1
|
Mora‐Márquez F, Nuño JC, Soto Á, López de Heredia U. Missing genotype imputation in non-model species using self-organizing maps. Mol Ecol Resour 2025; 25:e13992. [PMID: 38970328 PMCID: PMC11887599 DOI: 10.1111/1755-0998.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Current methodologies of genome-wide single-nucleotide polymorphism (SNP) genotyping produce large amounts of missing data that may affect statistical inference and bias the outcome of experiments. Genotype imputation is routinely used in well-studied species to buffer the impact in downstream analysis, and several algorithms are available to fill in missing genotypes. The lack of reference haplotype panels precludes the use of these methods in genomic studies on non-model organisms. As an alternative, machine learning algorithms are employed to explore the genotype data and to estimate the missing genotypes. Here, we propose an imputation method based on self-organizing maps (SOM), a widely used neural networks formed by spatially distributed neurons that cluster similar inputs into close neurons. The method explores genotype datasets to select SNP loci to build binary vectors from the genotypes, and initializes and trains neural networks for each query missing SNP genotype. The SOM-derived clustering is then used to impute the best genotype. To automate the imputation process, we have implemented gtImputation, an open-source application programmed in Python3 and with a user-friendly GUI to facilitate the whole process. The method performance was validated by comparing its accuracy, precision and sensitivity on several benchmark genotype datasets with other available imputation algorithms. Our approach produced highly accurate and precise genotype imputations even for SNPs with alleles at low frequency and outperformed other algorithms, especially for datasets from mixed populations with unrelated individuals.
Collapse
Affiliation(s)
- Fernando Mora‐Márquez
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| | - Juan Carlos Nuño
- GI en Especies Leñosas (WooSp), Dpto. Matemática Aplicada, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| | - Álvaro Soto
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| | - Unai López de Heredia
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| |
Collapse
|
2
|
Li M, Poonam AD, Cui Q, Hsieh T, Jagadeesan S, Xu J, Bruce WB, Vogel JT, Sessions A, Cabrera A, Saville AC, Ristaino JB, Paul R, Wei Q. Non-destructive seed genotyping via microneedle-based DNA extraction. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40108780 DOI: 10.1111/pbi.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Crop breeding plays an essential role in addressing food security by enhancing crop yield, disease resistance and nutritional value. However, the current crop breeding process faces multiple challenges and limitations, especially in genotypic evaluations. Traditional methods for seed genotyping remain labour-intensive, time-consuming and cost-prohibitive outside of large-scale breeding programs. Here, we present a handheld microneedle (MN)-based seed DNA extraction platform for rapid, non-destructive and in-field DNA isolation from crop seeds for instant marker analysis. Using soybean seeds as a case study, we demonstrated the use of polyvinyl alcohol (PVA) MN patches for the successful extraction of DNA from softened soybean seeds. This extraction technology maintained high seed viability, showing germination rates of 82% and 79%, respectively, before and after MN sampling. The quality of MN-extracted DNA was sufficient for various genomic analyses, including PCR, LAMP and whole-genome sequencing. Importantly, this MN patch method also allowed for the identification of specific genetic differences between soybean varieties. Additionally, we designed a 3D-printed extraction device, which enabled multiplexed seed DNA extraction in a microplate format. In the future, this method could be applied at scale and in-field for crop seed DNA extraction and genotyping analysis.
Collapse
Affiliation(s)
- Mingzhuo Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aditi Dey Poonam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Qirui Cui
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Tzungfu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Sumeetha Jagadeesan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jin Xu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Collins KE, Gilbert E, Mauduit V, Gaheer P, Elhassan EAE, Benson KA, Osman SM, Hill C, McKnight AJ, Maxwell AP, van der Most PJ, de Borst MH, Guan W, Jacobson PA, Israni AK, Keating BJ, Lord GM, Markkinen S, Helanterä I, Hyvärinen K, Partanen J, Madden SF, Storrar J, Sinha S, Kalra PA, Lanktree MB, Limou S, Cavalleri GL, Conlon PJ. Polygenic risk scores for eGFR are associated with age at kidney failure. J Nephrol 2025:10.1007/s40620-025-02207-7. [PMID: 40029548 DOI: 10.1007/s40620-025-02207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/02/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The genetic architecture of chronic kidney disease (CKD) is complex, including monogenic and polygenic contributions. CKD progression to kidney failure is influenced by factors including male sex, baseline estimated glomerular filtration rate (eGFR), hypertension, diabetes, proteinuria, and the underlying kidney disease. These traits all have strong genetic components, which can be partially quantified using polygenic risk scores. This paper examines the association between polygenic risk scores for CKD-related traits and age at kidney failure development. METHODS Genome-wide genotype data from 10,586 patients with kidney failure were compiled from 12 cohorts. Polygenic risk scores for hypertension, albuminuria, rapid decline in eGFR, decreased total kidney volume, and decreased eGFR were calculated using weights from published independent population-scale genome-wide association studies. The association between each polygenic risk score and age at kidney failure was investigated using logistic regression models. The association between polygenic risk score and age at kidney failure was also investigated separately for each primary kidney disease. RESULTS Individuals in the highest 10% of polygenic risk score for decreased eGFR developed kidney failure 2 years earlier than those in the bottom 90% (49.9 years and 47.9 years, P = 5e-5). A standard deviation increase in decreased eGFR polygenic risk score was associated with increased odds of developing kidney failure before the age of 60 years (Odds ratio (OR) = 1.05; 95% CI 1.01-1.10; P = 0.01), as was high decreased eGFR polygenic risk score (OR = 1.26; 95% CI 1.08-1.46; P = 0.003). CONCLUSIONS We conclude that decreased eGFR polygenic risk score explains a portion of the variation in age at development of kidney failure.
Collapse
Affiliation(s)
- Kane E Collins
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Science Foundation Ireland FutureNeuro Centre of Excellence, Dublin, Ireland
- SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Science Foundation Ireland FutureNeuro Centre of Excellence, Dublin, Ireland
| | - Vincent Mauduit
- Nantes University, Ecole Centrale Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, Nantes, France
| | - Pukhraj Gaheer
- Division of Nephrology, Departments of Medicine and Health Research Methodology, Evidence and Impact, St. Joseph's Healthcare Hamilton, McMaster University and Population Health Research Institute, Hamilton, ON, Canada
| | - Elhussein A E Elhassan
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Science Foundation Ireland FutureNeuro Centre of Excellence, Dublin, Ireland
| | - Shohdan Mohamad Osman
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire Hill
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | | | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K Israni
- University of Texas Medical Branch, Galveston, TX, USA
| | - Brendan J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Graham M Lord
- School of Immunology and Microbial Sciences, University College London, London, UK
| | - Salla Markkinen
- Finnish Red Cross Blood Service, Research and Development, Biomedicum 1, Helsinki, Finland
| | - Ilkka Helanterä
- Helsinki University Hospital, Transplantation and Liver Surgery, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Biomedicum 1, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Biomedicum 1, Helsinki, Finland
| | - Stephen F Madden
- Data Science Centre, Beaux Lane House, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joshua Storrar
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
- University of Manchester, Manchester, UK
| | - Smeeta Sinha
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
- University of Manchester, Manchester, UK
| | - Philip A Kalra
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
- University of Manchester, Manchester, UK
| | - Matthew B Lanktree
- Division of Nephrology, Departments of Medicine and Health Research Methodology, Evidence and Impact, St. Joseph's Healthcare Hamilton, McMaster University and Population Health Research Institute, Hamilton, ON, Canada
| | - Sophie Limou
- Nantes University, Ecole Centrale Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, Nantes, France
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Science Foundation Ireland FutureNeuro Centre of Excellence, Dublin, Ireland
- SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Peter J Conlon
- Division of Nephrology, Departments of Medicine and Health Research Methodology, Evidence and Impact, St. Joseph's Healthcare Hamilton, McMaster University and Population Health Research Institute, Hamilton, ON, Canada.
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
4
|
Wang Y, Peng H, Tong X, Ding X, Song C, Ma T, Wang H, Wei W, Chen C, Zhu J, Liu D. Genetic diversity analysis and core germplasm construction of tea plants in Lu'an. BMC PLANT BIOLOGY 2025; 25:253. [PMID: 39994519 PMCID: PMC11853565 DOI: 10.1186/s12870-025-06216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Lu'an, as one of the two major tea-producing areas in Anhui Province, has a long history of tea planting and rich tea germplasm resources. However, the genetic diversity and population structure of local tea plants are still unclear. In order to better protect and utilize tea germplasm resources in Lu'an, 217 tea accessions from six geographical origins were used to assess genetic diversity of Lu'an tea plant germplasm through double digest restriction-site associated DNA sequencing (ddRAD-seq) technology. RESULTS A total of 306,320 high quality single nucleotide polymorphism (SNP) markers were obtained. Population structure, phylogenetic relationships and principal component analysis (PCA) divided the entire population into three groups. The genetic diversity and population differentiation analysis showed that the mean observed heterozygosity (Ho) was 0.06 ∼ 0.17, average nucleotide diversity (Pi) was 0.13 ∼ 0.26, and pairwise fixation index (Fst) was 0.01 ∼ 0.15. In addition, a core tea germplasm set composed of 50 tea germplasm sets was established. CONCLUSION Our study demonstrated that the germplasm resources of the Lu'an tea plants exhibit significant genetic diversity. A core germplasm sets for the Lu'an tea plants has been established, which effectively represents the genetic diversity of the entire tea germplasm collection. This study provided the basis for genetic research, germplasm protection and breeding of tea plants in Lu'an.
Collapse
Affiliation(s)
- Yan Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Huanyun Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P.R. China
| | - Xiaoyan Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P.R. China
| | - Xiaoyuan Ding
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Teng Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Haohao Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Wang Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P.R. China.
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
5
|
Yaraş T, Oktay Y, Karakülah G. PGSXplorer: an integrated nextflow pipeline for comprehensive quality control and polygenic score model development. PeerJ 2025; 13:e18973. [PMID: 39959831 PMCID: PMC11829630 DOI: 10.7717/peerj.18973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
The rapid development of next-generation sequencing technologies and genomic data sharing initiatives during the post-Human Genome Project-era has catalyzed major advances in individualized medicine research. Genome-wide association studies (GWAS) have become a cornerstone of efforts towards understanding the genetic basis of complex diseases, leading to the development of polygenic scores (PGS). Despite their immense potential, the scarcity of standardized PGS development pipelines limits widespread adoption of PGS. Herein, we introduce PGSXplorer, a comprehensive Nextflow DSL2 pipeline that enables quality control of genomic data and automates the phasing, imputation, and construction of PGS models using reference GWAS data. PGSXplorer integrates various PGS development tools such as PLINK, PRSice-2, LD-Pred2, Lassosum2, MegaPRS, SBayesR-C, PRS-CSx and MUSSEL, improving the generalizability of PGS through multi-origin data integration. Tested with synthetic datasets, our fully Docker-encapsulated tool has demonstrated scalability and effectiveness for both single- and multi-population analyses. Continuously updated as an open-source tool, PGSXplorer is freely available with user tutorials at https://github.com/tutkuyaras/PGSXplorer, making it a valuable resource for advancing precision medicine in genetic research.
Collapse
Affiliation(s)
- Tutku Yaraş
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Yavuz Oktay
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
6
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
7
|
Ma L, Zhao W, Ma Q, Wang J, Zhao Z, Zhang J, Gu Y. Genome-Wide Association Study of Birth Wool Length, Birth Weight, and Head Color in Chinese Tan Sheep Through Whole-Genome Re-Sequencing. Animals (Basel) 2024; 14:3495. [PMID: 39682459 DOI: 10.3390/ani14233495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese Tan sheep is a unique breed of sheep that is typical throughout China, mainly used for fur and meat production. They are widely distributed in northwestern China and are famous for their lambskin and shiny white curly wool. In this study, the phenotypic traits of wool length, birth weight, and head coat color were evaluated in 256 Chinese Tan sheep breeds. Whole genome sequencing generated 23.67 million high-quality SNPs for genome-wide association studies (GWAS). We identified 208 significant SNPs associated with birth wool length, implicating RAD50, MACROD2, SAMD5, SASH1, and SPTLC3 as potential candidate genes for this trait. For birth weight, 1056 significant SNPs, with 76.89% of them located on chromosome 2, were identified by GWAS, and XPA, INVS, LOC121818504, GABBR2, LOC101114941, and LOC106990096 were identified as potential candidate genes for birth weight. The GWAS for head coat color identified 1424 significant SNPs across three chromosomes, with 99.65% on chromosome 14, and SPIRE2, TCF25, and MC1R as candidate genes were found to be possibly involved in the development of the black-headed coat color in sheep. Furthermore, we selected head coat color as a representative trait and performed an independent test of our GWAS findings through multiplex PCR SNP genotyping. The findings validated five mutation sites in chromosome 14 (14,251,947 T>A, 14,252,090 G>A, 14,252,158 C>T, 14,252,329 T>G, and 14,252,464 C>T) within the exon1 of the MC1R gene (517 bp), as identified by GWAS in an additional 102 Tan sheep individuals, and revealed that black-headed sheep predominantly exhibited heterozygous genotypes, possibly contributing to their color change. Our results provide a valuable foundation for further study of these three economically important traits, and enhance our understanding of genetic structure and variation in Chinese Tan sheep.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Jin Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Osuna‐Caballero S, Rubiales D, Rispail N. Genome-wide association study uncovers pea candidate genes and metabolic pathways involved in rust resistance. THE PLANT GENOME 2024; 17:e20510. [PMID: 39472763 PMCID: PMC11628884 DOI: 10.1002/tpg2.20510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024]
Abstract
Pea (Pisum sativum L.) is an important temperate legume crop providing plant-based proteins for food and feed worldwide. Pea yield can be limited by several biotic stresses, among which rust represents a major limiting factor in many temperate and subtropical regions. Some efforts have been made to assess the natural variation in pea resistance to rust, but its efficient exploitation in breeding is limited since the resistance loci identified so far are scarce and their responsible gene(s) unknown. To overcome this knowledge gap, a comprehensive genome-wide association study (GWAS) has been performed on pea rust, caused by Uromyces pisi, to uncover genetic loci associated with resistance. Utilizing a diverse collection of 320 pea accessions, we evaluated phenotypic responses to two rust isolates using both traditional methods and advanced image-based phenotyping. We detected 95 significant trait-marker associations using a set of 26,045 Diversity Arrays Technology-sequencing polymorphic markers. Our in silico analysis identified 62 candidate genes putatively involved in rust resistance, grouped into different functional categories such as gene expression regulation, vesicle trafficking, cell wall biosynthesis, and hormonal signaling. This research highlights the potential of GWAS to identify molecular markers associated with resistance and candidate genes against pea rust, offering new targets for precision breeding. By integrating our findings into current breeding programs, we can facilitate the development of pea varieties with improved resistance to rust, contributing to sustainable agricultural practices and food security. This study sets the stage for future functional genomic analyses and the application of genomic selection approaches to enhance disease resistance in peas.
Collapse
|
9
|
Redaelli R, Bassolino L, Balconi C, Terracciano I, Torri A, Nicoletti F, Benedetti G, Iacoponi V, Rea R, Taviani P. Morpho-Phenological, Chemical, and Genetic Characterization of Italian Maize Landraces from the Lazio Region. PLANTS (BASEL, SWITZERLAND) 2024; 13:3249. [PMID: 39599459 PMCID: PMC11598630 DOI: 10.3390/plants13223249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
In the framework of a Collaboration Agreement between CREA and ARSIAL, a morpho-phenological, chemical, and genetic characterization of maize populations native to the Lazio region was carried out. During 2022 and 2023, a set of 50 accessions, belonging both to ARSIAL and CREA maize collections, were multiplied in Bergamo. Morpho-phenological descriptors were recorded in the field: plant height, ear height, and male and female flowering time. The grain chemical composition in terms of protein, lipid, starch, ash and fiber was evaluated by near-infrared spectroscopy (NIRS). A double-digest restriction-site-associated DNA sequencing (ddRADseq) strategy was used to genotype the landraces. The two collections were not significantly different in terms of grain chemical composition. On the other hand, the ARSIAL and CREA germplasm showed a different distribution in the three cluster-based population structure obtained by ddRADseq, which largely corresponded to the distribution map of their collection sites. The materials from the Lazio region maintained by ARSIAL and CREA were revealed to be different. The comparison between the two groups of landraces showed the importance of characterizing germplasm collections to promote the recovery and valorization of local biodiversity.
Collapse
Affiliation(s)
- Rita Redaelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy; (C.B.); (A.T.)
| | - Laura Bassolino
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy; (L.B.); (I.T.); (F.N.)
| | - Carlotta Balconi
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy; (C.B.); (A.T.)
| | - Irma Terracciano
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy; (L.B.); (I.T.); (F.N.)
| | - Alessio Torri
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy; (C.B.); (A.T.)
| | - Federica Nicoletti
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy; (L.B.); (I.T.); (F.N.)
| | - Gianluca Benedetti
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura nel Lazio (ARSIAL), via Lanciani 38, 00162 Roma, Italy; (G.B.); (V.I.); (R.R.); (P.T.)
| | - Valentina Iacoponi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura nel Lazio (ARSIAL), via Lanciani 38, 00162 Roma, Italy; (G.B.); (V.I.); (R.R.); (P.T.)
| | - Roberto Rea
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura nel Lazio (ARSIAL), via Lanciani 38, 00162 Roma, Italy; (G.B.); (V.I.); (R.R.); (P.T.)
| | - Paola Taviani
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura nel Lazio (ARSIAL), via Lanciani 38, 00162 Roma, Italy; (G.B.); (V.I.); (R.R.); (P.T.)
| |
Collapse
|
10
|
Khojand S, Zeinalabedini M, Azizinezhad R, Imani A, Ghaffari MR. Genomic exploration of Iranian almond (Prunus dulcis) germplasm: decoding diversity, population structure, and linkage disequilibrium through genotyping-by-sequencing analysis. BMC Genomics 2024; 25:1101. [PMID: 39558316 PMCID: PMC11575021 DOI: 10.1186/s12864-024-11044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
This study focuses on the genetic diversity and population structure of Prunus dulcis (almond tree), a crucial agricultural component with widespread cultivation and commercial importance, particularly in Iran, a region with a longstanding tradition of almond cultivation. The diverse almond collection in Iran encompasses many local varieties, breeding selections, rootstocks, and international cultivars. This diversity necessitates advanced genotyping techniques to gain insights into genetic diversity, population structure, and linkage disequilibrium (LD). In this paper, genotyping-by-sequencing (GBS) was employed to analyze 62 almond germplasm samples, identifying approximately 63,537 high-quality single nucleotide polymorphisms (SNPs) distributed across the eight chromosomes of the almond genome. On average, there were 30,225 SNPs per chromosome. The analysis yielded an average polymorphism information content (PIC) of 0.315 and an expected heterozygosity (He) rate of 0.28, indicating a significant level of genetic diversity within the studied almond germplasm. The LD analysis demonstrated a rapid decline, with an average LD decay spanning approximately 300 kb for an r2 value of 0.2. This suggests substantial hybridization among the sampled almond varieties. Principal Component Analysis (PCA) and structure analysis could not differentiate genotypes based on geographical origin, providing further evidence of genetic mixing among the studied almond populations. An Analysis of Molecular Variance (AMOVA) highlighted significant genetic diversity within populations but revealed minimal differences. This comprehensive study of Iran's almond genotypes offers valuable insights for future breeding and conservation efforts, emphasizing this agriculturally significant species abundant genetic diversity and intricate population structure.
Collapse
Affiliation(s)
- Soheila Khojand
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Azizinezhad
- Department of the Biotechnology and Plant Breeding, College of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Imani
- Temperate Fruit Research Center, Horticultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
11
|
Mora-Carrera E, Stubbs RL, Potente G, Yousefi N, Aeschbacher S, Keller B, Choudhury RR, Celep F, Kochjarová J, de Vos JM, Szövényi P, Conti E. Unveiling the Genome-Wide Consequences of Range Expansion and Mating System Transitions in Primula vulgaris. Genome Biol Evol 2024; 16:evae208. [PMID: 39340447 PMCID: PMC11469071 DOI: 10.1093/gbe/evae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diversity is heterogeneously distributed among populations of the same species, due to the joint effects of multiple demographic processes, including range contractions and expansions, and mating systems shifts. Here, we ask how both processes shape genomic diversity in space and time in the classical Primula vulgaris model. This perennial herb originated in the Caucasus region and was hypothesized to have expanded westward following glacial retreat in the Quaternary. Moreover, this species is a long-standing model for mating system transitions, exemplified by shifts from heterostyly to homostyly. Leveraging a high-quality reference genome of the closely related Primula veris and whole-genome resequencing data from both heterostylous and homostylous individuals from populations encompassing a wide distribution of P. vulgaris, we reconstructed the demographic history of P. vulgaris. Results are compatible with the previously proposed hypothesis of range expansion from the Caucasus region approximately 79,000 years ago and suggest later shifts to homostyly following rather than preceding postglacial colonization of England. Furthermore, in accordance with population genetic theoretical predictions, both processes are associated with reduced genetic diversity, increased linkage disequilibrium, and reduced efficacy of purifying selection. A novel result concerns the contrasting effects of range expansion versus shift to homostyly on transposable elements, for the former, process is associated with changes in transposable element genomic content, while the latter is not. Jointly, our results elucidate how the interactions among range expansion, transitions to selfing, and Quaternary climatic oscillations shape plant evolution.
Collapse
Affiliation(s)
- Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Rebecca L Stubbs
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Ferhat Celep
- Department of Biology, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovak Republic
| | - Jurriaan M de Vos
- Department of Environmental Sciences—Botany, University of Basel, Basel, Switzerland
| | - Peter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Novielli P, Romano D, Pavan S, Losciale P, Stellacci AM, Diacono D, Bellotti R, Tangaro S. Explainable artificial intelligence for genotype-to-phenotype prediction in plant breeding: a case study with a dataset from an almond germplasm collection. FRONTIERS IN PLANT SCIENCE 2024; 15:1434229. [PMID: 39319003 PMCID: PMC11420924 DOI: 10.3389/fpls.2024.1434229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024]
Abstract
Background Advances in DNA sequencing revolutionized plant genomics and significantly contributed to the study of genetic diversity. However, predicting phenotypes from genomic data remains a challenge, particularly in the context of plant breeding. Despite significant progress, accurately predicting phenotypes from high-dimensional genomic data remains a challenge, particularly in identifying the key genetic factors influencing these predictions. This study aims to bridge this gap by integrating explainable artificial intelligence (XAI) techniques with advanced machine learning models. This approach is intended to enhance both the predictive accuracy and interpretability of genotype-to-phenotype models, thereby improving their reliability and supporting more informed breeding decisions. Results This study compares several ML methods for genotype-to-phenotype prediction, using data available from an almond germplasm collection. After preprocessing and feature selection, regression models are employed to predict almond shelling fraction. Best predictions were obtained by the Random Forest method (correlation = 0.727 ± 0.020, an R 2 = 0.511 ± 0.025, and an RMSE = 7.746 ± 0.199). Notably, the application of the SHAP (SHapley Additive exPlanations) values algorithm to explain the results highlighted several genomic regions associated with the trait, including one, having the highest feature importance, located in a gene potentially involved in seed development. Conclusions Employing explainable artificial intelligence algorithms enhances model interpretability, identifying genetic polymorphisms associated with the shelling percentage. These findings underscore XAI's efficacy in predicting phenotypic traits from genomic data, highlighting its significance in optimizing crop production for sustainable agriculture.
Collapse
Affiliation(s)
- Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Stefano Pavan
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Pasquale Losciale
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Anna Maria Stellacci
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| |
Collapse
|
13
|
Osuna-Caballero S, Cobos MJ, Ruiz CM, Wohor OZ, Rispail N, Rubiales D. Genome-Wide Association Studies on Resistance to Pea Weevil: Identification of Novel Sources of Resistance and Associated Markers. Int J Mol Sci 2024; 25:7920. [PMID: 39063162 PMCID: PMC11276686 DOI: 10.3390/ijms25147920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Little resistance to the pea weevil insect pest (Bruchus pisorum) is available in pea (Pisum sativum) cultivars, highlighting the need to search for sources of resistance in Pisum germplasm and to decipher the genetic basis of resistance. To address this need, we screened the response to pea weevil in a Pisum germplasm collection (324 accession, previously genotyped) under field conditions over four environments. Significant variation for weevil seed infestation (SI) was identified, with resistance being frequent in P. fulvum, followed by P. sativum ssp. elatius, P. abyssinicum, and P. sativum ssp. humile. SI tended to be higher in accessions with lighter seed color. SI was also affected by environmental factors, being favored by high humidity during flowering and hampered by warm winter temperatures and high evapotranspiration during and after flowering. Merging the phenotypic and genotypic data allowed genome-wide association studies (GWAS) yielding 73 markers significantly associated with SI. Through the GWAS models, 23 candidate genes were found associated with weevil resistance, highlighting the interest of five genes located on chromosome 6. These included gene 127136761 encoding squalene epoxidase; gene 127091639 encoding a transcription factor MYB SRM1; gene 127097033 encoding a 60S ribosomal protein L14; gene 127092211, encoding a BolA-like family protein, which, interestingly, was located within QTL BpLD.I, earlier described as conferring resistance to weevil in pea; and gene 127096593 encoding a methyltransferase. These associated genes offer valuable potential for developing pea varieties resistant to Bruchus spp. and efficient utilization of genomic resources through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Salvador Osuna-Caballero
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | - Diego Rubiales
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
14
|
Correa Abondano M, Ospina JA, Wenzl P, Carvajal-Yepes M. Sampling strategies for genotyping common bean ( Phaseolus vulgaris L.) Genebank accessions with DArTseq: a comparison of single plants, multiple plants, and DNA pools. FRONTIERS IN PLANT SCIENCE 2024; 15:1338332. [PMID: 39055360 PMCID: PMC11269218 DOI: 10.3389/fpls.2024.1338332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Introduction Genotyping large-scale gene bank collections requires an appropriate sampling strategy to represent the diversity within and between accessions. Methods A panel of 44 common bean (Phaseolus vulgaris L.) landraces from the Alliance Bioversity and The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) gene bank was genotyped with DArTseq using three sampling strategies: a single plant per accession, 25 individual plants per accession jointly analyzed after genotyping (in silico-pool), and by pooling tissue from 25 individual plants per accession (seq-pool). Sampling strategies were compared to assess the technical aspects of the samples, the marker information content, and the genetic composition of the panel. Results The seq-pool strategy resulted in more consistent DNA libraries for quality and call rate, although with fewer polymorphic markers (6,142 single-nucleotide polymorphisms) than the in silico-pool (14,074) or the single plant sets (6,555). Estimates of allele frequencies by seq-pool and in silico-pool genotyping were consistent, but the results suggest that the difference between pools depends on population heterogeneity. Principal coordinate analysis, hierarchical clustering, and the estimation of admixture coefficients derived from a single plant, in silico-pool, and seq-pool successfully identified the well-known structure of Andean and Mesoamerican gene pools of P. vulgaris across all datasets. Conclusion In conclusion, seq-pool proved to be a viable approach for characterizing common bean germplasm compared to genotyping individual plants separately by balancing genotyping effort and costs. This study provides insights and serves as a valuable guide for gene bank researchers embarking on genotyping initiatives to characterize their collections. It aids curators in effectively managing the collections and facilitates marker-trait association studies, enabling the identification of candidate markers for key traits.
Collapse
Affiliation(s)
| | | | | | - Monica Carvajal-Yepes
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| |
Collapse
|
15
|
Aguirre NC, Villalba PV, García MN, Filippi CV, Rivas JG, Martínez MC, Acuña CV, López AJ, López JA, Pathauer P, Palazzini D, Harrand L, Oberschelp J, Marcó MA, Cisneros EF, Carreras R, Martins Alves AM, Rodrigues JC, Hopp HE, Grattapaglia D, Cappa EP, Paniego NB, Marcucci Poltri SN. Comparison of ddRADseq and EUChip60K SNP genotyping systems for population genetics and genomic selection in Eucalyptus dunnii (Maiden). Front Genet 2024; 15:1361418. [PMID: 38606359 PMCID: PMC11008695 DOI: 10.3389/fgene.2024.1361418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 04/13/2024] Open
Abstract
Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.
Collapse
Affiliation(s)
| | | | - Martín Nahuel García
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Juan Gabriel Rivas
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - María Carolina Martínez
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Cintia Vanesa Acuña
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Augusto J. López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Juan Adolfo López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Pablo Pathauer
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Dino Palazzini
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Leonel Harrand
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Javier Oberschelp
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Martín Alberto Marcó
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Esteban Felipe Cisneros
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Rocío Carreras
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Ana Maria Martins Alves
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - H. Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Dario Grattapaglia
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | - Eduardo Pablo Cappa
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | | |
Collapse
|
16
|
Mora‐Carrera E, Stubbs RL, Potente G, Yousefi N, Keller B, de Vos JM, Szövényi P, Conti E. Genomic analyses elucidate S-locus evolution in response to intra-specific losses of distyly in Primula vulgaris. Ecol Evol 2024; 14:e10940. [PMID: 38516570 PMCID: PMC10955462 DOI: 10.1002/ece3.10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024] Open
Abstract
Distyly, a floral dimorphism that promotes outcrossing, is controlled by a hemizygous genomic region known as the S-locus. Disruptions of genes within the S-locus are responsible for the loss of distyly and the emergence of homostyly, a floral monomorphism that favors selfing. Using whole-genome resequencing data of distylous and homostylous individuals from populations of Primula vulgaris and leveraging high-quality reference genomes of Primula we tested, for the first time, predictions about the evolutionary consequences of transitions to selfing on S-genes. Our results reveal a previously undetected structural rearrangement in CYPᵀ associated with the shift to homostyly and confirm previously reported, homostyle-specific, loss-of-function mutations in the exons of the S-gene CYPᵀ. We also discovered that the promoter and intronic regions of CYPᵀ in distylous and homostylous individuals are conserved, suggesting that down-regulation of CYPᵀ via mutations in its promoter and intronic regions is not a cause of the shift to homostyly. Furthermore, we found that hemizygosity is associated with reduced genetic diversity in S-genes compared with their paralogs outside the S-locus. Additionally, the shift to homostyly lowers genetic diversity in both the S-genes and their paralogs, as expected in primarily selfing plants. Finally, we tested, for the first time, long-standing theoretical models of changes in S-locus genotypes during early stages of the transition to homostyly, supporting the assumption that two copies of the S-locus might reduce homostyle fitness.
Collapse
Affiliation(s)
- E. Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - R. L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - G. Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - N. Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - B. Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - J. M. de Vos
- Department of Environmental Sciences – BotanyUniversity of BaselBaselSwitzerland
| | - P. Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - E. Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Reinprecht Y, Schram L, Perry GE, Morneau E, Smith TH, Pauls KP. Mapping yield and yield-related traits using diverse common bean germplasm. Front Genet 2024; 14:1246904. [PMID: 38234999 PMCID: PMC10791882 DOI: 10.3389/fgene.2023.1246904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Common bean (bean) is one of the most important legume crops, and mapping genes for yield and yield-related traits is essential for its improvement. However, yield is a complex trait that is typically controlled by many loci in crop genomes. The objective of this research was to identify regions in the bean genome associated with yield and a number of yield-related traits using a collection of 121 diverse bean genotypes with different yields. The beans were evaluated in replicated trials at two locations, over two years. Significant variation among genotypes was identified for all traits analyzed in the four environments. The collection was genotyped with the BARCBean6K_3 chip (5,398 SNPs), two yield/antiyield gene-based markers, and seven markers previously associated with resistance to common bacterial blight (CBB), including a Niemann-Pick polymorphism (NPP) gene-based marker. Over 90% of the single-nucleotide polymorphisms (SNPs) were polymorphic and separated the panel into two main groups of small-seeded and large-seeded beans, reflecting their Mesoamerican and Andean origins. Thirty-nine significant marker-trait associations (MTAs) were identified between 31 SNPs and 15 analyzed traits on all 11 bean chromosomes. Some of these MTAs confirmed genome regions previously associated with the yield and yield-related traits in bean, but a number of associations were not reported previously, especially those with derived traits. Over 600 candidate genes with different functional annotations were identified for the analyzed traits in the 200-Kb region centered on significant SNPs. Fourteen SNPs were identified within the gene model sequences, and five additional SNPs significantly associated with five different traits were located at less than 0.6 Kb from the candidate genes. The work confirmed associations between two yield/antiyield gene-based markers (AYD1m and AYD2m) on chromosome Pv09 with yield and identified their association with a number of yield-related traits, including seed weight. The results also confirmed the usefulness of the NPP marker in screening for CBB resistance. Since disease resistance and yield measurements are environmentally dependent and labor-intensive, the three gene-based markers (CBB- and two yield-related) and quantitative trait loci (QTL) that were validated in this work may be useful tools for simplifying and accelerating the selection of high-yielding and CBB-resistant bean cultivars.
Collapse
Affiliation(s)
| | - Lyndsay Schram
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Emily Morneau
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Thomas H. Smith
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Crosta M, Romani M, Nazzicari N, Ferrari B, Annicchiarico P. Genomic prediction and allele mining of agronomic and morphological traits in pea ( Pisum sativum) germplasm collections. FRONTIERS IN PLANT SCIENCE 2023; 14:1320506. [PMID: 38186592 PMCID: PMC10766761 DOI: 10.3389/fpls.2023.1320506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Well-performing genomic prediction (GP) models for polygenic traits and molecular marker sets for oligogenic traits could be useful for identifying promising genetic resources in germplasm collections, setting core collections, and establishing molecular variety distinction. This study aimed at (i) defining GP models and key marker sets for predicting 15 agronomic or morphological traits in germplasm collections, (ii) verifying the GP model usefulness also for selection in breeding programs, (iii) investigating the consistency between molecular and phenotypic diversity patterns, and (iv) identifying genomic regions associated with to the target traits. The study was based on phenotyping data and over 41,000 genotyping-by-sequencing-generated SNP markers of 220 landraces or old cultivars belonging to a world germplasm collection and 11 modern cultivars. Non-metric multi-dimensional scaling (NMDS) and an analysis of population genetic structure indicated a high level of genetic differentiation of material from Western Asia, a major West-East diversity gradient, and quite limited genetic diversity of the improved germplasm. Mantel's test revealed a low correlation (r = 0.12) between phenotypic and molecular diversity, which increased (r = 0.45) when considering only the molecular diversity relative to significant SNPs from genome-wide association analyses. These analyses identified, inter alia, several areas of chromosome 6 involved in a largely pleiotropic control of vegetative or reproductive organ pigmentation. We found various significant SNPs for grain and straw yield under severe drought and onset of flowering, and one SNP on chromosome 5 for grain protein content. GP models displayed moderately high predictive ability (0.43 to 0.61) for protein content, grain and straw yield, and onset of flowering, and high predictive ability (0.76) for individual seed weight, based on intra-population, intra-environment cross-validations. The inter-population, inter-environment assessment of the models trained on the germplasm collection for breeding material of three recombinant inbred line (RIL) populations, which was challenged by much narrower diversity of the material, over eight-fold less available markers and quite different test environments, led to an overall loss of predictive ability of about 40% for seed weight, 50% for protein content and straw yield, and 60% for onset of flowering, and no prediction for grain yield. Within-RIL population predictive ability differed among populations.
Collapse
Affiliation(s)
- Margherita Crosta
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Piacenza, Italy
| | - Massimo Romani
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Barbara Ferrari
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| |
Collapse
|
19
|
Lippolis A, Roland WSU, Bocova O, Pouvreau L, Trindade LM. The challenge of breeding for reduced off-flavor in faba bean ingredients. FRONTIERS IN PLANT SCIENCE 2023; 14:1286803. [PMID: 37965015 PMCID: PMC10642941 DOI: 10.3389/fpls.2023.1286803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
The growing interest in plant protein sources, such as pulses, is driven by the necessity for sustainable food production and climate change mitigation strategies. Faba bean (Vicia faba L.) is a promising protein crop for temperate climates, owing to its remarkable yield potential (up to 8 tonnes ha-1 in favourable growing conditions) and high protein content (~29% dry matter basis). Nevertheless, the adoption of faba bean protein in plant-based products that aim to resemble animal-derived counterparts is hindered by its distinctive taste and aroma, regarded as "off-flavors". In this review, we propose to introduce off-flavor as a trait in breeding programs by identifying molecules involved in sensory perception and defining key breeding targets. We discuss the role of lipid oxidation in producing volatile and non-volatile compounds responsible for the beany aroma and bitter taste, respectively. We further investigate the contribution of saponin, tannin, and other polyphenols to bitterness and astringency. To develop faba bean varieties with diminished off-flavors, we suggest targeting genes to reduce lipid oxidation, such as lipoxygenases (lox) and fatty acid desaturases (fad), and genes involved in phenylpropanoid and saponin biosynthesis, such as zero-tannin (zt), chalcone isomerase (chi), chalcone synthase (chs), β-amyrin (bas1). Additionally, we address potential challenges, including the need for high-throughput phenotyping and possible limitations that could arise during the genetic improvement process. The breeding approach can facilitate the use of faba bean protein in plant-based food such as meat and dairy analogues more extensively, fostering a transition toward more sustainable and climate-resilient diets.
Collapse
Affiliation(s)
- Antonio Lippolis
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Wibke S. U. Roland
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ornela Bocova
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Laurice Pouvreau
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
20
|
Villano C, Procino S, Blaiotta G, Carputo D, D’Agostino N, Di Serio E, Fanelli V, La Notte P, Miazzi MM, Montemurro C, Taranto F, Aversano R. Genetic diversity and signature of divergence in the genome of grapevine clones of Southern Italy varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1201287. [PMID: 37771498 PMCID: PMC10525710 DOI: 10.3389/fpls.2023.1201287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≥ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Silvia Procino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Pierfederico La Notte
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
| | | | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
- SINAGRI S.r.l., Spin Off of the University of Bari Aldo Moro, Bari, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
21
|
Delvento C, Arcieri F, Marcotrigiano AR, Guerriero M, Fanelli V, Dellino M, Curci PL, Bouwmeester H, Lotti C, Ricciardi L, Pavan S. High-density linkage mapping and genetic dissection of resistance to broomrape ( Orobanche crenata Forsk.) in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1216297. [PMID: 37492777 PMCID: PMC10364127 DOI: 10.3389/fpls.2023.1216297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Pea (Pisum sativum L.) is a widely cultivated legume of major importance for global food security and agricultural sustainability. Crenate broomrape (Orobanche crenata Forsk.) (Oc) is a parasitic weed severely affecting legumes, including pea, in the Mediterranean Basin and the Middle East. Previously, the identification of the pea line "ROR12", displaying resistance to Oc, was reported. Two-year field trials on a segregant population of 148 F7 recombinant inbred lines (RILs), originating from a cross between "ROR12" and the susceptible cultivar "Sprinter", revealed high heritability (0.84) of the "ROR12" resistance source. Genotyping-by-sequencing (GBS) on the same RIL population allowed the construction of a high-density pea linkage map, which was compared with the pea reference genome and used for quantitative trait locus (QTL) mapping. Three QTLs associated with the response to Oc infection, named PsOcr-1, PsOcr-2, and PsOcr-3, were identified, with PsOcr-1 explaining 69.3% of the genotypic variance. Evaluation of the effects of different genotypic combinations indicated additivity between PsOcr-1 and PsOcr-2, and between PsOcr-1 and PsOcr-3, and epistasis between PsOcr-2 and PsOcr-3. Finally, three Kompetitive Allele Specific PCR (KASP) marker assays were designed on the single-nucleotide polymorphisms (SNPs) associated with the QTL significance peaks. Besides contributing to the development of pea genomic resources, this work lays the foundation for the obtainment of pea cultivars resistant to Oc and the identification of genes involved in resistance to parasitic Orobanchaceae.
Collapse
Affiliation(s)
- Chiara Delvento
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Arcieri
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Raffaele Marcotrigiano
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Marzia Guerriero
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Maria Dellino
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
22
|
Rossato M, Marcolungo L, De Antoni L, Lopatriello G, Bellucci E, Cortinovis G, Frascarelli G, Nanni L, Bitocchi E, Di Vittori V, Vincenzi L, Lucchini F, Bett KE, Ramsay L, Konkin DJ, Delledonne M, Papa R. CRISPR-Cas9-based repeat depletion for high-throughput genotyping of complex plant genomes. Genome Res 2023; 33:787-797. [PMID: 37127332 PMCID: PMC10317117 DOI: 10.1101/gr.277628.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
High-throughput genotyping enables the large-scale analysis of genetic diversity in population genomics and genome-wide association studies that combine the genotypic and phenotypic characterization of large collections of accessions. Sequencing-based approaches for genotyping are progressively replacing traditional genotyping methods because of the lower ascertainment bias. However, genome-wide genotyping based on sequencing becomes expensive in species with large genomes and a high proportion of repetitive DNA. Here we describe the use of CRISPR-Cas9 technology to deplete repetitive elements in the 3.76-Gb genome of lentil (Lens culinaris), 84% consisting of repeats, thus concentrating the sequencing data on coding and regulatory regions (single-copy regions). We designed a custom set of 566,766 gRNAs targeting 2.9 Gbp of repeats and excluding repetitive regions overlapping annotated genes and putative regulatory elements based on ATAC-seq data. The novel depletion method removed ∼40% of reads mapping to repeats, increasing those mapping to single-copy regions by ∼2.6-fold. When analyzing 25 million fragments, this repeat-to-single-copy shift in the sequencing data increased the number of genotyped bases of ∼10-fold compared to nondepleted libraries. In the same condition, we were also able to identify ∼12-fold more genetic variants in the single-copy regions and increased the genotyping accuracy by rescuing thousands of heterozygous variants that otherwise would be missed because of low coverage. The method performed similarly regardless of the multiplexing level, type of library or genotypes, including different cultivars and a closely related species (L. orientalis). Our results showed that CRISPR-Cas9-driven repeat depletion focuses sequencing data on single-copy regions, thus improving high-density and genome-wide genotyping in large and repetitive genomes.
Collapse
Affiliation(s)
- Marzia Rossato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
- Genartis s.r.l., 37126 Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Luca De Antoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Leonardo Vincenzi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Filippo Lucchini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | - Massimo Delledonne
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
- Genartis s.r.l., 37126 Verona, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| |
Collapse
|
23
|
Tello J, Ibáñez J. Review: Status and prospects of association mapping in grapevine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111539. [PMID: 36410567 DOI: 10.1016/j.plantsci.2022.111539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Thanks to current advances in sequencing technologies, novel bioinformatics tools, and efficient modeling solutions, association mapping has become a widely accepted approach to unravel the link between genotype and phenotype diversity in numerous crops. In grapevine, this strategy has been used in the last decades to understand the genetic basis of traits of agronomic interest (fruit quality, crop yield, biotic and abiotic resistance), of special relevance nowadays to improve crop resilience to cope with future climate scenarios. Genome-wide association studies have identified many putative causative loci for different traits, some of them overlapping well-known causal genes identified by conventional quantitative trait loci studies in biparental progenies, and/or validated by functional approaches. In addition, candidate-gene association studies have been useful to pinpoint the causal mutation underlying phenotypic variation for several traits of high interest in breeding programs (like berry color, seedlessness, and muscat flavor), information that has been used to develop highly informative and useful markers already in use in marker-assisted selection processes. Thus, association mapping has proved to represent a valuable step towards high quality and sustainable grape production. This review summarizes current applications of association mapping in grapevine research and discusses future prospects in view of current viticulture challenges.
Collapse
Affiliation(s)
- Javier Tello
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño 26007, Spain.
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño 26007, Spain
| |
Collapse
|
24
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
25
|
Duval H, Coindre E, Ramos-Onsins SE, Alexiou KG, Rubio-Cabetas MJ, Martínez-García PJ, Wirthensohn M, Dhingra A, Samarina A, Arús P. Development and Evaluation of an Axiom TM 60K SNP Array for Almond ( Prunus dulcis). PLANTS (BASEL, SWITZERLAND) 2023; 12:242. [PMID: 36678957 PMCID: PMC9866729 DOI: 10.3390/plants12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits.
Collapse
Affiliation(s)
- Henri Duval
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Eva Coindre
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Sebastian E. Ramos-Onsins
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Konstantinos G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| | - Maria J. Rubio-Cabetas
- CITA (Agrifood Research and Technology Centre of Aragon), Department of Plant Science, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Pedro J. Martínez-García
- CEBAS (Centro de Edafología y Biología Aplicada del Segura), CSIC, Department of Plant Breeding, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - Michelle Wirthensohn
- Waite Research Institute, University of Adelaide, PMB 1 Glen, Osmond, SA 5064, Australia
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Anna Samarina
- Thermo Fisher Scientific, Frankfurter Str. 129B, 64293 Darmstadt, Germany
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
26
|
Delvento C, Pavan S, Miazzi MM, Marcotrigiano AR, Ricciardi F, Ricciardi L, Lotti C. Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace. PLANTS 2022; 11:plants11182388. [PMID: 36145789 PMCID: PMC9502971 DOI: 10.3390/plants11182388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
Genetic structure and distinctive features of landraces, such as adaptability to local agro-ecosystems and specific qualitative profiles, can be substantially altered by the massive introduction of allochthonous germplasm. The landrace known as “Cipolla rossa di Acquaviva” (Acquaviva red onion, further referred to as ARO) is traditionally cultivated and propagated in a small area of the Apulia region (southern Italy). However, the recent rise of its market value and cultivation area is possibly causing genetic contamination with foreign propagating material. In this work, genotyping-by-sequencing (GBS) was used to characterize genetic variation of seven onion populations commercialized as ARO, as well as one population of the landrace “Montoro” (M), which is phenotypically similar, but originates from another cultivation area and displays different qualitative features. A panel of 5011 SNP markers was used to perform parametric and non-parametric genetic structure analyses, which supported the hypothesis of genetic contamination of germplasm commercialized as ARO with a gene pool including the M landrace. Four ARO populations formed a core genetic group, homogeneous and clearly distinct from the other ARO and M populations. Conversely, the remaining three ARO populations did not display significant differences with the M population. A set of private alleles for the ARO core genetic group was identified, indicating the possibility to trace the ARO landrace by means of a SNP-based molecular barcode. Overall, the results of this study provide a framework for further breeding activities and the traceability of the ARO landrace.
Collapse
Affiliation(s)
- Chiara Delvento
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (S.P.); (C.L.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Angelo Raffaele Marcotrigiano
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Francesca Ricciardi
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Concetta Lotti
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
- Correspondence: (S.P.); (C.L.)
| |
Collapse
|
27
|
Sahu TK, Singh AK, Mittal S, Jha SK, Kumar S, Jacob SR, Singh K. G-DIRT: a web server for identification and removal of duplicate germplasms based on identity-by-state analysis using single nucleotide polymorphism genotyping data. Brief Bioinform 2022; 23:6678959. [PMID: 36040109 DOI: 10.1093/bib/bbac348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining duplicate germplasms in genebanks hampers effective conservation and utilization of genebank resources. The redundant germplasm adds to the cost of germplasm conservation by requiring a large proportion of the genebank financial resources towards conservation rather than enriching the diversity. Besides, genome-wide-association analysis using an association panel with over-represented germplasms can be biased resulting in spurious marker-trait associations. The conventional methods of germplasm duplicate removal using passport information suffer from incomplete or missing passport information and data handling errors at various stages of germplasm enrichment. This limitation is less likely in the case of genotypic data. Therefore, we developed a web-based tool, Germplasm Duplicate Identification and Removal Tool (G-DIRT), which allows germplasm duplicate identification based on identity-by-state analysis using single-nucleotide polymorphism genotyping information along with pre-processing of genotypic data. A homozygous genotypic difference threshold of 0.1% for germplasm duplicates has been determined using tetraploid wheat genotypic data with 94.97% of accuracy. Based on the genotypic difference, the tool also builds a dendrogram that can visually depict the relationship between genotypes. To overcome the constraint of high-dimensional genotypic data, an offline version of G-DIRT in the interface of R has also been developed. The G-DIRT is expected to help genebank curators, breeders and other researchers across the world in identifying germplasm duplicates from the global genebank collections by only using the easily sharable genotypic data instead of physically exchanging the seeds or propagating materials. The web server will complement the existing methods of germplasm duplicate identification based on passport or phenotypic information being freely accessible at http://webtools.nbpgr.ernet.in/gdirt/.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | | | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Sherry Rachel Jacob
- ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.,ICAR- Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India.,International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
28
|
Lu T, Forgetta V, Richards JB, Greenwood CMT. Polygenic risk score as a possible tool for identifying familial monogenic causes of complex diseases. Genet Med 2022; 24:1545-1555. [PMID: 35460399 DOI: 10.1016/j.gim.2022.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The study aimed to evaluate whether polygenic risk scores could be helpful in addition to family history for triaging individuals to undergo deep-depth diagnostic sequencing for identifying monogenic causes of complex diseases. METHODS Among 44,550 exome-sequenced European ancestry UK Biobank participants, we identified individuals with a clinically reported or computationally predicted monogenic pathogenic variant for breast cancer, bowel cancer, heart disease, diabetes, or Alzheimer disease. We derived polygenic risk scores for these diseases. We tested whether a polygenic risk score could identify rare pathogenic variant heterozygotes among individuals with a parental disease history. RESULTS Monogenic causes of complex diseases were more prevalent among individuals with a parental disease history than in the rest of the population. Polygenic risk scores showed moderate discriminative power to identify familial monogenic causes. For instance, we showed that prescreening the patients with a polygenic risk score for type 2 diabetes can prioritize individuals to undergo diagnostic sequencing for monogenic diabetes variants and reduce needs for such sequencing by up to 37%. CONCLUSION Among individuals with a family history of complex diseases, those with a low polygenic risk score are more likely to have monogenic causes of the disease and could be prioritized to undergo genetic testing.
Collapse
Affiliation(s)
- Tianyuan Lu
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Quantitative Life Sciences Program, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - John Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Celia M T Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, Gerald Bronfman Department of Oncology, McGill University, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
30
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
31
|
Alkemade JA, Nazzicari N, Messmer MM, Annicchiarico P, Ferrari B, Voegele RT, Finckh MR, Arncken C, Hohmann P. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1011-1024. [PMID: 34988630 PMCID: PMC8942938 DOI: 10.1007/s00122-021-04014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 05/11/2023]
Abstract
GWAS identifies candidate gene controlling resistance to anthracnose disease in white lupin. White lupin (Lupinus albus L.) is a promising grain legume to meet the growing demand for plant-based protein. Its cultivation, however, is severely threatened by anthracnose disease caused by the fungal pathogen Colletotrichum lupini. To dissect the genetic architecture for anthracnose resistance, genotyping by sequencing was performed on white lupin accessions collected from the center of domestication and traditional cultivation regions. GBS resulted in 4611 high-quality single-nucleotide polymorphisms (SNPs) for 181 accessions, which were combined with resistance data observed under controlled conditions to perform a genome-wide association study (GWAS). Obtained disease phenotypes were shown to highly correlate with overall three-year disease assessments under Swiss field conditions (r > 0.8). GWAS results identified two significant SNPs associated with anthracnose resistance on gene Lalb_Chr05_g0216161 encoding a RING zinc-finger E3 ubiquitin ligase which is potentially involved in plant immunity. Population analysis showed a remarkably fast linkage disequilibrium decay, weak population structure and grouping of commercial varieties with landraces, corresponding to the slow domestication history and scarcity of modern breeding efforts in white lupin. Together with 15 highly resistant accessions identified in the resistance assay, our findings show promise for further crop improvement. This study provides the basis for marker-assisted selection, genomic prediction and studies aimed at understanding anthracnose resistance mechanisms in white lupin and contributes to improving breeding programs worldwide.
Collapse
Affiliation(s)
- Joris A Alkemade
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Nelson Nazzicari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| | | | - Barbara Ferrari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Ralf T Voegele
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Christine Arncken
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
32
|
Kastally C, Niskanen AK, Perry A, Kujala ST, Avia K, Cervantes S, Haapanen M, Kesälahti R, Kumpula TA, Mattila TM, Ojeda DI, Tyrmi JS, Wachowiak W, Cavers S, Kärkkäinen K, Savolainen O, Pyhäjärvi T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1337-1350. [PMID: 34897859 PMCID: PMC9303803 DOI: 10.1111/tpj.15628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Alina K. Niskanen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Annika Perry
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Sonja T. Kujala
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Komlan Avia
- Université de StrasbourgINRAESVQV UMR‐A 1131F‐68000ColmarFrance
| | - Sandra Cervantes
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (Luke)Latokartanonkaari 9FI‐00790HelsinkiFinland
| | - Robert Kesälahti
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Timo A. Kumpula
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Organismal BiologyEBCUppsala UniversityNorbyvägen 18 AUppsala752 36Sweden
| | - Dario I. Ojeda
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Norwegian Institute of Bioeconomy ResearchP.O. Box 115Ås1431Norway
| | - Jaakko S. Tyrmi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 661‐614PoznańPoland
| | - Stephen Cavers
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Katri Kärkkäinen
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Forest SciencesUniversity of HelsinkiP.O. Box 2700014HelsinkiFinland
| |
Collapse
|
33
|
Singh R, Kumar K, Bharadwaj C, Verma PK. Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes. PLANTA 2022; 255:46. [PMID: 35076815 DOI: 10.1007/s00425-022-03827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110020, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Pavan S, Delvento C, Nazzicari N, Ferrari B, D’Agostino N, Taranto F, Lotti C, Ricciardi L, Annicchiarico P. Merging genotyping-by-sequencing data from two ex situ collections provides insights on the pea evolutionary history. HORTICULTURE RESEARCH 2022; 9:uhab062. [PMID: 35043171 PMCID: PMC8935929 DOI: 10.1093/hr/uhab062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/13/2023]
Abstract
Pea (Pisum sativum L. subsp. sativum) is one of the oldest domesticated species and a widely cultivated legume. In this study, we combined next generation sequencing (NGS) data referring to two genotyping-by-sequencing (GBS) libraries, each one prepared from a different Pisum germplasm collection. The selection of single nucleotide polymorphism (SNP) loci called in both germplasm collections caused some loss of information; however, this did not prevent the obtainment of one of the largest datasets ever used to explore pea biodiversity, consisting of 652 accessions and 22 127 markers. The analysis of population structure reflected genetic variation based on geographic patterns and allowed the definition of a model for the expansion of pea cultivation from the domestication centre to other regions of the world. In genetically distinct populations, the average decay of linkage disequilibrium (LD) ranged from a few bases to hundreds of kilobases, thus indicating different evolutionary histories leading to their diversification. Genome-wide scans resulted in the identification of putative selective sweeps associated with domestication and breeding, including genes known to regulate shoot branching, cotyledon colour and resistance to lodging, and the correct mapping of two Mendelian genes. In addition to providing information of major interest for fundamental and applied research on pea, our work describes the first successful example of integration of different GBS datasets generated from ex situ collections - a process of potential interest for a variety of purposes, including conservation genetics, genome-wide association studies, and breeding.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900 Lodi, Italy
| | - Barbara Ferrari
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900 Lodi, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Amendola 165/A, 70126 Bari,
Italy
| | - Concetta Lotti
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71100 Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900 Lodi, Italy
| |
Collapse
|
35
|
Kulwal PL, Singh R. Biparental Crossing and QTL Mapping for Validation of Genome-Wide Association Studies. Methods Mol Biol 2022; 2481:273-285. [PMID: 35641770 DOI: 10.1007/978-1-0716-2237-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Association mapping (AM), also known as genome-wide association studies (GWAS), is increasingly being employed in crop plants for the identification of QTL/genes and marker-trait associations (MTAs) in natural populations. Large numbers of such associations have been identified for variety of traits in different crop plants. However, not many of these associations have been used practically in the crop improvement program due to lack of validation. Although there are different ways through which the results of AM/GWAS could be validated, the best approach is to develop a biparental population for the trait of interest. An overview of the steps involved in the validation of results of AM using biparental mapping population in plants is provided in this chapter.
Collapse
Affiliation(s)
- Pawan L Kulwal
- State Level Biotechnology Centre, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra, India.
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
36
|
Pavan S, Vergine M, Nicolì F, Sabella E, Aprile A, Negro C, Fanelli V, Savoia MA, Montilon V, Susca L, Delvento C, Lotti C, Nigro F, Montemurro C, Ricciardi L, De Bellis L, Luvisi A. Screening of Olive Biodiversity Defines Genotypes Potentially Resistant to Xylella fastidiosa. FRONTIERS IN PLANT SCIENCE 2021; 12:723879. [PMID: 34484283 PMCID: PMC8415753 DOI: 10.3389/fpls.2021.723879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 06/12/2023]
Abstract
The recent outbreak of the Olive Quick Decline Syndrome (OQDS), caused by Xylella fastidiosa subsp. pauca (Xf), is dramatically altering ecosystem services in the peninsula of Salento (Apulia Region, southeastern Italy). Here we report the accomplishment of several exploratory missions in the Salento area, resulting in the identification of thirty paucisymptomatic or asymptomatic plants in olive orchards severely affected by the OQDS. The genetic profiles of such putatively resistant plants (PRPs), assessed by a selection of ten simple sequence repeat (SSR) markers, were compared with those of 141 Mediterranean cultivars. Most (23) PRPs formed a genetic cluster (K1) with 22 Italian cultivars, including 'Leccino' and 'FS17', previously reported as resistant to Xf. The remaining PRPs displayed relatedness with genetically differentiated germplasm, including a cluster of Tunisian cultivars. Markedly lower colonization levels were observed in PRPs of the cluster K1 with respect to control plants. Field evaluation of four cultivars related to PRPs allowed the definition of partial resistance in the genotypes 'Frantoio' and 'Nocellara Messinese'. Some of the PRPs identified in this study might be exploited in cultivation, or as parental clones of breeding programs. In addition, our results indicate the possibility to characterize resistance to Xf in cultivars genetically related to PRPs.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesca Nicolì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Vito Montilon
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Leonardo Susca
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Concetta Lotti
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Franco Nigro
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
37
|
Taranto F, Mangini G, Miazzi MM, Stevanato P, De Vita P. Polyphenol oxidase genes as integral part of the evolutionary history of domesticated tetraploid wheat. Genomics 2021; 113:2989-3001. [PMID: 34182080 DOI: 10.1016/j.ygeno.2021.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023]
Abstract
Studying and understanding the genetic basis of polyphenol oxidases (PPO)-related traits plays a crucial role in genetic improvement of crops. A tetraploid wheat collection (T. turgidum ssp., TWC) was analyzed using the 90K wheat SNP iSelect assay and phenotyped for PPO activity. A total of 21,347 polymorphic SNPs were used to perform genome-wide association analysis (GWA) in TWC and durum wheat sub-groups, detecting 23 and 85 marker-trait associations (MTA). In addition, candidate genes responsible for PPO activity were predicted. Based on the 23 MTAs detected in TWC, two haplotypes associated with low and high PPO activity were identified. Four SNPs were developed and validated providing one reliable marker (IWB75732) for marker assisted selection. The 23 MTAs were used to evaluate the genetic divergence (FST > 0.25) between the T. turgidum subspecies, providing new information important for understanding the domestication process of Triticum turgidum ssp. and in particular of ssp. carthlicum.
Collapse
Affiliation(s)
- Francesca Taranto
- National Research Council (CNR), Institute of Biosciences and Bioresources (CNR-IBBR), 80055 Portici, NA, Italy.
| | - Giacomo Mangini
- National Research Council (CNR), Institute of Biosciences and Bioresources (CNR-IBBR), 70126 Bari, BA, Italy.
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy
| |
Collapse
|
38
|
Berry DP, Dunne FL, Evans RD, McDermott K, O'Brien AC. Concordance rate in cattle and sheep between genotypes differing in Illumina GenCall quality score. Anim Genet 2021; 52:208-213. [PMID: 33527466 DOI: 10.1111/age.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Proper quality control of data prior to downstream analyses is fundamental to ensure integrity of results; quality control of genomic data is no exception. While many metrics of quality control of genomic data exist, the objective of the present study was to quantify the genotype and allele concordance rate between called single nucleotide polymorphism (SNP) genotypes differing in GenCall (GC) score; the GC score is a confidence measure assigned to each Illumina genotype call. This objective was achieved using Illumina beadchip genotype data from 771 cattle (12 428 767 genotypes in total post-editing) and 80 sheep (1 557 360 SNPs genotypes in total post-editing) each genotyped in duplicate. The called genotype with the lowest associated GC score was compared to the genotype called for the same SNP in the same duplicated animal sample but with a GC score of >0.90 (assumed to represent the true genotype). The mean genotype concordance rate for a GC score of <0.300, 0.300-0.549, and ≥0.550 in the cattle (sheep in parenthesis) was 0.9467 (0.9864), 0.9707 (0.9953), and 0.9994 (0.99997) respectively; the respective allele concordance rate was 0.9730 (0.9930), 0.9849 (0.9976), and 0.9997 (0.99998). Hence, concordance eroded as the GC score of the called genotype reduced, albeit the impact was not dramatic and was not very noticeable until a GC score of <0.55. Moreover, the impact was greater and more consistent in the cattle population than in the sheep population. Furthermore, an impact of GC score on genotype concordance rate existed even for the same SNP GenTrain value; the GenTrain value is a statistical score that depicts the shape of the genotype clusters and the relative distance between the called genotype clusters.
Collapse
Affiliation(s)
- D P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - F L Dunne
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - R D Evans
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co. Cork, P72 X050, Ireland
| | - K McDermott
- Sheep Ireland, Highfield House, Shinagh, Bandon, Co. Cork, P72 X050, Ireland
| | - A C O'Brien
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| |
Collapse
|
39
|
Pavan S, Delvento C, Mazzeo R, Ricciardi F, Losciale P, Gaeta L, D'Agostino N, Taranto F, Sánchez-Pérez R, Ricciardi L, Lotti C. Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. HORTICULTURE RESEARCH 2021; 8:15. [PMID: 33423037 PMCID: PMC7797004 DOI: 10.1038/s41438-020-00447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/04/2023]
Abstract
Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy.
- Institute of Biomedical Technologies, National Research Council (CNR), Via Amendola 122/D, Bari, 70126, Italy.
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Rosa Mazzeo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Francesca Ricciardi
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Pasquale Losciale
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Liliana Gaeta
- Council for Agricultural Research and Economics-Research Centre for Agriculture and Environment (CREA-AA), Bari, 70125, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, 80055, Italy
| | | | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Concetta Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy.
| |
Collapse
|
40
|
Lu T, Zhou S, Wu H, Forgetta V, Greenwood CMT, Richards JB. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening. Genet Med 2020; 23:508-515. [PMID: 33110269 DOI: 10.1038/s41436-020-01007-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Identifying rare genetic causes of common diseases can improve diagnostic and treatment strategies, but incurs high costs. We tested whether individuals with common disease and low polygenic risk score (PRS) for that disease generated from less expensive genome-wide genotyping data are more likely to carry rare pathogenic variants. METHODS We identified patients with one of five common complex diseases among 44,550 individuals who underwent exome sequencing in the UK Biobank. We derived PRS for these five diseases, and identified pathogenic rare variant heterozygotes. We tested whether individuals with disease and low PRS were more likely to carry rare pathogenic variants. RESULTS While rare pathogenic variants conferred, at most, 5.18-fold (95% confidence interval [CI]: 2.32-10.13) increased odds of disease, a standard deviation increase in PRS, at most, increased the odds of disease by 5.25-fold (95% CI: 5.06-5.45). Among diseased patients, a standard deviation decrease in the PRS was associated with, at most, 2.82-fold (95% CI: 1.14-7.46) increased odds of identifying rare variant heterozygotes. CONCLUSION Rare pathogenic variants were more prevalent among affected patients with a low PRS. Therefore, prioritizing individuals for sequencing who have disease but low PRS may increase the yield of sequencing studies to identify rare variant heterozygotes.
Collapse
Affiliation(s)
- Tianyuan Lu
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Quantitative Life Sciences Program, McGill University, Montreal, QC, Canada
| | - Sirui Zhou
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Haoyu Wu
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M T Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - J Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada. .,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada. .,Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom.
| |
Collapse
|