment appear to be superior and that circulating soluble RAGE can most likely serve as a buffer for plasma OT, which indicates a novel physiological function of RAGE.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Anna Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hong Zhu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Alla B Salmina
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, 660022, Russia
| | - Shei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
| |
Collapse
|
47
|
Hansda AK, Goswami R. 17-β estradiol signalling affects cardiovascular and cancer pathogenesis by regulating the crosstalk between transcription factors and EC-miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
49
|
Rocha S, Oskolkova O, de Freitas V, Reis A. (Poly)phenol-Rich Diets in the Management of Endothelial Dysfunction in Diabetes Mellitus: Biological Properties in Cultured Endothelial Cells. Mol Nutr Food Res 2021; 65:e2001130. [PMID: 34050718 DOI: 10.1002/mnfr.202001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Processed and ready-to-eat foods become routinely consumed resulting in a sharp rise of sugar intake in people's daily diets. The inclusion of fresh fruits and vegetables rich in (poly)phenols has been encouraged by the World Health Organization (WHO) as part of the daily choices to ameliorate endothelial dysfunction and ease the socio-economic burden of diabetes. Research in Food, Nutrition, and Cell Metabolism areas is revealing that the health benefits of (poly)phenol-rich foods go beyond their antioxidant properties and are in fact key modulators of redox and glycaemia status, and inflammatory response contributing to improved endothelial function and vascular health in diabetes. Other beneficial aspects include appetite modulation, regulation of hydrolytic enzymes involved in sugar and lipid metabolism, and mediation of cell-cell aggregation events. This work overviews the current knowledge on the biological properties of ingested (poly)phenols in cultured endothelial cells with emphasis on the circulating (poly)phenols, providing support to (poly)phenol-rich diets as alternatives to drug-based therapies in the prevention, treatment, and management of diabetes. A critical evaluation on the caveats and challenges involve in current experimental cell-based designs and approaches adopted is also discussed.
Collapse
Affiliation(s)
- Sara Rocha
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Olga Oskolkova
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, Graz, 8010, Austria
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| |
Collapse
|
50
|
First-Days Reduction of Plasma and Skin Advanced Glycation End Products is Related to Outcome in Septic Patients. Shock 2021; 53:400-406. [PMID: 31232862 DOI: 10.1097/shk.0000000000001396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are a result of nonenzymatic glycation of proteins and lipids, which can attach to either their cell surface receptor (RAGE) or its soluble form (sRAGE). Evidence exists for the implication of AGE-RAGE axis in sepsis, but data are still insufficient and conflicting. We aimed to analyze the kinetics of plasma and skin AGEs and sRAGE during sepsis, and their association with outcome in septic patients. METHODS We performed a prospective observational study. We enrolled 90 consecutive patients with severe sepsis or septic shock, within the first 24 h of Intensive Care Unit admission. During the first 5 days of sepsis, we measured plasma autofluorescence (PAF) and skin autofluorescence (SAF) as surrogates of circulating and skin AGEs, respectively. sRAGE was measured on days 1, 3, and 5. Delta values were defined as the difference between the PAF, SAF, or sRAGE on a specific day and the value on day 1. RESULTS 28-day mortality was 18%. Bivariate analysis found that ΔPAF3-1, ΔPAF4-1, ΔPAF5-1, and ΔSAF5-1 were significantly associated with 28-day mortality. Additionally, sRAGE1 was inversely correlated to ΔPAF4-1 (r = -0.250, P = 0.019) and ΔPAF5-1 (r = -0.246, P = 0.024), and significantly associated with 28-day mortality. In an adjusted multivariate logistic regression analysis, ΔPAF2-1, ΔPAF3-1, ΔPAF4-1, ΔPAF5-1, and ΔSAF5-1 were associated with 28-day mortality. CONCLUSIONS Kinetics of plasma and skin AGEs during the first days of sepsis are independently associated with mortality, where a decrease of plasma and skin AGEs are related to higher mortality.
Collapse
|