1
|
Dos Santos TCF, Silva EN, Frezarim GB, Salatta BM, Baldi F, Fonseca LFS, Albuquerque LGD, Muniz MMM, Silva DBDS. Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. Mamm Genome 2025; 36:106-117. [PMID: 39825903 DOI: 10.1007/s00335-024-10100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.
Collapse
Affiliation(s)
- Thaís Cristina Ferreira Dos Santos
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.
| | - Evandro Neves Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil
| | | | - Bruna Maria Salatta
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | | | - Lucia Galvão De Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brasil
| | - Maria Malane Magalhães Muniz
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- University of Guelph, UOGELPH, Guelph, Canada
| | - Danielly Beraldo Dos Santos Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil.
| |
Collapse
|
2
|
Sölzer N, Brügemann K, Yin T, König S. Genetic evaluations and genome-wide association studies for specific digital dermatitis diagnoses in dairy cows considering genotype × housing system interactions. J Dairy Sci 2024; 107:3724-3737. [PMID: 38216046 DOI: 10.3168/jds.2023-24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The present study aimed to use detailed phenotyping for the claw disorder digital dermatitis (DD) considering specific DD stages in 2 housing systems (conventional cubicle barns [CON] and compost-bedded pack barns [CBPB]) to infer possible genotype × housing system interactions. The DD stages included 2,980 observations for the 3 traits DD-sick, DD-acute, and DD-chronic from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows. Selection of the 5 CBPB and 5 CON herds was based on a specific protocol to achieve a high level of herd similarity with regard to climate, feeding, milking system, and location, but with pronounced housing-system differences. Five other farms had a "mixed system" with 2 subherds, one representing CBPB and the other one CON. The CBPB system was represented by 899 cows (1,530 observations), and 811 cows (1,450 observations) represented the CON system. The average disease prevalence was 20.47% for DD-sick, 13.88% for DD-acute, and 5.34% for DD-chronic, with a higher prevalence in CON than in CBPB. After quality control of 50K genotypes, 38,495 SNPs from 926 cows remained for the ongoing genomic analyses. Genetic parameters for DD-sick, DD-acute, and DD-chronic were estimated by applying single-step approaches for single-trait repeatability animal models considering the whole dataset, and separately for the CON and CBPB subsets. Genetic correlations between same DD traits from different housing systems, and between DD-sick, DD-chronic, and DD-acute, were estimated via bivariate animal models. Heritabilities based on the whole dataset were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic. A slight increase of heritabilities and genetic variances was observed in CON compared with the "well-being" CBPB system, indicating a stronger genetic differentiation of diseases in a more challenging environment. Genetic correlations between same DD traits recorded in CON or CBPB were close to 0.80, disproving obvious genotype × housing system interactions. Genetic correlations among DD-sick, DD-acute and DD-chronic ranged from 0.58 to 0.81. SNP main effects and SNP × housing system interaction effects were estimated simultaneously via GWAS, considering only the phenotypes from genotyped cows. Ongoing annotations of potential candidate genes focused on chromosomal segments 100 kb upstream and downstream from the significantly associated candidate SNP. GWAS for main effects indicated heterogeneous Manhattan plots especially for DD-acute and DD-chronic, indicating particularities in disease pathogenesis. Nevertheless, a few shared annotated potential candidate genes, that is, METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute, were identified. These genes have direct or indirect effects on disease resistance or immunology. For the SNP × housing system interaction, the annotated genes ASXL1 and NOL4L on BTA 13 were relevant for DD-sick and DD-acute. Overall, the very similar genetic parameters for the same traits in different environments and negligible genotype × housing system interactions indicate only minor effects on genetic evaluations for DD due to housing-system particularities.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
3
|
Kaseja K, Mucha S, Yates J, Smith E, Banos G, Conington J. Genome-wide association study of health and production traits in meat sheep. Animal 2023; 17:100968. [PMID: 37738702 DOI: 10.1016/j.animal.2023.100968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023] Open
Abstract
Genotypes are currently widely used in animal breeding programmes to enhance the speed of genetic progress. With sufficient data, a Genome-Wide Association Study (GWAS) can be performed to identify informative markers. The aim of this study was to investigate the genetic background of health (footrot and mastitis) and production (birth weight, weaning weight, scan weight, and fat and muscle depth) traits using the available phenotypic and Single Nucleotide Polymorphism (SNP) data collected on the UK Texel sheep population. Initially, 10 193 genotypes were subject to quality control, leaving 9 505 genotypes for further analysis. Selected genotypes, recorded on four different Illumina chip types from low density (15 k SNPs) to high density (606 006 SNPs), were imputed to a subset of 45 686 markers from 50 k array, distributed on 27 chromosomes. Phenotypes collected on 32 farms across the UK for footrot and mastitis and extracted from the UK National database (iTexel) for the production traits were used along with pre-estimated variance components to obtain de-regressed breeding values and used to perform GWAS. Results showed three SNPs being significant on the genome-wise level ('OAR8_62240378.1' on chromosome 8 for birth weight, 's14444.1' on chromosome 19 for weaning weight and 's65197.1' on chromosome 23 for scan weight). Fourteen subsequent SNPs were found to be significant at the chromosome-wise level. These SNPs are located within or close to previously reported QTLs impacting on animal health (such as faecal egg count or somatic cell count) and production (such as body or carcass weight and fat amount). These results indicate that the studied traits are highly polygenic with complex genetic architecture.
Collapse
Affiliation(s)
- K Kaseja
- SRUC Easter Bush, Roslin Institute Building, Edinburgh EH25 9RG, UK.
| | - S Mucha
- SRUC Easter Bush, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - J Yates
- The British Texel Sheep Society, Stoneleigh Park, Warwickshire CV8 2LG, UK
| | - E Smith
- The British Texel Sheep Society, Stoneleigh Park, Warwickshire CV8 2LG, UK
| | - G Banos
- SRUC Easter Bush, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - J Conington
- SRUC Easter Bush, Roslin Institute Building, Edinburgh EH25 9RG, UK
| |
Collapse
|
4
|
Ilie DE, Gavojdian D, Kusza S, Neamț RI, Mizeranschi AE, Mihali CV, Cziszter LT. Kompetitive Allele Specific PCR Genotyping of 89 SNPs in Romanian Spotted and Romanian Brown Cattle Breeds and Their Association with Clinical Mastitis. Animals (Basel) 2023; 13:ani13091484. [PMID: 37174521 PMCID: PMC10177413 DOI: 10.3390/ani13091484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mastitis is the most common production disease in the dairy sector worldwide, its incidence being associated with both cows' exposure to bacteria and the cows' genetic make-up for resistance to pathogens. The objective of our study was to analyse 89 missense SNPs belonging to six genes (CXCR2, CXCL8, TLR4, BRCA1, LTF, BOLA-DRB3), which were found to be associated with genetic resistance or susceptibility to mastitis. A total of 298 cattle (250 Romanian Spotted and 48 Romanian Brown) were genotyped by Kompetitive Allele Specific PCR (KASP) and a chi-squared test was used for genetic association studies with clinical mastitis. A total of 35 SNPs (39.3%) among the selected 89 SNPs were successfully genotyped, of which 31 markers were monomorphic. The polymorphic markers were found in two genes: TLR4 (rs460053411) and BOLA-DRB3 (rs42309897, rs208816121, rs110124025). The polymorphic SNPs with MAF > 5% and call rates > 95% were used for the association study. The results showed that rs110124025 in the BOLA-DRB3 gene was significantly associated with mastitis prevalence (p ≤ 0.05) in both investigated breeds. Current results show that the SNP rs110124025 in the BOLA-DRB3 gene can be used as a candidate genetic marker in selection for mastitis resistance in Romanian dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
| | - Dinu Gavojdian
- The Research Department, Research and Development Institute for Bovine Balotesti, 077015 Balotesti, Romania
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, 4032 Debrecen, Hungary
| | - Radu Ionel Neamț
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
| | | | - Ciprian Valentin Mihali
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
- Department of Life Sciences, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, 310025 Arad, Romania
| | - Ludovic Toma Cziszter
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
- Department of Animal Production Engineering, Faculty of Bioengineering of Animal Resources, University of Life Sciences 'King Mihai I' from Timișoara, 300645 Timișoara, Romania
| |
Collapse
|
5
|
Li B, Barden M, Kapsona V, Sánchez-Molano E, Anagnostopoulos A, Griffiths BE, Bedford C, Dai X, Coffey M, Psifidi A, Oikonomou G, Banos G. Single-step genome-wide association analyses of claw horn lesions in Holstein cattle using linear and threshold models. Genet Sel Evol 2023; 55:16. [PMID: 36899300 PMCID: PMC9999328 DOI: 10.1186/s12711-023-00784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Lameness in dairy cattle is primarily caused by foot lesions including the claw horn lesions (CHL) of sole haemorrhage (SH), sole ulcers (SU), and white line disease (WL). This study investigated the genetic architecture of the three CHL based on detailed animal phenotypes of CHL susceptibility and severity. Estimation of genetic parameters and breeding values, single-step genome-wide association analyses, and functional enrichment analyses were performed. RESULTS The studied traits were under genetic control with a low to moderate heritability. Heritability estimates of SH and SU susceptibility on the liability scale were 0.29 and 0.35, respectively. Heritability of SH and SU severity were 0.12 and 0.07, respectively. Heritability of WL was relatively lower, indicating stronger environmental influence on the presence and development of WL than the other two CHL. Genetic correlations between SH and SU were high (0.98 for lesion susceptibility and 0.59 for lesion severity), whereas genetic correlations of SH and SU with WL also tended to be positive. Candidate quantitative trait loci (QTL) were identified for all CHL, including some on Bos taurus chromosome (BTA) 3 and 18 with potential pleiotropic effects associated with multiple foot lesion traits. A genomic window of 0.65 Mb on BTA3 explained 0.41, 0.50, 0.38, and 0.49% of the genetic variance for SH susceptibility, SH severity, WL susceptibility, and WL severity, respectively. Another window on BTA18 explained 0.66, 0.41, and 0.70% of the genetic variance for SH susceptibility, SU susceptibility, and SU severity, respectively. The candidate genomic regions associated with CHL harbour annotated genes that are linked to immune system function and inflammation responses, lipid metabolism, calcium ion activities, and neuronal excitability. CONCLUSIONS The studied CHL are complex traits with a polygenic mode of inheritance. Most traits exhibited genetic variation suggesting that animal resistance to CHL can be improved with breeding. The CHL traits were positively correlated, which will facilitate genetic improvement for resistance to CHL as a whole. Candidate genomic regions associated with lesion susceptibility and severity of SH, SU, and WL provide insights into a global profile of the genetic background underlying CHL and inform genetic improvement programmes aiming at enhancing foot health in dairy cattle.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK.
| | - Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Vanessa Kapsona
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK
| | - Enrique Sánchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Bethany Eloise Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Cherril Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Xiaoxia Dai
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Mike Coffey
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Georgios Banos
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
6
|
Barden M, Anagnostopoulos A, Griffiths BE, Li B, Bedford C, Watson C, Psifidi A, Banos G, Oikonomou G. Genetic parameters of sole lesion recovery in Holstein cows. J Dairy Sci 2023; 106:1874-1888. [PMID: 36710182 PMCID: PMC9947741 DOI: 10.3168/jds.2022-22064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 01/29/2023]
Abstract
Sole hemorrhage and sole ulcers, referred to as sole lesions, are important causes of lameness in dairy cattle. The objective of this study was to estimate the genetic parameters of a novel trait reflecting how well cows recovered from sole lesions and the genetic correlation of this trait with overall susceptibility to sole lesions. A cohort of Holstein dairy cows was prospectively enrolled on 4 farms and assessed at 4 timepoints: before calving, immediately after calving, in early lactation, and in late lactation. At each timepoint, sole lesions were recorded at the claw level by veterinary surgeons and used to define 2 binary traits: (1) susceptibility to sole lesions-whether animals were affected with sole lesions at least once during the study or were unaffected at every assessment, and (2) sole lesion recovery-whether sole lesions healed between early and late lactation. Animals were genotyped and pedigree details extracted from the national database. Analyses were conducted with BLUPF90 software in a single-step framework; genetic parameters were estimated from animal threshold models using Gibbs sampling. The genetic correlation between both traits was approximated as the correlation between genomic estimated breeding values, adjusting for their reliabilities. A total of 2,025 animals were used to estimate the genetic parameters of sole lesion susceptibility; 44% of animals recorded a sole lesion at least once during the study period. The heritability of sole lesion susceptibility, on the liability scale, was 0.25 (95% highest density interval = 0.16-0.34). A total of 498 animals were used to estimate the genetic parameters of sole lesion recovery; 71% of animals had recovered between the early and late lactation assessments. The heritability of sole lesion recovery, on the liability scale, was 0.27 (95% highest density interval = 0.02-0.52). The approximate genetic correlation between each trait was -0.11 (95% confidence interval = -0.20 to -0.02). Our results indicate that recovery from sole lesions is heritable. If this finding is corroborated in further studies, it may be possible to use selective breeding to reduce the frequency of chronically lame cows. As sole lesion recovery appears to be weakly genetically related to sole lesion susceptibility, successful genetic improvement of sole lesion recovery would benefit from selection on this trait directly.
Collapse
Affiliation(s)
- Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Bethany E. Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Bingjie Li
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Cherry Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Chris Watson
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Georgios Banos
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom.
| |
Collapse
|
7
|
Bay V, Gillespie A, Ganda E, Evans NJ, Carter SD, Lenzi L, Lucaci A, Haldenby S, Barden M, Griffiths BE, Sánchez-Molano E, Bicalho R, Banos G, Darby A, Oikonomou G. The bovine foot skin microbiota is associated with host genotype and the development of infectious digital dermatitis lesions. MICROBIOME 2023; 11:4. [PMID: 36624507 PMCID: PMC9830885 DOI: 10.1186/s40168-022-01440-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bovine Digital Dermatitis (BDD) is a prevalent infectious disease, causing painful foot skin lesions and lameness in cattle. We describe herein the bovine foot skin microbiota and its associations with BDD using 16S rRNA gene amplicon and shotgun metagenomic sequencing on samples from 259 dairy cows from three UK dairy farms. RESULTS We show evidence of dysbiosis, and differences in taxonomy and functional profiles in the bovine foot skin microbiome of clinically healthy animals that subsequently develop BDD lesions, compared to those that do not. Our results suggest that taxonomical and functional differences together with alterations in ecological interactions between bacteria in the normal foot skin microbiome may predispose an animal to develop BDD lesions. Using genome-wide association and regional heritability mapping approaches, we provide first evidence for interactions between host genotype and certain members of the foot skin microbiota. We show the existence of significant genetic variation in the relative abundance of Treponema spp. and Peptoclostridium spp. and identify regions in the bovine genome that explain a significant proportion of this variation. CONCLUSIONS Collectively this work shows early changes in taxonomic and functional profiles of the bovine foot-skin microbiota in clinically healthy animals which are associated with subsequent development of BDD and could be relevant to prevention of disease. The description of host genetic control of members of the foot skin microbiota, combined with the association of the latter with BDD development offer new insights into a complex relationship that can be exploited in selective breeding programmes. Video Abstract.
Collapse
Affiliation(s)
- V Bay
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Faculty of Agriculture, Ege University, İzmir, Turkey
| | - A Gillespie
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - E Ganda
- Department of Animal Science, Penn State University, State College, PA, USA
| | - N J Evans
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S D Carter
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - L Lenzi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - A Lucaci
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S Haldenby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - M Barden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - B E Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - R Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - G Banos
- Scotland's Rural College (SRUC), Easter Bush, Midlothian, UK
| | - A Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - G Oikonomou
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Barden M, Li B, Griffiths BE, Anagnostopoulos A, Bedford C, Psifidi A, Banos G, Oikonomou G. Genetic parameters and genome-wide association study of digital cushion thickness in Holstein cows. J Dairy Sci 2022; 105:8237-8256. [PMID: 36028347 PMCID: PMC9511494 DOI: 10.3168/jds.2022-22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022]
Abstract
The digital cushion is linked to the development of claw horn lesions (CHL) in dairy cattle. The objectives of this study were to (1) estimate genetic parameters for digital cushion thickness (DCT), (2) estimate the genetic correlation between DCT and CHL, and (3) identify candidate genes associated with DCT. A cohort of 2,352 Holstein dairy cows were prospectively enrolled on 4 farms and assessed at 4 time points: before calving, immediately after calving, in early lactation, and in late lactation. At each time point, CHL was recorded by veterinary surgeons, and ultrasonographic images of the digital cushion were stored and retrospectively measured at 2 anatomical locations. Animals were genotyped and pedigree details extracted from the national database. Genetic parameters were estimated following a single-step approach implemented in AIREMLF90. Four traits were analyzed: the 2 DCT measurements, sole lesions (sole hemorrhage and sole ulcers), and white line lesions. All traits were analyzed with univariate linear mixed models; bivariate models were fit to estimate the genetic correlation between traits within and between time points. Single-marker and window-based genome-wide association analyses of DCT traits were conducted at each time point; candidate genes were mapped near (<0.2 Mb) or within the genomic markers or windows with the largest effects. Heritability estimates of DCT ranged from 0.14 to 0.44 depending on the location of DCT measurement and assessment time point. The genetic correlation between DCT and sole lesions was generally negative, notably between DCT immediately after calving and sole lesions in early or late lactation, and between DCT in early or late lactation and sole lesion severity in early or late lactation. Digital cushion thickness was not genetically correlated with white line lesions. A polygenic background to DCT was found; genes associated with inflammation, fat metabolism, and bone development were mapped near or within the top markers and windows. The moderate heritability of DCT provides an opportunity to use selective breeding to change DCT in a population. The negative genetic correlation between DCT and sole lesions at different stages of production lends support to current hypotheses of sole lesion pathogenesis. Highlighted candidate genes provide information regarding the complex genetic background of DCT in Holstein cows, but further studies are needed to explore and corroborate these findings.
Collapse
Affiliation(s)
- Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom.
| | - Bingjie Li
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Bethany E Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Cherry Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Georgios Banos
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| |
Collapse
|
9
|
Sölzer N, May K, Yin T, König S. Genomic analyses of claw disorders in Holstein cows: Genetic parameters, trait associations, and genome-wide associations considering interactions of SNP and heat stress. J Dairy Sci 2022; 105:8218-8236. [PMID: 36028345 DOI: 10.3168/jds.2022-22087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
The aim of the present study was an in-depth genomic analysis to understand the genomic mechanisms of the 3 claw disorders dermatitis digitalis (DD), interdigital hyperplasia (HYP), and sole ulcer (SU). In this regard, we estimated genetic parameters based on genomic relationship matrices, performed genome-wide association studies, annotated potential candidate genes, and inferred genetic associations with breeding goal traits considering the most important chromosomal segments. As a further novelty of this study, we inferred possible SNP × heat stress interactions for claw disorders. The study consisted of 17,264 first-lactation Holstein Friesian cows kept in 50 large-scale contract herds. The disease prevalence was 15.96, 2.36, and 8.20% for DD, HYP, and SU, respectively. The remaining breeding goal traits consisted of type traits of the feet and leg composite, female fertility, health traits, and 305-d production traits. The final genotype data set included 44,474 SNPs from the 17,264 genotyped cows. Heritabilities for DD, HYP, and SU were estimated in linear and threshold models considering the genomic relationship matrix (G matrix). Genetic correlations with breeding goal traits based on G were estimated in a series of bivariate linear models, which were verified via SNP effect correlations for specific chromosome segments (i.e., segments harboring potential candidate genes for DD, HYP, and SU). Genome-wide association studies were performed for all traits in a case-control design by applying a single SNP linear mixed model. Furthermore, for DD, HYP, and SU, we modeled SNP × heat stress interactions in genome-wide association studies. Single nucleotide polymorphism-based heritabilities were 0.04 and 0.08 for DD, 0.03 and 0.10 for SU, and 0.03 and 0.23 for HYP from linear and threshold models, respectively. The genetic correlations between DD, HYP, and SU with conformation traits from the feet and leg composite were positive throughout, indicating the value of indirect selection on conformation traits to improve claw health. Genetic correlations between DD, SU, and HYP with other breeding goal traits indicated impaired female fertility, impaired udder health status, and productivity decline of diseased cows. Genetic correlations among DD, SU, and HYP were moderate to large, indicating that different claw disorders have similar genetic mechanisms. Nevertheless, we identified disease-specific potential candidate genes, and genetic associations based on the surrounding SNPs partly differed from the genetic correlations. Especially for candidate genes contributing to 2 traits simultaneously, correlations based on SNP effects from the respective chromosome segment were close to 1 or to -1. In this regard, we annotated the candidate genes KRT33A and KRT33B for HYP and DD, KIF27 for HYP and calving to first insemination, and MAN1A1 for SU and the production traits. For SNP × heat stress interactions, we identified significant SNPs on BTA 2, 4, 5, 7, 8, 9, 13, 22, 25, and 28, and we annotated the potential candidate genes FSIP2, CLCN1, ADGRV1, DOP1A, THBD, and RHOBTB1. Results indicate gene-specific mechanisms of the claw disorders only in specific environments.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany.
| |
Collapse
|
10
|
Oelschlaegel D, Wensch-Dorendorf M, Kopke G, Jungnickel R, Waurich B, Rosner F, Döpfer D, Brenig B, Swalve HH. Functional Variants Associated With CMPK2 and in ASB16 Influence Bovine Digital Dermatitis. Front Genet 2022; 13:859595. [PMID: 35832195 PMCID: PMC9271848 DOI: 10.3389/fgene.2022.859595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine digital dermatitis (BDD) is an infectious disease of the hoof in cattle with multifactorial etiology and a polygenic influence on susceptibility. With our study, we identified genomic regions with the impact on occurrence and development of BDD. We used 5,040 genotyped animals with phenotype information based on the M-stage system for genome-wide association. Significant associations for single-nucleotide polymorphisms were found near genes CMPK2 (chromosome 11) and ASB16 (chromosome 19) both being implicated in immunological processes. A sequence analysis of the chromosomal regions revealed rs208894039 and rs109521151 polymorphisms as having significant influence on susceptibility to the disease. Specific genotypes were significantly more likely to be affected by BDD and developed chronic lesions. Our study provides an insight into the genomic background for a genetic predisposition related to the pathogenesis of BDD. Results might be implemented in cattle-breeding programs and could pave the way for the establishment of a BDD prescreening test.
Collapse
Affiliation(s)
- Diana Oelschlaegel
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Monika Wensch-Dorendorf
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Grit Kopke
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Roswitha Jungnickel
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benno Waurich
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Frank Rosner
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann H. Swalve
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- *Correspondence: Hermann H. Swalve,
| |
Collapse
|
11
|
Lai E, Danner AL, Famula TR, Oberbauer AM. Genome-Wide Association Studies Reveal Susceptibility Loci for Noninfectious Claw Lesions in Holstein Dairy Cattle. Front Genet 2021; 12:657375. [PMID: 34122511 PMCID: PMC8194352 DOI: 10.3389/fgene.2021.657375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Sole ulcers (SUs) and white line disease (WLD) are two common noninfectious claw lesions (NICL) that arise due to a compromised horn production and are frequent causes of lameness in dairy cattle, imposing welfare and profitability concerns. Low to moderate heritability estimates of SU and WLD susceptibility indicate that genetic selection could reduce their prevalence. To identify the susceptibility loci for SU, WLD, SU and/or WLD, and any type of noninfectious claw lesion, genome-wide association studies (GWAS) were performed using generalized linear mixed model (GLMM) regression, chunk-based association testing (CBAT), and a random forest (RF) approach. Cows from five commercial dairies in California were classified as controls having no lameness records and ≥6 years old (n = 102) or cases having SU (n = 152), WLD (n = 117), SU and/or WLD (SU + WLD, n = 198), or any type of noninfectious claw lesion (n = 217). The top single nucleotide polymorphisms (SNPs) were defined as those passing the Bonferroni-corrected suggestive and significance thresholds in the GLMM analysis or those that a validated RF model considered important. Effects of the top SNPs were quantified using Bayesian estimation. Linkage disequilibrium (LD) blocks defined by the top SNPs were explored for candidate genes and previously identified, functionally relevant quantitative trait loci. The GLMM and CBAT approaches revealed the same regions of association on BTA8 for SU and BTA13 common to WLD, SU + WLD, and NICL. These SNPs had effects significantly different from zero, and the LD blocks they defined explained a significant amount of phenotypic variance for each dataset (6.1-8.1%, p < 0.05), indicating the small but notable contribution of these regions to susceptibility. These regions contained candidate genes involved in wound healing, skin lesions, bone growth and mineralization, adipose tissue, and keratinization. The LD block defined by the most significant SNP on BTA8 for SU included a SNP previously associated with SU. The RF models were overfitted, indicating that the SNP effects were very small, thereby preventing meaningful interpretation of SNPs and any downstream analyses. These findings suggested that variants associated with various physiological systems may contribute to susceptibility for NICL, demonstrating the complexity of genetic predisposition.
Collapse
Affiliation(s)
- Ellen Lai
- Animal Science Department, University of California, Davis, Davis, CA, United States
| | - Alexa L Danner
- Animal Science Department, University of California, Davis, Davis, CA, United States
| | - Thomas R Famula
- Animal Science Department, University of California, Davis, Davis, CA, United States
| | - Anita M Oberbauer
- Animal Science Department, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Sutera AM, Tolone M, Mastrangelo S, Di Gerlando R, Sardina MT, Portolano B, Pong-Wong R, Riggio V. Detection of genomic regions underlying milk production traits in Valle del Belice dairy sheep using regional heritability mapping. J Anim Breed Genet 2021; 138:552-561. [PMID: 34014003 PMCID: PMC8453569 DOI: 10.1111/jbg.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify genomic regions underlying milk production traits in the Valle del Belice dairy sheep using regional heritability mapping (RHM). Repeated measurements for milk yield (MY), fat percentage and yield (F% and FY) and protein percentage and yield (P% and PY), collected over a period of 6 years (2006–2012) on 481 Valle del Belice ewes, were used for the analysis. Animals were genotyped with the Illumina 50k SNP chip. Variance components, heritabilities and repeatabilities within and across lactations were estimated, fitting parity, litter size, season of lambing and fortnights in milk, as fixed; and additive genetic, permanent environment within and across lactations, flock by test‐day interaction and residual as random effects. For the RHM analysis, the model included the same fixed and random effects as before, plus an additional regional genomic additive effect (specific for the region being tested) as random. While the whole genomic additive effect was estimated using the genomic relationship matrix (GRM) constructed from all SNPs, the regional genomic additive effect was estimated from a GRM matrix constructed from the SNPs within each region. Heritability estimates ranged between 0.06 and 0.15, with repeatabilities being between 0.14 and 0.24 across lactations and between 0.23 and 0.39 within lactation for all milk production traits. A substantial effect of flock‐test‐day on milk production traits was also estimated. Significant genomic regions at either genome‐wide (p < .05) or suggestive (i.e., one false positive per genome scan) level were identified on chromosome (OAR) 2, 3 and 20 for F% and on OAR3 for P%, with the regions on OAR3 in common between the two traits. Our results confirmed the role of LALBA and AQP genes, on OAR3, as candidate genes for milk production traits in sheep.
Collapse
Affiliation(s)
- Anna Maria Sutera
- Dipartimento Scienze Veterinarie, Università di Messina, Messina, Italy
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ricardo Pong-Wong
- The Roslin Institute and R(D)SVS, Easter Bush Campus, Midlothian, UK
| | - Valentina Riggio
- The Roslin Institute and R(D)SVS, Easter Bush Campus, Midlothian, UK.,Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| |
Collapse
|
13
|
Shabalina T, Yin T, May K, König S. Proofs for genotype by environment interactions considering pedigree and genomic data from organic and conventional cow reference populations. J Dairy Sci 2021; 104:4452-4466. [PMID: 33589254 DOI: 10.3168/jds.2020-19384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to prove genotype by environment interactions (G × E) for production, longevity, and health traits considering conventional and organic German Holstein dairy cattle subpopulations. The full data set included 141,778 Holstein cows from 57 conventional herds and 7,915 cows from 9 organic herds. The analyzed traits were first-lactation milk yield and fat percentage (FP), the length of productive life (LPL) and the health traits mastitis, ovarian cycle disorders, and digital dermatitis in first lactation. A subset of phenotyped cows was genotyped and used for the implementation of separate cow reference populations. After SNP quality controls, the cow reference sets considered 40,830 SNP from 19,700 conventional cows and the same 40,830 SNP from 1,282 organic cows. The proof of possible G × E was made via multiple-trait model applications, considering same traits from the conventional and organic population as different traits. In this regard, pedigree (A), genomic (G) and combined relationship (H) matrices were constructed. For the production traits, heritabilities were very similar in both organic and conventional populations (i.e., close to 0.70 for FP and close to 0.40 for milk yield). For low heritability health traits and LPL, stronger heritability fluctuations were observed, especially for digital dermatitis with 0.05 ± 0.01 (organic, A matrix) to 0.33 ± 0.04 (conventional, G matrix). Quite large genetic correlations between same traits from the 2 environments were estimated for production traits, especially for high heritability FP. For LPL, the genetic correlation was 0.67 (A matrix) and 0.66 (H matrix). The genetic correlation between LPL organic with LPL conventional was 0.94 when considering the G matrix, but only 213 genotyped cows were included. For health traits, genetic correlations were throughout lower than 0.80, indicating possible G × E. Genetic correlations from the different matrices A, G, and H for health and production traits followed the same pattern, but the estimates from G for health traits were associated with quite large standard errors. In genome-wide association studies, significantly associated SNP for production traits overlapped in the conventional and organic population. In contrast, for low heritability LPL and health traits, significantly associated SNP and annotated potential candidate genes differed in both populations. In this regard, significantly associated SNP for mastitis from conventional cows were located on Bos taurus autosomes 6 and 19, but on Bos taurus autosomes 1, 10, and 22 in the organic population. For the remaining health traits and LPL, different potential candidate genes were annotated, but the different genes reflect similar physiological pathways. We found evidence of G × E for low heritability functional traits, suggesting different breeding approaches in organic and conventional populations. Nevertheless, for a verification of results and implementation of alternative breeding strategies, it is imperative to increase the organic cow reference population.
Collapse
Affiliation(s)
- T Shabalina
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany; Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Prof.-Dürwaechter-Platz 1, 85586 Poing, Germany
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany.
| |
Collapse
|
14
|
Singh A, Mehrotra A, Gondro C, Romero ARDS, Pandey AK, Karthikeyan A, Bashir A, Mishra BP, Dutt T, Kumar A. Signatures of Selection in Composite Vrindavani Cattle of India. Front Genet 2020; 11:589496. [PMID: 33391343 PMCID: PMC7775581 DOI: 10.3389/fgene.2020.589496] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Vrindavani is an Indian composite cattle breed developed by crossbreeding taurine dairy breeds with native indicine cattle. The constituent breeds were selected for higher milk production and adaptation to the tropical climate. However, the selection response for production and adaptation traits in the Vrindavani genome is not explored. In this study, we provide the first overview of the selection signatures in the Vrindavani genome. A total of 96 Vrindavani cattle were genotyped using the BovineSNP50 BeadChip and the SNP genotype data of its constituent breeds were collected from a public database. Within-breed selection signatures in Vrindavani were investigated using the integrated haplotype score (iHS). The Vrindavani breed was also compared to each of its parental breeds to discover between-population signatures of selection using two approaches, cross-population extended haplotype homozygosity (XP-EHH) and fixation index (FST). We identified 11 common regions detected by more than one method harboring genes such as LRP1B, TNNI3K, APOB, CACNA2D1, FAM110B, and SPATA17 associated with production and adaptation. Overall, our results suggested stronger selective pressure on regions responsible for adaptation compared to milk yield.
Collapse
Affiliation(s)
- Akansha Singh
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Arnav Mehrotra
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | | | - Ashwni Kumar Pandey
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - A Karthikeyan
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Aamir Bashir
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - B P Mishra
- Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
15
|
Lai E, Danner AL, Famula TR, Oberbauer AM. Genome-Wide Association Studies Reveal Susceptibility Loci for Digital Dermatitis in Holstein Cattle. Animals (Basel) 2020; 10:ani10112009. [PMID: 33142934 PMCID: PMC7693332 DOI: 10.3390/ani10112009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Digital dermatitis (DD) causes lameness in dairy cattle. To detect the quantitative trait loci (QTL) associated with DD, genome-wide association studies (GWAS) were performed using high-density single nucleotide polymorphism (SNP) genotypes and binary case/control, quantitative (average number of FW per hoof trimming record) and recurrent (cases with ≥2 DD episodes vs. controls) phenotypes from cows across four dairies (controls n = 129 vs. FW n = 85). Linear mixed model (LMM) and random forest (RF) approaches identified the top SNPs, which were used as predictors in Bayesian regression models to assess the SNP predictive value. The LMM and RF analyses identified QTL regions containing candidate genes on Bos taurus autosome (BTA) 2 for the binary and recurrent phenotypes and BTA7 and 20 for the quantitative phenotype that related to epidermal integrity, immune function, and wound healing. Although larger sample sizes are necessary to reaffirm these small effect loci amidst a strong environmental effect, the sample cohort used in this study was sufficient for estimating SNP effects with a high predictive value.
Collapse
|
16
|
Afonso JS, Bruce M, Keating P, Raboisson D, Clough H, Oikonomou G, Rushton J. Profiling Detection and Classification of Lameness Methods in British Dairy Cattle Research: A Systematic Review and Meta-Analysis. Front Vet Sci 2020; 7:542. [PMID: 32974403 PMCID: PMC7468474 DOI: 10.3389/fvets.2020.00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Lameness is a serious concern in the dairy sector, reflecting its high incidence and impact on animal welfare and productivity. Research has provided figures on its frequency using different methodologies, making it difficult to compare results and hindering farm-level decision-making. The study's objectives were to determine the frequency levels of lameness in British dairy cattle through a meta-analysis approach, and to understand the chronological patterns of how lameness cases are detected and classified in scientific research. A systematic review was conducted using PRISMA-P guidelines for article selection. Random-effects models estimated the pooled frequency measure of lameness with heterogeneity managed through subgroup analysis and meta-regression. Sixty-eight papers were identified, 50 included prevalence and 36 incidence data. The pooled prevalence of lameness in British dairy cattle was estimated at 29.5% (95% CI 26.7-32.4%) whilst all-cause lameness incidence rate indicated 30.9 cases of lameness per 100 cow-years (95% CI 24.5-37.9). The pooled cause-specific lameness incidence rate per 100 cow-years was 66.1 (95% CI 24.1-128.8) for white line disease, 53.2 (95% CI 20.5-101.2) for sole ulcer, 53.6 (95% CI 19.2-105.34) for digital dermatitis, with 51.9 (95% CI 9.3-129.2) attributable to other lameness-related lesions. Heterogeneity levels remained high. Sixty-nine papers contributed to a chronological overview of lameness data source. Although the AHDB Dairy mobility scoring system (MSS) was launched in the UK in 2008 and adopted shortly after by the British Dairy sector as the standard tool for assessing lameness, other methods are used depending on the investigator. Automated lameness detection systems may offer a solution for the subjective nature of MSSs, yet it was utilized in one study only. Despite the recognition of under-reporting of lameness from farm records 22 (31.9%) studies used this data source. The diversity of lameness data collection methods and sources was a key finding. It limits the understanding of lameness burden and the refinement of policy making for lameness. Standardizing case definition and research methods would improve knowledge of and ability to manage lameness. Regardless of the measurement method lameness in British dairy cattle is high.
Collapse
Affiliation(s)
- João Sucena Afonso
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mieghan Bruce
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Patrick Keating
- Médecins Sans Frontières - OCA, Manson Unit, London, United Kingdom
| | | | - Helen Clough
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - George Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan Rushton
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Griffiths BE, Mahen PJ, Hall R, Kakatsidis N, Britten N, Long K, Robinson L, Tatham H, Jenkin R, Oikonomou G. A Prospective Cohort Study on the Development of Claw Horn Disruption Lesions in Dairy Cattle; Furthering our Understanding of the Role of the Digital Cushion. Front Vet Sci 2020; 7:440. [PMID: 32851023 PMCID: PMC7399069 DOI: 10.3389/fvets.2020.00440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Claw horn disruption lesion (CHDL) is the collective term used to describe non-infectious foot lesions such as sole ulcers (SU), sole hemorrhage (SH), and white line disease (WLD) that commonly affect dairy cattle. The potential role of the bovine digital cushion, an anatomical structure located under the pedal bone and composed mostly of adipose and connective tissue, in the aetiopathogenesis of CHDL has recently been the subject of several studies. The aim of this prospective cohort study is to identify risk factors associated with the development of CHDL and to add further evidence regarding the role of the digital cushion. In order to achieve that we collected data from 500 lactations; 455 dairy cows from 3 farms were enrolled in this study. Data were collected from each animal on three occasions: 3–4 weeks before expected calving date, 1 week post calving, and 8–10 weeks post-calving. At each occasion, sole soft tissue thickness (the combined depth of the digital cushion and corium, SSTT) was measured using B-mode ultrasonography. At 8–10 weeks post-calving foot trimming was undertaken and the presence of CHDLs was recorded. Univariable analysis was undertaken between variables of interest, before multivariable regression models were constructed. Mixed effects multivariable linear regression models were created to describe the changes in SSTT and associations with various explanatory variables. Multivariable logistic regression models with the presence of SU, SH, or WLD as an outcome were also built. SSTT was shown to decrease from calving to early lactation (EL). Primiparous animals were found to have smaller SSTT, than multiparous animals. Animals with greater BCS had greater SSTT. Cows with a SU in early lactation had lower SSTT both at pre-calving and calving inspections comparing to cows without a SU. Cows that developed mastitis within 30 days of calving had approximately four times higher odds of developing SU compared to cows that did not develop mastitis. Our study advances our understanding of animal level risk factors associated with the development of CHDL and highlights the importance of the periparturient period.
Collapse
Affiliation(s)
- Bethany E Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Philippa J Mahen
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rachel Hall
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nikolaos Kakatsidis
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nick Britten
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kerry Long
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lara Robinson
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hannah Tatham
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca Jenkin
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Stambuk CR, Staiger EA, Heins BJ, Huson HJ. Exploring physiological and genetic variation of digital cushion thickness in Holstein and Jersey cows and bulls. J Dairy Sci 2020; 103:9177-9194. [PMID: 32713698 DOI: 10.3168/jds.2020-18290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022]
Abstract
The objectives of our study were to expand phenotypic characterization of digital cushion thickness (DCT) to the Jersey breed and include mature bulls and to identify breed-specific quantitative trait loci (QTL) for DCT within the Jersey or Holstein breeds and common QTL across breeds and sexes to better understand biological regulation and guide future use of marker-assisted selection. In a cohort of 698 cows and 85 bulls (Holstein and Jersey) from 8 farms in New York State, data were collected on DCT, body condition score (BCS), withers height, and sacral height. All animals underwent sonographic examination of the digital cushion evaluated at the sole ulcer site for the right front and hind feet. Linear mixed models were conducted on DCT separately for cows and bulls with fixed effects of time point, breed, age, digit, and BCS group. The models included random effects to control for the random subset of animals per farm, repeated measures, and multiple measurements from each animal. The phenotypic results indicated that DCT varied by time point, breed, age, digit, and BCS group for cows and by breed, age, digit, and BCS group for bulls. For the genotypic study, 616 cow DNA samples were genotyped on the Illumina BovineHD 777K BeadChip (Illumina Inc., San Diego, CA), whereas 76 bull DNA samples were genotyped on different platforms ranging from 5K to 150K. Multiple genome-wide association studies were conducted to highlight pertinent phenotyping parameters and genetic markers for genomic selection. Data were separated into 8 data sets based on different combinations of breed and sex. Each data set was assessed for quality of markers and samples before conducting genome-wide association studies for DCT, testing the inheritance models and genetic variation of digit, foot, and average thickness. Ten markers passed the Bonferroni correction threshold and 9 passed false discovery rate from 10 genome-wide association studies using a combination of the covariates breed, sex, genotyping batch plate, age, BCS, withers height, and sacral height. Of the 43 candidate genes, 8 novel biologically plausible genes were identified on Bos taurus autosomes 3, 4, 7, and 9: SFRS18 and LRRFIP1 function in fat deposition, whereas AHR, BZW2, EFNA5, USP45, and VAV3 effect bone growth, and SOSTDC1 is related to epidermal keratinocyte function. The genetic markers associated with DCT in this study were explored for variation between cows and bulls within and across breeds for their potential use in marker-assisted selection.
Collapse
Affiliation(s)
- C R Stambuk
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - E A Staiger
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - B J Heins
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - H J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
19
|
Cardoso DF, Fernandes Júnior GA, Scalez DCB, Alves AAC, Magalhães AFB, Bresolin T, Ventura RV, Li C, de Sena Oliveira MC, Porto-Neto LR, Carvalheiro R, de Oliveira HN, Tonhati H, Albuquerque LG. Uncovering Sub-Structure and Genomic Profiles in Across-Countries Subpopulations of Angus Cattle. Sci Rep 2020; 10:8770. [PMID: 32471998 PMCID: PMC7260210 DOI: 10.1038/s41598-020-65565-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Highlighting genomic profiles for geographically distinct subpopulations of the same breed may provide insights into adaptation mechanisms to different environments, reveal genomic regions divergently selected, and offer initial guidance to joint genomic analysis. Here, we characterized similarities and differences between the genomic patterns of Angus subpopulations, born and raised in Canada (N = 382) and Brazil (N = 566). Furthermore, we systematically scanned for selection signatures based on the detection of autozygosity islands common between the two subpopulations, and signals of divergent selection, via FST and varLD tests. The principal component analysis revealed a sub-structure with a close connection between the two subpopulations. The averages of genomic relationships, inbreeding coefficients, and linkage disequilibrium at varying genomic distances were rather similar across them, suggesting non-accentuated differences in overall genomic diversity. Autozygosity islands revealed selection signatures common to both subpopulations at chromosomes 13 (63.77-65.25 Mb) and 14 (22.81-23.57 Mb), which are notably known regions affecting growth traits. Nevertheless, further autozygosity islands along with FST and varLD tests unravel particular sites with accentuated population subdivision at BTAs 7 and 18 overlapping with known QTL and candidate genes of reproductive performance, thermoregulation, and resistance to infectious diseases. Our findings indicate overall genomic similarity between Angus subpopulations, with noticeable signals of divergent selection in genomic regions associated with the adaptation in different environments.
Collapse
Affiliation(s)
- Diercles Francisco Cardoso
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | - Gerardo Alves Fernandes Júnior
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Daiane Cristina Becker Scalez
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Anderson Antonio Carvalho Alves
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ana Fabrícia Braga Magalhães
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ricardo Vieira Ventura
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Pirassununga, SP, Brazil
| | - Changxi Li
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | | | | | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil
| | - Henrique Nunes de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil
| | - Humberto Tonhati
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil
| | - Lucia Galvão Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
20
|
O'Leary N, Byrne D, O'Connor A, Shalloo L. Invited review: Cattle lameness detection with accelerometers. J Dairy Sci 2020; 103:3895-3911. [DOI: 10.3168/jds.2019-17123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
|