1
|
Abdolmaleky HM, Nohesara S, Zhou JR, Thiagalingam S. Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment. Epigenomics 2025; 17:317-333. [PMID: 39948759 PMCID: PMC11970782 DOI: 10.1080/17501911.2025.2464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Frisancho AR. Origin of the Nuñoa, Perú High Altitude Field Research Site and How It Shaped Our Understanding of Functional Adaptation to High-Altitude Stressors. Am J Hum Biol 2025; 37:e70031. [PMID: 40219710 PMCID: PMC11992547 DOI: 10.1002/ajhb.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025] Open
Abstract
The study of physical growth and development of Indigenous children from Nuñoa, Perú, in the 1960s showed that growth in body size and skeletal maturation was slow and delayed, while growth in lung volume, measured by forced vital capacity (FVC), was accelerated. Hence, I proposed that the high functional adaptation of high-altitude natives was influenced by developmental processes. To test this hypothesis, my co-investigators and I conducted two sets of major physiological studies at high altitudes. The first studies were conducted in Cusco (3400 m) and Puno (3840 m), Perú. This research showed that the FVC and aerobic capacity of low-altitude Peruvian urban natives acclimatized to high altitudes during the developmental period were similar to those of high-altitude urban natives. In contrast, Peruvian and US participants acclimatized during adulthood did not have the same FVC and aerobic capacity as the high-altitude urban natives. The second set of studies was carried out in the city of La Paz, Bolivia (3752 m), and included Europeans who were acclimatized to high altitudes at different ages. This research confirmed that acclimatization during the developmental period was a major component of the high functional adaptation among high-altitude urban natives. These conclusions have been confirmed by epigenetic studies, which demonstrated that acclimatization to high altitude leads to modifications in the activity of the DNA that facilitate adaptation during the developmental period.
Collapse
Affiliation(s)
- A. Roberto Frisancho
- Department of Anthropology and Center for Human Growth and DevelopmentUniversity of MichiganAnn ArborMichiganUSA
- National University of San Antonio AbadCuscoPeru
| |
Collapse
|
3
|
Sharma S, Pasha Q. Chasing genes at high-altitude. Exp Physiol 2025; 110:185-188. [PMID: 39298311 PMCID: PMC11782165 DOI: 10.1113/ep091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
4
|
Wang S, Hong Q, Zheng Y, Duan S, Cai G, Chen X. Epigenetics in high-altitude adaptation and disease. Sci Bull (Beijing) 2024; 69:3806-3811. [PMID: 39562186 DOI: 10.1016/j.scib.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Affiliation(s)
- Siyang Wang
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China; Department of Emergency Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Quan Hong
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Ying Zheng
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Shuwei Duan
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| |
Collapse
|
5
|
Seshadri L, Atickem A, Zinner D, Roos C, Zhang L. Whole Genome Analysis Reveals Evolutionary History and Introgression Events in Bale Monkeys. Genes (Basel) 2024; 15:1359. [PMID: 39596559 PMCID: PMC11593718 DOI: 10.3390/genes15111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: The Bale monkey (Chlorocebus djamdjamensis) is a threatened primate species endemic to Ethiopia and, in contrast to other members of the genus Chlorocebus, lives at high altitudes and feeds mainly on bamboo. Two populations of the species are present, one in continuous bamboo forest (CF) in the eastern part of the species' range, and the other in fragmented forest (FF) in the western part. Based on mitochondrial DNA and phenotypic characteristics, previous studies have suggested introgression by parapatric congeners into the FF population but not into the CF population. The objective of this study was to gain insights into the evolutionary history of Bale monkeys and their potential genetic adaptations to high altitudes and for bamboo consumption. Methods: We sequenced the whole genomes of individuals from both populations and compared their genomes with those of the other five Chlorocebus species. We applied phylogenetic methods and conducted population demographic simulations to elucidate their evolutionary history. A genome-wide analysis was conducted to assess gene flow and identify mutations potentially associated with adaptations to high altitudes and for bamboo metabolism. Results: Our analyses revealed Bale monkeys as the sister clade to Chlorocebus aethiops and showed that gene flow occurred between C. aethiops and FF but not between C. aethiops and CF. In addition, we detected non-synonymous mutations in genes potentially associated with the adaptation to high altitudes (EPAS1) in both populations and with the adaptation for bamboo metabolism (TAS2R16, MPST, and TST) mainly in the CF population. Conclusions: Our study provides insights into the evolutionary history of a threatened primate species and reveals the genetic basis for its adaptions to unique environments and for diet specialization.
Collapse
Affiliation(s)
- Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- International Max Planck Research School for Genome Science (IMPRS-GS), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa 999047, Ethiopia;
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
| |
Collapse
|
6
|
Solsona R, Normand‐Gravier T, Borrani F, Bernardi H, Sanchez AMJ. DNA methylation changes during a sprint interval exercise performed under normobaric hypoxia or with blood flow restriction: A pilot study in men. Physiol Rep 2024; 12:e16044. [PMID: 38849292 PMCID: PMC11161272 DOI: 10.14814/phy2.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
This crossover study evaluated DNA methylation changes in human salivary samples following single sprint interval training sessions performed in hypoxia, with blood flow restriction (BFR), or with gravity-induced BFR. Global DNA methylation levels were evaluated with an enzyme-linked immunosorbent assay. Methylation-sensitive restriction enzymes were used to determine the percentage methylation in a part of the promoter of the gene-inducible nitric oxide synthase (p-iNOS), as well as an enhancer (e-iNOS). Global methylation increased after exercise (p < 0.001; dz = 0.50). A tendency was observed for exercise × condition interaction (p = 0.070). Post hoc analyses revealed a significant increase in global methylation between pre- (7.2 ± 2.6%) and postexercise (10.7 ± 2.1%) with BFR (p = 0.025; dz = 0.69). Methylation of p-iNOS was unchanged (p > 0.05). Conversely, the methylation of e-iNOS increased from 0.6 ± 0.4% to 0.9 ± 0.8% after exercise (p = 0.025; dz = 0.41), independently of the condition (p > 0.05). Global methylation correlated with muscle oxygenation during exercise (r = 0.37, p = 0.042), while e-iNOS methylation showed an opposite association (r = -0.60, p = 0.025). Furthermore, p-iNOS methylation was linked to heart rate (r = 0.49, p = 0.028). Hence, a single sprint interval training increases global methylation in saliva, and adding BFR tends to increase it further. Lower muscle oxygenation is associated with augmented e-iNOS methylation. Finally, increased cardiovascular strain results in increased p-iNOS methylation.
Collapse
Affiliation(s)
- Robert Solsona
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
| | - Tom Normand‐Gravier
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
- DMEM, Université de Montpellier, INRAEMontpellierFrance
| | - Fabio Borrani
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | | | - Anthony M. J. Sanchez
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
| |
Collapse
|
7
|
Li X, Xu S, Li X, Wang Y, Sheng Y, Zhang H, Yang W, Yuan D, Jin T, He X. Novel insight into the genetic signatures of altitude adaptation related body composition in Tibetans. Front Public Health 2024; 12:1355659. [PMID: 38807991 PMCID: PMC11130355 DOI: 10.3389/fpubh.2024.1355659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Background The Tibetan population residing in high-altitude (HA) regions has adapted to extreme hypoxic environments. However, there is limited understanding of the genetic basis of body compositions in Tibetan population adapted to HA. Methods We performed a genome-wide association study (GWAS) to identify genetic variants associated with HA and HA-related body composition traits. A total of 755,731 single nucleotide polymorphisms (SNPs) were genotyped using the precision medicine diversity array from 996 Tibetan college students. T-tests and Pearson correlation analysis were used to estimate the association between body compositions and altitude. The mixed linear regression identified the SNPs significantly associated with HA and HA-related body compositions. LASSO regression was used to screen for important SNPs in HA and body compositions. Results Significant differences were observed in lean body mass (LBW), muscle mass (MM), total body water (TBW), standard weight (SBW), basal metabolic rate (BMR), total protein (TP), and total inorganic salt (Is) in different altitudes stratification. We identified three SNPs in EPAS1 (rs1562453, rs7589621 and rs7583392) that were significantly associated with HA (p < 5 × 10-7). GWAS analysis of 7 HA-related body composition traits, we identified 14 SNPs for LBM, 11 SNPs for TBW, 15 SNPs for MM, 16 SNPs for SBW, 9 SNPs for BMR, 12 SNPs for TP, and 26 SNPs for Is (p < 5.0 × 10-5). Conclusion These findings provide insight into the genetic basis of body composition in Tibetan college students adapted to HA, and lay the foundation for further investigation into the molecular mechanisms underlying HA adaptation.
Collapse
Affiliation(s)
- Xuguang Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Shilin Xu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xuemei Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Healthcare, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yemeng Sheng
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Hengxun Zhang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Healthcare, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Wei Yang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Emergency, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
8
|
Sharma S, Koshy R, Kumar R, Mohammad G, Thinlas T, Graham BB, Pasha Q. Hypobaric hypoxia drives selection of altitude-associated adaptative alleles in the Himalayan population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169605. [PMID: 38159773 PMCID: PMC11285711 DOI: 10.1016/j.scitotenv.2023.169605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Genetic variants play a crucial role in shaping the adaptive phenotypes associated with high-altitude populations. Nevertheless, a comprehensive understanding of the specific impacts of different environments associated with increasing altitudes on the natural selection of these genetic variants remains undetermined. Hence, this study aimed to identify genetic markers responsible for high-altitude adaptation with specific reference to different altitudes, majorly focussing on an altitude elevation range of ∼1500 m and a corresponding decrease of ≥5 % in ambient oxygen availability. We conducted a comprehensive genome-wide investigation (n = 192) followed by a validation study (n = 514) in low-altitude and three high-altitude populations (>2400 m) of Nubra village (NU) (3048 m), Sakti village (SKT) (3812 m), and Tso Moriri village (TK) (4522 m). Extensive genetic analysis identified 86 SNPs that showed significant associations with high-altitude adaptation. Frequency mapping of these SNPs revealed 38 adaptive alleles and specific haplotypes that exhibited a strong linear correlation with increasing altitude. Notably, these SNPs spanned crucial genes, such as ADH6 and NAPG along with the vastly studied genes like EGLN1 and EPAS1, involved in oxygen sensing, metabolism, and vascular homeostasis. Correlation analyses between these adaptive alleles and relevant clinical and biochemical markers provided evidence of their functional relevance in physiological adaptation to hypobaric hypoxia. High-altitude population showed a significant increase in plasma 8-isoPGF2α levels as compared to low-altitude population. Similar observation showcased increased blood pressure in NU as compared to TK (P < 0.0001). In silico analyses further confirmed that these alleles regulate gene expression of EGLN1, EPAS1, COQ7, NAPG, ADH6, DUOXA1 etc. This study provides genetic insights into the effects of hypobaric-hypoxia on the clinico-physiological characteristics of natives living in increasing high-altitude regions. Overall, our findings highlight the synergistic relationship between environment and evolutionary processes, showcasing physiological implications of genetic variants in oxygen sensing and metabolic pathway genes in increasing high-altitude environments.
Collapse
Affiliation(s)
- Samantha Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Medical and Molecular Genetics, Indiana University, Indianapolis 46202, IN, USA
| | - Remya Koshy
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Ghulam Mohammad
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, Ladakh 194101, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, Ladakh 194101, India
| | - Brian B Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Institute of Hypoxia Research, New Delhi 110067, India.
| |
Collapse
|
9
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Uchehara B, Kwee LC, Regan J, Chatterjee R, Eckstrand J, Swope S, Gold G, Schaack T, Douglas P, Mettu P, Haddad F, Shore S, Hernandez A, Mahaffey KW, Pagidipati N, Shah SH. Accelerated Epigenetic Aging Is Associated With Multiple Cardiometabolic, Hematologic, and Renal Abnormalities: A Project Baseline Health Substudy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:216-223. [PMID: 37039013 PMCID: PMC10330131 DOI: 10.1161/circgen.122.003772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/30/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Epigenetic clocks estimate chronologic age using methylation levels at specific loci. We tested the hypothesis that accelerated epigenetic aging is associated with abnormal values in a range of clinical, imaging, and laboratory characteristics. METHODS The Project Baseline Health Study recruited 2502 participants, including 1661 with epigenetic age estimates from the Horvath pan-tissue clock. We classified individuals with extreme values as having epigenetic age acceleration (EAA) or epigenetic age deceleration. A subset of participants with longitudinal methylation profiling was categorized as accelerated versus nonaccelerated. Using principal components analysis, we created phenoclusters using 122 phenotypic variables and compared individuals with EAA versus epigenetic age deceleration, and at one year of follow-up, using logistic regression models adjusted for sex (false discovery rate [Q] <0.10); in secondary exploratory analyses, we tested individual clinical variables. RESULTS The EAA (n=188) and epigenetic age deceleration (n=195) groups were identified as having EAA estimates ≥5 years or ≤-5 years, respectively. In primary analyses, individuals with EAA had higher values for phenoclusters summarizing lung function and lipids, and lower values for a phenocluster representing physical function. In secondary analyses of individual variables, neutrophils, body mass index, and waist circumference were significantly higher in individuals with EAA (Q<0.10). No phenoclusters were significantly different between participants with accelerated (n=148) versus nonaccelerated (n=112) longitudinal aging. CONCLUSIONS We report multiple cardiometabolic, hematologic, and physical function features characterizing individuals with EAA. These highlight factors that may mediate the adverse effects of aging and identify potential targets for study of mitigation of these effects. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03154346.
Collapse
Affiliation(s)
| | | | - Jessica Regan
- Division of General Internal Medicine, Dept of Medicine
| | | | | | - Sue Swope
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | - Gary Gold
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | - Terry Schaack
- California Health & Longevity Institute, Westlake Village
| | | | - Prithu Mettu
- Division of Retinal Ophthalmology, Dept of Ophthalmology
| | - Francois Haddad
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | | | - Adrian Hernandez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Kenneth W. Mahaffey
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | | | - Svati H. Shah
- Duke Molecular Physiology Institute, Duke University
| |
Collapse
|
11
|
Dos Santos Oliveira NC, Serpeloni F, Gonçalves de Assis S. The interplay between DNA methylation and cardiac autonomic system functioning: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:54-70. [PMID: 34753378 DOI: 10.1080/09603123.2021.2000590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Epigenetic marks, particularly DNA methylation (DNAm), are emerging as an important biological marker of susceptibility to cardiac autonomic dysfunction. This review summarizes recent discoveries about the association between DNAm and cardiac autonomic activity. A systematic literature search was performed through the Embase, Web of Science, Cochrane Library, Pubmed, PsycINFO, and Pilots databases. Twenty-two studies met inclusion criteria, of which 18 were human studies including a total of 2,686 participants. DNAm differences in multiple genes, such as NR3C1, TLR2, GPR133, EPO, PHGDH, OXTR, and SLC7A11, linked environmental stressors to physiological responses. For instance, exposure to psychosocial stressors increased NR3C1 methylation, which was associated with both decreased blood pressure and increased parasympathetic activity. Additionally, GPR133 played a potential role in cardiac autonomic dysfunction in an occupational setting, affecting the heart rate's deceleration capacity in welders. This review's findings suggest that DNAm is involved in cardiac autonomic regulation under different stress-mediated responses.
Collapse
Affiliation(s)
- Nayara Cristina Dos Santos Oliveira
- National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, PPGSCM/IFF/FIOCRUZ, Rio de Janeiro, Brazil
- Department of Violence and Health Studies Jorge Careli, National School of Public Health, Rio de Janeiro, Brazil
| | - Fernanda Serpeloni
- Department of Violence and Health Studies Jorge Careli, National School of Public Health, Rio de Janeiro, Brazil
| | - Simone Gonçalves de Assis
- National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, PPGSCM/IFF/FIOCRUZ, Rio de Janeiro, Brazil
- Department of Violence and Health Studies Jorge Careli, National School of Public Health, Rio de Janeiro, Brazil
- Neurology Post-Gradate Program, Federal University of State of Rio de Janeiro, Unirio, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Ragsdale A, Ortega-Recalde O, Dutoit L, Besson AA, Chia JHZ, King T, Nakagawa S, Hickey A, Gemmell NJ, Hore T, Johnson SL. Paternal hypoxia exposure primes offspring for increased hypoxia resistance. BMC Biol 2022; 20:185. [PMID: 36038899 PMCID: PMC9426223 DOI: 10.1186/s12915-022-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In a time of rapid environmental change, understanding how the challenges experienced by one generation can influence the fitness of future generations is critically needed. Using tolerance assays and transcriptomic and methylome approaches, we use zebrafish as a model to investigate cross-generational acclimation to hypoxia. RESULTS We show that short-term paternal exposure to hypoxia endows offspring with greater tolerance to acute hypoxia. We detected two hemoglobin genes that are significantly upregulated by more than 6-fold in the offspring of hypoxia exposed males. Moreover, the offspring which maintained equilibrium the longest showed greatest upregulation in hemoglobin expression. We did not detect differential methylation at any of the differentially expressed genes, suggesting that other epigenetic mechanisms are responsible for alterations in gene expression. CONCLUSIONS Overall, our findings suggest that an epigenetic memory of past hypoxia exposure is maintained and that this environmentally induced information is transferred to subsequent generations, pre-acclimating progeny to cope with hypoxic conditions.
Collapse
Affiliation(s)
| | | | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Anne A Besson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jolyn H Z Chia
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Tania King
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Basak N, Thangaraj K. High-altitude adaptation: Role of genetic and epigenetic factors. J Biosci 2021. [DOI: 10.1007/s12038-021-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Basang Z, Zhang S, Yang L, Quzong D, Li Y, Ma Y, Hao M, Pu W, Liu X, Xie H, Liang M, Wang J, Danzeng Q. Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia. J Genet Genomics 2021; 48:928-935. [PMID: 34531147 DOI: 10.1016/j.jgg.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 01/14/2023]
Abstract
High altitude is an extreme environment that imposes hypoxic pressure on physiological processes, and natives living at high altitudes are more adaptive in certain physiological processes. So far, epigenetic modifications under extreme changes in hypoxic pressures are relatively less understood. Here, we recruit 32 Tibetan elite alpinists (TEAs), who have successfully mounted Everest (8848 m) at least five times. Blood samples and physiological phenotypes of TEAs and 32 matched non-alpinist Tibetan volunteers (non-TEAs) are collected for analysis. Genome-wide DNA methylation analysis identifies 23,202 differentially methylated CpGs (Padj < 0.05, |β| > 0.1) between the two groups. Some differentially methylated CpGs are in hypoxia-related genes such as PPP1R13L, MAP3K7CL, SEPTI-9, and CUL2. In addition, Gene ontology enrichment analysis reveals several inflammation-related pathways. Phenotypic analysis indicates that 12 phenotypes are significantly different between the two groups. In particular, TEAs exhibit higher blood oxygen saturation levels and lower neutrophil count, platelet count, and heart rate. For DNA methylation association analysis, we find that two CpGs (cg16687447, cg06947206) upstream of PTEN were associated with platelet count. In conclusion, extreme hypoxia exposure leads to epigenetic modifications and phenotypic alterations of TEA, providing us clues for exploring the molecular mechanism underlying changes under extreme hypoxia conditions.
Collapse
Affiliation(s)
- Zhuoma Basang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Shixuan Zhang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - La Yang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Deji Quzong
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China; Institute for Six-sector Economy, Fudan University, Shanghai 200433, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - WeiLin Pu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xiaoyu Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Hongjun Xie
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Meng Liang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China.
| | - Qiangba Danzeng
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China.
| |
Collapse
|
19
|
Artemov AV, Zhenilo S, Kaplun D, Starshin A, Sokolov A, Mazur AM, Szpotan J, Gawronski M, Modrzejewska M, Gackowski D, Prokhortchouk EB. An IDH-independent mechanism of DNA hypermethylation upon VHL inactivation in cancer. Epigenetics 2021; 17:894-905. [PMID: 34494499 DOI: 10.1080/15592294.2021.1971372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Hypermethylation of tumour suppressors and other aberrations of DNA methylation in tumours play a significant role in cancer progression. DNA methylation can be affected by various environmental conditions, including hypoxia. The response to hypoxia is mainly achieved through activation of the transcriptional program associated with HIF1A transcription factor. Inactivation of Von Hippel-Lindau Tumour Suppressor gene (VHL) by genetic or epigenetic events, which also induces aberrant activation of HIF1A, is the most common driver event for renal cancer. With whole-genome bisulphite sequencing and LC-MS, we demonstrated that VHL inactivation induced global genome hypermethylation in human kidney cancer cells under normoxic conditions. This effect was reverted by exogenous expression of wild-type VHL. We showed that global genome hypermethylation in VHL mutants can be explained by transcriptional changes in MDH and L2HGDH genes that cause the accumulation of 2-hydroxyglutarate - a metabolite that inhibits DNA demethylation by TET enzymes. Unlike the known cases of DNA hypermethylation in cancer, 2-hydroxyglutarate was accumulated in the cells with the wild-type isocitrate dehydrogenases.
Collapse
Affiliation(s)
- Artem V Artemov
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia.,Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Svetlana Zhenilo
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Daria Kaplun
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexey Starshin
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexey Sokolov
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.,Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| | - Maciej Gawronski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
20
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
21
|
Childebayeva A, Harman T, Weinstein J, Day T, Brutsaert TD, Bigham AW. Genome-Wide DNA Methylation Changes Associated With High-Altitude Acclimatization During an Everest Base Camp Trek. Front Physiol 2021; 12:660906. [PMID: 34262470 PMCID: PMC8273439 DOI: 10.3389/fphys.2021.660906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown. We collected a series of DNA samples from 15 participants of European ancestry trekking to Everest Base Camp to identify DNA methylation changes associated with incremental altitude ascent. We determined genome-wide DNA methylation levels using the Illumina MethylationEPIC chip comparing two altitudes: baseline 1,400 m (day 0) and elevation 4,240 m (day 7). The results of our epigenome-wide association study revealed 2,873 significant differentially methylated positions (DMPs) and 361 significant differentially methylated regions (DMRs), including significant positions and regions in hypoxia inducible factor (HIF) and the renin–angiotensin system (RAS) pathways. Our pathway enrichment analysis identified 95 significant pathways including regulation of glycolytic process (GO:0006110), regulation of hematopoietic stem cell differentiation (GO:1902036), and regulation of angiogenesis (GO:0045765). Lastly, we identified an association between the ACE gene insertion/deletion (I/D) polymorphism and oxygen saturation, as well as average ACE methylation. These findings shed light on the genes and pathways experiencing the most epigenetic change associated with short-term exposure to hypoxia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Sciences, School of Public Health, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Study of Human History, Jena, Germany
| | - Taylor Harman
- Department of Anthropology, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Wagner RN, Piñón Hofbauer J, Wally V, Kofler B, Schmuth M, De Rosa L, De Luca M, Bauer JW. Epigenetic and metabolic regulation of epidermal homeostasis. Exp Dermatol 2021; 30:1009-1022. [PMID: 33600038 PMCID: PMC8359218 DOI: 10.1111/exd.14305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023]
Abstract
Continuous exposure of the skin to environmental, mechanical and chemical stress necessitates constant self‐renewal of the epidermis to maintain its barrier function. This self‐renewal ability is attributed to epidermal stem cells (EPSCs), which are long‐lived, multipotent cells located in the basal layer of the epidermis. Epidermal homeostasis – coordinated proliferation and differentiation of EPSCs – relies on fine‐tuned adaptations in gene expression which in turn are tightly associated with specific epigenetic signatures and metabolic requirements. In this review, we will briefly summarize basic concepts of EPSC biology and epigenetic regulation with relevance to epidermal homeostasis. We will highlight the intricate interplay between mitochondrial energy metabolism and epigenetic events – including miRNA‐mediated mechanisms – and discuss how the loss of epigenetic regulation and epidermal homeostasis manifests in skin disease. Discussion of inherited epidermolysis bullosa (EB) and disorders of cornification will focus on evidence for epigenetic deregulation and failure in epidermal homeostasis, including stem cell exhaustion and signs of premature ageing. We reason that the epigenetic and metabolic component of epidermal homeostasis is significant and warrants close attention. Charting epigenetic and metabolic complexities also represents an important step in the development of future systemic interventions aimed at restoring epidermal homeostasis and ameliorating disease burden in severe skin conditions.
Collapse
Affiliation(s)
- Roland N Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Matthias Schmuth
- Department of Dermatology, Medical University Innsbruck, Innsbruck, Austria
| | - Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari", Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann W Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
23
|
Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J Neurodev Disord 2020; 12:37. [PMID: 33327934 PMCID: PMC7745506 DOI: 10.1186/s11689-020-09344-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The fetal brain is adapted to the hypoxic conditions present during normal in utero development. Relatively more hypoxic states, either chronic or acute, are pathologic and can lead to significant long-term neurodevelopmental sequelae. In utero hypoxic injury is associated with neonatal mortality and millions of lives lived with varying degrees of disability. MAIN BODY Genetic studies of children with neurodevelopmental disease indicate that epigenetic modifiers regulating DNA methylation and histone remodeling are critical for normal brain development. Epigenetic modifiers are also regulated by environmental stimuli, such as hypoxia. Indeed, epigenetic modifiers that are mutated in children with genetic neurodevelopmental diseases are regulated by hypoxia in a number of preclinical models and may be part of the mechanism for the long-term neurodevelopmental sequelae seem in children with hypoxic brain injury. Thus, a comprehensive understanding the role of DNA methylation and histone modifications in hypoxic injury is critical for developing novel strategies to treat children with hypoxic injury. CONCLUSIONS This review focuses on our current understanding of the intersection between epigenetics, brain development, and hypoxia. Opportunities for the use of epigenetics as biomarkers of neurodevelopmental disease after hypoxic injury and potential clinical epigenetics targets to improve outcomes after injury are also discussed. While there have been many published studies on the epigenetics of hypoxia, more are needed in the developing brain in order to determine which epigenetic pathways may be most important for mitigating the long-term consequences of hypoxic brain injury.
Collapse
Affiliation(s)
- Ana G Cristancho
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Eric D Marsh
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
24
|
Yasukochi Y, Shin S, Wakabayashi H, Maeda T. Transcriptomic Changes in Young Japanese Males After Exposure to Acute Hypobaric Hypoxia. Front Genet 2020; 11:559074. [PMID: 33101380 PMCID: PMC7506118 DOI: 10.3389/fgene.2020.559074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
After the genomic era, the development of high-throughput sequencing technologies has allowed us to advance our understanding of genetic variants responsible for adaptation to high altitude in humans. However, transcriptomic characteristics associated with phenotypic plasticity conferring tolerance to acute hypobaric hypoxic stress remain unclear. To elucidate the effects of hypobaric hypoxic stress on transcriptional variability, we aimed to describe transcriptomic profiles in response to acute hypobaric hypoxia in humans. In a hypobaric hypoxic chamber, young Japanese males were exposed to a barometric pressure of 493 mmHg (hypobaric hypoxia) for 75 min after resting for 30 min at the pressure of 760 mmHg (normobaric normoxia) at 28°C. Saliva samples of the subjects were collected before and after hypobaric hypoxia exposure, to be used for RNA sequencing. Differential gene expression analysis identified 30 significantly upregulated genes and some of these genes may be involved in biological processes influencing hematological or immunological responses to hypobaric hypoxic stress. We also confirmed the absence of any significant transcriptional fluctuations in the analysis of basal transcriptomic profiles under no-stimulus conditions, suggesting that the 30 genes were actually upregulated by hypobaric hypoxia exposure. In conclusion, our findings showed that the transcriptional profiles of Japanese individuals can be rapidly changed as a result of acute hypobaric hypoxia, and this change may influence the phenotypic plasticity of lowland individuals for acclimatization to a hypobaric hypoxic environment. Therefore, the results obtained in this study shed light on the transcriptional mechanisms underlying high-altitude acclimatization in humans.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, Japan
| | - Sora Shin
- Graduate School of Design, Kyushu University, Fukuoka, Japan
| | | | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan.,Physiological Anthropology Research Center, Faculty of Design, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Vinueza Veloz AF, Yaulema Riss AK, De Zeeuw CI, Carpio Arias TV, Vinueza Veloz MF. Blood Pressure in Andean Adults Living Permanently at Different Altitudes. High Alt Med Biol 2020; 21:360-369. [PMID: 32845744 DOI: 10.1089/ham.2019.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vinueza Veloz, Andrés Fernando, Aymaru Kailli Yaulema Riss, Chris I. De Zeeuw, Tannia Valeria Carpio Arias, and María Fernanda Vinueza Veloz. Blood pressure in Andean adults living permanently at different altitudes. High Alt Med Biol. 21:360-369, 2020. Aims: To estimate the association between blood pressure (BP) and chronic exposure to altitude in nonhypertensive Andean adults, while taking ethnicity into consideration. Materials and Methods: Sample included 10,041 nonhypertensive adults with indigenous or mixed ethnic background (the latter also referred to as mestizos), who permanently lived at different altitudes. BP was measured following international recommendations. Altitude was measured in meters above the sea level (masl) using a global positioning system. Data were analyzed through linear regression models with restricted cubic splines. Results: A significant nonlinear relation between altitude and systolic blood pressure (SBP) as well as diastolic blood pressure (DBP) was found (both p < 0.001). BP described a j-shaped curve, where the minimum was observed between 750 and 1250 masl, from where both SBP and DBP rose as altitude increased. These associations were independent from sex, age, index of economic wellbeing, body mass index, and years of education. Interestingly, at all altitudes indigenous people had lower SBP and DBP in comparison to mestizos (both p < 0.001). Conclusions: Living permanently at altitudes ≥750 masl is associated with higher SBP and DBP in Andean dwellers and this association is modulated by their ethnic background.
Collapse
Affiliation(s)
- Andrés Fernando Vinueza Veloz
- Chapintza Health Center, Ministerio de Salud Pública del Ecuador, Chapintza, Ecuador.,Abteilung Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus Havelhöhe, Berlin, Germany
| | - Aymaru Kailli Yaulema Riss
- Chapintza Health Center, Ministerio de Salud Pública del Ecuador, Chapintza, Ecuador.,Abteilung Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus Havelhöhe, Berlin, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tannia Valeria Carpio Arias
- Research Group GIANH, School of Nutrition and Dietetics, Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - María Fernanda Vinueza Veloz
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,School of Medicine, Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| |
Collapse
|
26
|
|