1
|
Ferguson S, Jones A, Murray K, Schwessinger B, Borevitz JO. Interspecies genome divergence is predominantly due to frequent small scale rearrangements in Eucalyptus. Mol Ecol 2023; 32:1271-1287. [PMID: 35810343 DOI: 10.1111/mec.16608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
Synteny, the ordering of sequences within homologous chromosomes, must be maintained within the genomes of sexually reproducing species for the sharing of alleles and production of viable, reproducing offspring. However, when the genomes of closely related species are compared, a loss of synteny is often observed. Unequal homologous recombination is the primary mechanism behind synteny loss, occurring more often in transposon rich regions, and resulting in the formation of chromosomal rearrangements. To examine patterns of synteny among three closely related, interbreeding, and wild Eucalyptus species, we assembled their genomes using long-read DNA sequencing and de novo assembly. We identify syntenic and rearranged regions between these genomes and estimate that ~48% of our genomes remain syntenic while ~36% is rearranged. We observed that rearrangements highly fragment microsynteny. Our results suggest that synteny between these species is primarily lost through small-scale rearrangements, not through sequence loss, gain, or sequence divergence. Further examination of identified rearrangements suggests that rearrangements may be altering the phenotypes of Eucalyptus species. Our study also underscores that the use of single reference genomes in genomic variation studies could lead to reference bias, especially given the scale at which we show potentially adaptive loci have highly diverged, deleted, duplicated and/or rearranged. This study provides an unbiased framework to look at potential speciation and adaptive loci among a rapidly radiating foundation species of woodland trees that are free from selective breeding seen in most crop species.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Weigel Department, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
2
|
Targetome Analysis of Malaria Sporozoite Transcription Factor AP2-Sp Reveals Its Role as a Master Regulator. mBio 2023; 14:e0251622. [PMID: 36622145 PMCID: PMC9973277 DOI: 10.1128/mbio.02516-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Malaria transmission to humans begins with sporozoite infection of the liver. The elucidation of gene regulation during the sporozoite stage will promote the investigation of mechanisms of liver infection by this parasite and contribute to the development of strategies for preventing malaria transmission. AP2-Sp is a transcription factor (TF) essential for the formation of sporozoites or sporogony, which takes place in oocysts in the midguts of infected mosquitoes. To understand the role of this TF in the transcriptional regulatory system of this stage, we performed chromatin immunoprecipitation sequencing (ChIP-seq) analyses using whole mosquito midguts containing late oocysts as starting material and explored its genome-wide target genes. We identified 697 target genes, comprising those involved in distinct processes parasites experience during this stage, from sporogony to development into the liver stage and representing the majority of genes highly expressed in the sporozoite stage. These results suggest that AP2-Sp determines basal patterns of gene expression by targeting a broad range of genes directly. The ChIP-seq analyses also showed that AP2-Sp maintains its own expression by a transcriptional autoactivation mechanism (positive-feedback loop) and induces all TFs reported to be transcribed at this stage, including AP2-Sp2, AP2-Sp3, and SLARP. The results showed that AP2-Sp exists at the top of the transcriptional cascade of this stage and triggers the formation of this stage as a master regulator. IMPORTANCE The sporozoite stage plays a central role in malaria transmission from a mosquito to vertebrate host and is an important target for antimalarial strategies. AP2-Sp is a candidate master transcription factor for the sporozoite stage. However, study of its role in gene regulation has been hampered because of difficulties in performing genome-wide studies of gene regulation in this stage. Here, we conquered this problem and revealed that AP2-Sp has the following prominent features as a master transcription factor. First, it determines the repertory of gene expression during this stage. Second, it maintains its own expression through a transcriptional positive-feedback loop and induces all other transcription factors specifically expressed in this stage. This study represents a major breakthrough in fully understanding gene regulation in this important malarial stage.
Collapse
|
3
|
Gloria-Soria A. Special Collection: Highlights of Medical, Urban and Veterinary Entomology. Highlights in Medical Entomology, 2021. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1853-1860. [PMID: 36197947 DOI: 10.1093/jme/tjac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Life remained far from normal as we completed the first year of the Covid-19 pandemic and entered a second year. Despite the challenges faced worldwide, together we continue to move the field of Medical Entomology forward. Here, I reflect on parallels between control of Covid-19 and vector-borne disease control, discuss the advantages and caveats of using new genotyping technologies for the study of invasive species, and proceed to highlight papers that were published between 2020 and 2021 with a focus on those related to mosquito surveillance and population genetics of mosquito vectors.
Collapse
Affiliation(s)
- A Gloria-Soria
- Department of Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Srinivasan S, Ghosh C, Das S, Thakare A, Singh S, Ganesh A, Mahawar H, Jaisimha A, Krishna M, Chattopadhyay A, Borah R, Singh V, M S, Kumar N, Kumar S, Swain S, Subramani S. Identification of a TNF-TNFR-like system in malaria vectors (Anopheles stephensi) likely to influence Plasmodium resistance. Sci Rep 2022; 12:19079. [PMID: 36351999 PMCID: PMC9646898 DOI: 10.1038/s41598-022-23780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Identification of Plasmodium-resistance genes in malaria vectors remains an elusive goal despite the recent availability of high-quality genomes of several mosquito vectors. Anopheles stephensi, with its three distinctly-identifiable forms at the egg stage, correlating with varying vector competence, offers an ideal species to discover functional mosquito genes implicated in Plasmodium resistance. Recently, the genomes of several strains of An. stephensi of the type-form, known to display high vectorial capacity, were reported. Here, we report a chromosomal-level assembly of an intermediate-form of An. stephensi strain (IndInt), shown to have reduced vectorial capacity relative to a strain of type-form (IndCh). The contig level assembly with a L50 of 4 was scaffolded into chromosomes by using the genome of IndCh as the reference. The final assembly shows a heterozygous paracentric inversion, 3Li, involving 8 Mbp, which is syntenic to the extensively-studied 2La inversion implicated in Plasmodium resistance in An. gambiae involving 21 Mbp. Deep annotation of genes within the 3Li region in the IndInt assembly using the state-of-the-art protein-fold prediction and other annotation tools reveals the presence of a tumor necrosis factor-alpha (TNF-alpha) like gene, which is the homolog of the Eiger gene in Drosophila. Subsequent chromosome-wide searches revealed homologs of Wengen (Wgn) and Grindelwald (Grnd) genes, which are known to be the receptors for Eiger in Drosophila. We have identified all the genes in IndInt required for Eiger-mediated signaling by analogy to the TNF-alpha system, suggesting the presence of a functionally-active Eiger signaling pathway in IndInt. Comparative genomics of the three type-forms with that of IndInt, reveals structurally disruptive mutations in Eiger gene in all three strains of the type-form, suggesting compromised innate immunity in the type-form as the likely cause of high vectorial capacity in these strains. This is the first report of the presence of a homolog of Eiger in malaria vectors, known to be involved in cell death in Drosophila, within an inversion region in IndInt syntenic to an inversion associated with Plasmodium resistance in An. gambiae.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Chaitali Ghosh
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Shrestha Das
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aditi Thakare
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Siddharth Singh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Apoorva Ganesh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Harsh Mahawar
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aadhya Jaisimha
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Mohanapriya Krishna
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aritra Chattopadhyay
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Rishima Borah
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Vikrant Singh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Soumya M
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Naveen Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Sampath Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Sunita Swain
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Suresh Subramani
- grid.266100.30000 0001 2107 4242TIGS, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
5
|
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, Fishman V. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun 2022; 13:1960. [PMID: 35413948 PMCID: PMC9005712 DOI: 10.1038/s41467-022-29599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Collapse
Affiliation(s)
- Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Miroslav Nuriddinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alena Taskina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Yang Wu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, 22911, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- AIRI, Moscow, Russia.
| |
Collapse
|
6
|
The genome trilogy of Anopheles stephensi, an urban malaria vector, reveals structure of a locus associated with adaptation to environmental heterogeneity. Sci Rep 2022; 12:3610. [PMID: 35246568 PMCID: PMC8897464 DOI: 10.1038/s41598-022-07462-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
Anopheles stephensi is the most menacing malaria vector to watch for in newly urbanising parts of the world. Its fitness is reported to be a direct consequence of the vector adapting to laying eggs in over-head water tanks with street-side water puddles polluted by oil and sewage. Large frequent inversions in the genome of malaria vectors are implicated in adaptation. We report the genome assembly of a strain of An. stephensi of the type-form, collected from a construction site from Chennai (IndCh) in 2016. The genome reported here with a L50 of 4, completes the trilogy of high-resolution genomes of strains with respect to a 16.5 Mbp 2Rb genotype in An. stephensi known to be associated with adaptation to environmental heterogeneity. Unlike the reported genomes of two other strains, STE2 (2R+b/2Rb) and UCI (2Rb/2Rb), IndCh is found to be homozygous for the standard form (2R+b/2R+b). Comparative genome analysis revealed base-level details of the breakpoints and allowed extraction of 22,650 segregating SNPs for typing this inversion in populations. Whole genome sequencing of 82 individual mosquitoes from diverse geographical locations reveal that one third of both wild and laboratory populations maintain the heterozygous genotype of 2Rb. The large number of SNPs can be tailored to 1740 exonic SNPs enabling genotyping directly from transcriptome sequencing. The genome trilogy approach accelerated the study of fine structure and typing of an important inversion in An. stephensi, putting the genome resources for this understudied species on par with the extensively studied malaria vector, Anopheles gambiae. We argue that the IndCh genome is relevant for field translation work compared to those reported earlier by showing that individuals from diverse geographical locations cluster with IndCh, pointing to significant convergence resulting from travel and commerce between cities, perhaps, contributing to the survival of the fittest strain.
Collapse
|
7
|
Schultz DT, Francis WR, McBroome JD, Christianson LM, Haddock SHD, Green RE. A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis. G3 (BETHESDA, MD.) 2021; 11:jkab302. [PMID: 34545398 PMCID: PMC8527503 DOI: 10.1093/g3journal/jkab302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Here, we present a karyotype, a chromosome-scale genome assembly, and a genome annotation from the ctenophore Hormiphora californensis (Ctenophora: Cydippida: Pleurobrachiidae). The assembly spans 110 Mb in 44 scaffolds and 99.47% of the bases are contained in 13 scaffolds. Chromosome micrographs and Hi-C heatmaps support a karyotype of 13 diploid chromosomes. Hi-C data reveal three large heterozygous inversions on chromosome 1, and one heterozygous inversion shares the same gene order found in the genome of the ctenophore Pleurobrachia bachei. We find evidence that H. californensis and P. bachei share thirteen homologous chromosomes, and the same karyotype of 1n = 13. The manually curated PacBio Iso-Seq-based genome annotation reveals complex gene structures, including nested genes and trans-spliced leader sequences. This chromosome-scale assembly is a useful resource for ctenophore biology and will aid future studies of metazoan evolution and phylogenetics.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Warren R Francis
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jakob D McBroome
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Speth Z, Kaur G, Mazolewski D, Sisomphou R, Siao DDC, Pooraiiouby R, Vasquez-Gross H, Petereit J, Gulia-Nuss M, Mathew D, Nuss AB. Characterization of Anopheles stephensi Odorant Receptor 8, an Abundant Component of the Mouthpart Chemosensory Transcriptome. INSECTS 2021; 12:593. [PMID: 34208911 PMCID: PMC8304465 DOI: 10.3390/insects12070593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/25/2023]
Abstract
Several mosquito species within the genus Anopheles are vectors for human malaria, and the spread of this disease is driven by the propensity of certain species to feed preferentially on humans. The study of olfaction in mosquitoes is important to understand dynamics of host-seeking and host-selection; however, the majority of these studies focus on Anopheles gambiae or An. coluzzii, both vectors of malaria in Sub-Saharan Africa. Other malaria vectors may recognize different chemical cues from potential hosts; therefore, in this study, we investigated An. stephensi, the south Asian malaria mosquito. We specifically focused on the mouthparts (primarily the maxillary palp and labella) that have been much less investigated compared to the antennae but are also important for host-seeking. To provide a broad view of chemoreceptor expression, RNAseq was used to examine the transcriptomes from the mouthparts of host-seeking females, blood-fed females, and males. Notably, AsOr8 had a high transcript abundance in all transcriptomes and was, therefore, cloned and expressed in the Drosophila empty neuron system. This permitted characterization with a panel of odorants that were selected, in part, for their presence in the human odor profile. The responsiveness of AsOr8 to odorants was highly similar to An. gambiae Or8 (AgOr8), except for sulcatone, which was detected by AsOr8 but not AgOr8. Subtle differences in the receptor sensitivity to specific odorants may provide clues to species- or strain-specific approaches to host-seeking and host selection. Further exploration of the profile of An. stephensi chemosensory proteins may yield a better understanding of how different malaria vectors navigate host-finding and host-choice.
Collapse
Affiliation(s)
- Zachary Speth
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Devin Mazolewski
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rayden Sisomphou
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Danielle Denise C. Siao
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rana Pooraiiouby
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
9
|
Improving mosquito control strategies with population genomics. Trends Parasitol 2021; 37:907-921. [PMID: 34074606 DOI: 10.1016/j.pt.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Mosquito control strategies increasingly apply knowledge from population genomics research. This review highlights recent applications to three research domains: mosquito invasions, insecticide resistance evolution, and rear and release programs. Current research trends follow developments in reference assemblies, either as improvements to existing assemblies (particularly Aedes) or assemblies for new taxa (particularly Anopheles). With improved assemblies, studies of invasive and rear and release target populations are better able to incorporate adaptive as well as demographic hypotheses. New reference assemblies are aiding comparisons of insecticide resistance across sister taxa while helping resolve taxon boundaries amidst frequent introgression. Anopheles gene drive deployments and improved Aedes genome assemblies should lead to a convergence in research aims for Anopheles and Aedes in the coming years.
Collapse
|
10
|
Ishtiaq F, Swain S, Kumar SS. Anopheles stephensi (Asian Malaria Mosquito). Trends Parasitol 2021; 37:571-572. [PMID: 33865712 DOI: 10.1016/j.pt.2021.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Farah Ishtiaq
- Tata Institute for Genetics and Society-Centre at inStem, inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bangalore 560065, India.
| | - Sunita Swain
- Tata Institute for Genetics and Society-Centre at inStem, inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bangalore 560065, India
| | - S Sampath Kumar
- Tata Institute for Genetics and Society-Centre at inStem, inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
11
|
Chakraborty M, Ramaiah A, Adolfi A, Halas P, Kaduskar B, Ngo LT, Jayaprasad S, Paul K, Whadgar S, Srinivasan S, Subramani S, Bier E, James AA, Emerson JJ. Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biol 2021; 19:28. [PMID: 33568145 PMCID: PMC7876825 DOI: 10.1186/s12915-021-00963-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An. stephensi are draft-quality and contain thousands of sequence gaps, potentially missing genetic elements important for its biology and evolution. RESULTS To access previously intractable genomic regions, we generated a reference-grade genome assembly and full transcript annotations that achieve a new standard for reference genomes of disease vectors. Here, we report novel species-specific transposable element (TE) families and insertions in functional genetic elements, demonstrating the widespread role of TEs in genome evolution and phenotypic variation. We discovered 29 previously hidden members of insecticide resistance genes, uncovering new candidate genetic elements for the widespread insecticide resistance observed in An. stephensi. We identified 2.4 Mb of the Y chromosome and seven new male-linked gene candidates, representing the most extensive coverage of the Y chromosome in any mosquito. By tracking full-length mRNA for > 15 days following blood feeding, we discover distinct roles of previously uncharacterized genes in blood metabolism and female reproduction. The Y-linked heterochromatin landscape reveals extensive accumulation of long-terminal repeat retrotransposons throughout the evolution and degeneration of this chromosome. Finally, we identify a novel Y-linked putative transcription factor that is expressed constitutively throughout male development and adulthood, suggesting an important role. CONCLUSION Collectively, these results and resources underscore the significance of previously hidden genomic elements in the biology of malaria mosquitoes and will accelerate the development of genetic control strategies of malaria transmission.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Adriana Adolfi
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Paige Halas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Bhagyashree Kaduskar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Luna Thanh Ngo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Suvratha Jayaprasad
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Kiran Paul
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Saurabh Whadgar
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Subhashini Srinivasan
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Suresh Subramani
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0322, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|