1
|
Reina-Reina A, Barrera J, Maté A, Trujillo J, Valdivieso B, Gas ME. Developing an interpretable machine learning model for predicting COVID-19 patients deteriorating prior to intensive care unit admission using laboratory markers. Heliyon 2023; 9:e22878. [PMID: 38125502 PMCID: PMC10731083 DOI: 10.1016/j.heliyon.2023.e22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Coronavirus disease (COVID-19) remains a significant global health challenge, prompting a transition from emergency response to comprehensive management strategies. Furthermore, the emergence of new variants of concern, such as BA.2.286, underscores the need for early detection and response to new variants, which continues to be a crucial strategy for mitigating the impact of COVID-19, especially among the vulnerable population. This study aims to anticipate patients requiring intensive care or facing elevated mortality risk throughout their COVID-19 infection while also identifying laboratory predictive markers for early diagnosis of patients. Therefore, haematological, biochemical, and demographic variables were retrospectively evaluated in 8,844 blood samples obtained from 2,935 patients before intensive care unit admission using an interpretable machine learning model. Feature selection techniques were applied using precision-recall measures to address data imbalance and evaluate the suitability of the different variables. The model was trained using stratified cross-validation with k=5 and internally validated, achieving an accuracy of 77.27%, sensitivity of 78.55%, and area under the receiver operating characteristic (AUC) of 0.85; successfully identifying patients at increased risk of severe progression. From a medical perspective, the most important features of the progression or severity of patients with COVID-19 were lactate dehydrogenase, age, red blood cell distribution standard deviation, neutrophils, and platelets, which align with findings from several prior investigations. In light of these insights, diagnostic processes can be significantly expedited through the use of laboratory tests, with a greater focus on key indicators. This strategic approach not only improves diagnostic efficiency but also extends its reach to a broader spectrum of patients. In addition, it allows healthcare professionals to take early preventive measures for those most at risk of adverse outcomes, thereby optimising patient care and prognosis.
Collapse
Affiliation(s)
- A. Reina-Reina
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - J.M. Barrera
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - A. Maté
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - J.C. Trujillo
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - B. Valdivieso
- The University and Polytechnic La Fe Hospital of Valencia, Avenida Fernando Abril Martorell, 106 Torre H 1st floor, 46026, Valencia, Spain
- The Medical Research Institute of Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre F 7th floor, 46026, Valencia, Spain
| | - María-Eugenia Gas
- The Medical Research Institute of Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre F 7th floor, 46026, Valencia, Spain
| |
Collapse
|
2
|
Catanese A, Rajkumar S, Sommer D, Masrori P, Hersmus N, Van Damme P, Witzel S, Ludolph A, Ho R, Boeckers TM, Mulaw M. Multiomics and machine-learning identify novel transcriptional and mutational signatures in amyotrophic lateral sclerosis. Brain 2023; 146:3770-3782. [PMID: 36883643 PMCID: PMC10473564 DOI: 10.1093/brain/awad075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal and incurable neurodegenerative disease that mainly affects the neurons of the motor system. Despite the increasing understanding of its genetic components, their biological meanings are still poorly understood. Indeed, it is still not clear to which extent the pathological features associated with amyotrophic lateral sclerosis are commonly shared by the different genes causally linked to this disorder. To address this point, we combined multiomics analysis covering the transcriptional, epigenetic and mutational aspects of heterogenous human induced pluripotent stem cell-derived C9orf72-, TARDBP-, SOD1- and FUS-mutant motor neurons as well as datasets from patients' biopsies. We identified a common signature, converging towards increased stress and synaptic abnormalities, which reflects a unifying transcriptional program in amyotrophic lateral sclerosis despite the specific profiles due to the underlying pathogenic gene. In addition, whole genome bisulphite sequencing linked the altered gene expression observed in mutant cells to their methylation profile, highlighting deep epigenetic alterations as part of the abnormal transcriptional signatures linked to amyotrophic lateral sclerosis. We then applied multi-layer deep machine-learning to integrate publicly available blood and spinal cord transcriptomes and found a statistically significant correlation between their top predictor gene sets, which were significantly enriched in toll-like receptor signalling. Notably, the overrepresentation of this biological term also correlated with the transcriptional signature identified in mutant human induced pluripotent stem cell-derived motor neurons, highlighting novel insights into amyotrophic lateral sclerosis marker genes in a tissue-independent manner. Finally, using whole genome sequencing in combination with deep learning, we generated the first mutational signature for amyotrophic lateral sclerosis and defined a specific genomic profile for this disease, which is significantly correlated to ageing signatures, hinting at age as a major player in amyotrophic lateral sclerosis. This work describes innovative methodological approaches for the identification of disease signatures through the combination of multiomics analysis and provides novel knowledge on the pathological convergencies defining amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Daniel Sommer
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Pegah Masrori
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Nicole Hersmus
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Simon Witzel
- Department of Neurology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Albert Ludolph
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
- Department of Neurology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
3
|
Chakraborty A, Mitra S, Bhattacharjee M, De D, Pal AJ. Determining human-coronavirus protein-protein interaction using machine intelligence. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 18:100228. [PMID: 37056696 PMCID: PMC10077817 DOI: 10.1016/j.medntd.2023.100228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) virus spread the novel CoronaVirus -19 (nCoV-19) pandemic, resulting in millions of fatalities globally. Recent research demonstrated that the Protein-Protein Interaction (PPI) between SARS-CoV-2 and human proteins is accountable for viral pathogenesis. However, many of these PPIs are poorly understood and unexplored, necessitating a more in-depth investigation to find latent yet critical interactions. This article elucidates the host-viral PPI through Machine Learning (ML) lenses and validates the biological significance of the same using web-based tools. ML classifiers are designed based on comprehensive datasets with five sequence-based features of human proteins, namely Amino Acid Composition, Pseudo Amino Acid Composition, Conjoint Triad, Dipeptide Composition, and Normalized Auto Correlation. A majority voting rule-based ensemble method composed of the Random Forest Model (RFM), AdaBoost, and Bagging technique is proposed that delivers encouraging statistical performance compared to other models employed in this work. The proposed ensemble model predicted a total of 111 possible SARS-CoV-2 human target proteins with a high likelihood factor ≥70%, validated by utilizing Gene Ontology (GO) and KEGG pathway enrichment analysis. Consequently, this research can aid in a deeper understanding of the molecular mechanisms underlying viral pathogenesis and provide clues for developing more efficient anti-COVID medications.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Bachelor of Computer Application Department, The Heritage Academy, Kolkata, India
| | - Sajal Mitra
- Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, India
| | | | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | | |
Collapse
|
4
|
Rojas-García M, Vázquez B, Torres-Poveda K, Madrid-Marina V. Lethality risk markers by sex and age-group for COVID-19 in Mexico: a cross-sectional study based on machine learning approach. BMC Infect Dis 2023; 23:18. [PMID: 36631853 PMCID: PMC9832420 DOI: 10.1186/s12879-022-07951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mexico ranks fifth worldwide in the number of deaths due to COVID-19. Identifying risk markers through easily accessible clinical data could help in the initial triage of COVID-19 patients and anticipate a fatal outcome, especially in the most socioeconomically disadvantaged regions. This study aims to identify markers that increase lethality risk in patients diagnosed with COVID-19, based on machine learning (ML) methods. Markers were differentiated by sex and age-group. METHODS A total of 11,564 cases of COVID-19 in Mexico were extracted from the Epidemiological Surveillance System for Viral Respiratory Disease. Four ML classification methods were trained to predict lethality, and an interpretability approach was used to identify those markers. RESULTS Models based on Extreme Gradient Boosting (XGBoost) yielded the best performance in a test set. This model achieved a sensitivity of 0.91, a specificity of 0.69, a positive predictive value of 0.344, and a negative predictive value of 0.965. For female patients, the leading markers are diabetes and arthralgia. For males, the main markers are chronic kidney disease (CKD) and chest pain. Dyspnea, hypertension, and polypnea increased the risk of death in both sexes. CONCLUSIONS ML-based models using an interpretability approach successfully identified risk markers for lethality by sex and age. Our results indicate that age is the strongest demographic factor for a fatal outcome, while all other markers were consistent with previous clinical trials conducted in a Mexican population. The markers identified here could be used as an initial triage, especially in geographic areas with limited resources.
Collapse
Affiliation(s)
- Mariano Rojas-García
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca, 62100, Mexico
| | - Blanca Vázquez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Kirvis Torres-Poveda
- CONACyT-Instituto Nacional de Salud Pública, Av. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Mexico.
| | - Vicente Madrid-Marina
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca, 62100, Mexico.
| |
Collapse
|
5
|
Martinez G, Garduno A, Mahmud-Al-Rafat A, Ostadgavahi AT, Avery A, de Avila e Silva S, Cusack R, Cameron C, Cameron M, Martin-Loeches I, Kelvin D. An artificial neural network classification method employing longitudinally monitored immune biomarkers to predict the clinical outcome of critically ill COVID-19 patients. PeerJ 2022; 10:e14487. [PMID: 36530391 PMCID: PMC9753745 DOI: 10.7717/peerj.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background The severe form of COVID-19 can cause a dysregulated host immune syndrome that might lead patients to death. To understand the underlying immune mechanisms that contribute to COVID-19 disease we have examined 28 different biomarkers in two cohorts of COVID-19 patients, aiming to systematically capture, quantify, and algorithmize how immune signals might be associated to the clinical outcome of COVID-19 patients. Methods The longitudinal concentration of 28 biomarkers of 95 COVID-19 patients was measured. We performed a dimensionality reduction analysis to determine meaningful biomarkers for explaining the data variability. The biomarkers were used as input of artificial neural network, random forest, classification and regression trees, k-nearest neighbors and support vector machines. Two different clinical cohorts were used to grant validity to the findings. Results We benchmarked the classification capacity of two COVID-19 clinicals studies with different models and found that artificial neural networks was the best classifier. From it, we could employ different sets of biomarkers to predict the clinical outcome of COVID-19 patients. First, all the biomarkers available yielded a satisfactory classification. Next, we assessed the prediction capacity of each protein separated. With a reduced set of biomarkers, our model presented 94% accuracy, 96.6% precision, 91.6% recall, and 95% of specificity upon the testing data. We used the same model to predict 83% and 87% (recovered and deceased) of unseen data, granting validity to the results obtained. Conclusions In this work, using state-of-the-art computational techniques, we systematically identified an optimal set of biomarkers that are related to a prediction capacity of COVID-19 patients. The screening of such biomarkers might assist in understanding the underlying immune response towards inflammatory diseases.
Collapse
Affiliation(s)
- Gustavo Martinez
- Immunology, Shantou University, Shantou, GD, China,Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexis Garduno
- Department of Clinical Medicine, University of Dublin, Trinity College, Dublin, Ireland
| | | | | | - Ann Avery
- Division of Infectious Diseases, MetroHealth Medical Center, Cleveland, OH, United States of America
| | - Scheila de Avila e Silva
- Department of Biotechnology, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Rachael Cusack
- Department of Clinical Medicine, University of Dublin, Trinity College, Dublin, Ireland
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States of America
| | - Mark Cameron
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | | | - David Kelvin
- Immunology, Shantou University, Shantou, GD, China,Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Wang H, Jia S, Li Z, Duan Y, Tao G, Zhao Z. A Comprehensive Review of Artificial Intelligence in Prevention and Treatment of COVID-19 Pandemic. Front Genet 2022; 13:845305. [PMID: 35559010 PMCID: PMC9086537 DOI: 10.3389/fgene.2022.845305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The unprecedented outbreak of the Corona Virus Disease 2019 (COVID-19) pandemic has seriously affected numerous countries in the world from various aspects such as education, economy, social security, public health, etc. Most governments have made great efforts to control the spread of COVID-19, e.g., locking down hard-hit cities and advocating masks for the population. However, some countries and regions have relatively poor medical conditions in terms of insufficient medical equipment, hospital capacity overload, personnel shortage, and other problems, resulting in the large-scale spread of the epidemic. With the unique advantages of Artificial Intelligence (AI), it plays an extremely important role in medical imaging, clinical data, drug development, epidemic prediction, and telemedicine. Therefore, AI is a powerful tool that can help humans solve complex problems, especially in the fight against COVID-19. This study aims to analyze past research results and interpret the role of Artificial Intelligence in the prevention and treatment of COVID-19 from five aspects. In this paper, we also discuss the future development directions in different fields and prove the validity of the models through experiments, which will help researchers develop more efficient models to control the spread of COVID-19.
Collapse
Affiliation(s)
- Haishuai Wang
- College of Computer Science, Zhejiang University, Hangzhou, China
| | - Shangru Jia
- Department of Computer and Information Engineering, Tianjin Normal University, Tianjin, China
| | - Zhao Li
- Alibaba-ZJU Joint Research Institute of Frontier Technologies, Zhejiang University, Hangzhou, China
| | - Yucong Duan
- College of Computer Science and Technology, Hainan University, Haikou, China
| | - Guangyu Tao
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ziping Zhao
- Department of Computer and Information Engineering, Tianjin Normal University, Tianjin, China
| |
Collapse
|
7
|
Ilbeigipour S, Albadvi A. Symptom-based analysis of COVID-19 cases using supervised machine learning approaches to improve medical decision-making. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100933. [PMID: 35434262 PMCID: PMC9004256 DOI: 10.1016/j.imu.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The world today faces a new challenge that is unprecedented in the last 100 years. The emergence of a new coronavirus has led to a human catastrophe. Scientists in various sciences have been looking for solutions to this problem so far. In addition to general vaccination, maintaining social distance and adherence to government guidelines on safety precaution measures are the most well-known strategies to prevent COVID-19 infection. In this research, we tried to examine the symptoms of COVID-19 cases through different supervised machine learning methods. We solved the class imbalance problem using the synthetic minority over-sampling (SMOTE) method and then developed some classification models to predict the outcome of COVID-19 cases (recovery or death). Besides, we implemented a rule-based technique to identify different combinations of variables with specific ranges of their values that together affect disease severity. Our results showed that the random forest model with 95.6% accuracy, 97.1% sensitivity, 94.0% specification, 94.4% precision, 95.8% F-score, and 99.3% AUC-score outperforms state-of-the-art classification models. Finally, we identified the most significant rules that state various combinations of 6 features in certain ranges of their values lead to patients’ recovery with a confidence value of 90%. In conclusion, the classification results in this study show better performance than recent studies, and the extracted rules help physicians consider other important factors to improve health services and medical decision-making for different groups of COVID-19 patients.
Collapse
Affiliation(s)
- Sadegh Ilbeigipour
- Department of Information Technology Engineering, Industrial and Systems Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Amir Albadvi
- Department of Information Technology Engineering, Industrial and Systems Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Guest PC, Popovic D, Steiner J. Challenges of Multiplex Assays for COVID-19 Research: A Machine Learning Perspective. Methods Mol Biol 2022; 2511:37-50. [PMID: 35838950 DOI: 10.1007/978-1-0716-2395-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiplex assays that provide simultaneous measurement of multiple analytes in biological samples have now developed into widely used technologies in the study of diseases, drug discovery, and other medical areas. These approaches span multiple assay systems and can provide readouts of specific assay components with similar accuracy as the respective single assay measurements. Multiplexing allows the consumption of lower sample volumes, lower costs, and higher throughput compared with carrying out single assays. A number of recent studies have demonstrated the impact of multiplex assays in the study of the SARS-CoV-2 virus, the infectious agent responsible for the current COVID-19 pandemic. In this respect, machine learning techniques have proven to be highly valuable in capturing complex disease phenotypes and converting these insights into models which can be applied in real-world settings. This chapter gives an overview of opportunities and challenges of multiplexed biomarker analysis, with a focus on the use of machine learning aimed at identification of biological signatures for increasing our understanding of COVID-19 disease, and for improved diagnostics and prediction of disease outcomes.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - David Popovic
- Section of Forensic Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Johann Steiner
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Mental Health (DZP), Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Site Jena-Magdeburg-Halle, Magdeburg, Germany
| |
Collapse
|
9
|
Liu CH, Lu CH, Lin LT. Pandemic strategies with computational and structural biology against COVID-19: A retrospective. Comput Struct Biotechnol J 2021; 20:187-192. [PMID: 34900126 PMCID: PMC8650801 DOI: 10.1016/j.csbj.2021.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic, has dominated all aspects of life since of 2020. Research studies on the virus and exploration of therapeutic and preventive strategies has been moving at rapid rates to control the pandemic. In the field of bioinformatics or computational and structural biology, recent research strategies have used multiple disciplines to compile large datasets to uncover statistical correlations and significance, visualize and model proteins, perform molecular dynamics simulations, and employ the help of artificial intelligence and machine learning to harness computational processing power to further the research on COVID-19, including drug screening, drug design, vaccine development, prognosis prediction, and outbreak prediction. These recent developments should help us better understand the viral disease and develop the much-needed therapies and strategies for the management of COVID-19.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cheng-Hua Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Murri R, Lenkowicz J, Masciocchi C, Iacomini C, Fantoni M, Damiani A, Marchetti A, Sergi PDA, Arcuri G, Cesario A, Patarnello S, Antonelli M, Bellantone R, Bernabei R, Boccia S, Calabresi P, Cambieri A, Cauda R, Colosimo C, Crea F, De Maria R, De Stefano V, Franceschi F, Gasbarrini A, Parolini O, Richeldi L, Sanguinetti M, Urbani A, Zega M, Scambia G, Valentini V. A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19. Sci Rep 2021; 11:21136. [PMID: 34707184 PMCID: PMC8551240 DOI: 10.1038/s41598-021-99905-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home.
Collapse
Affiliation(s)
- Rita Murri
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Jacopo Lenkowicz
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Chiara Iacomini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Fantoni
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Giovanni Arcuri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alfredo Cesario
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Massimo Antonelli
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rocco Bellantone
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Bernabei
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefania Boccia
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Cambieri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Cauda
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cesare Colosimo
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Crea
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Valerio De Stefano
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Franceschi
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Luca Richeldi
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Urbani
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Zega
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Krysko O, Kondakova E, Vershinina O, Galova E, Blagonravova A, Gorshkova E, Bachert C, Ivanchenko M, Krysko DV, Vedunova M. Artificial Intelligence Predicts Severity of COVID-19 Based on Correlation of Exaggerated Monocyte Activation, Excessive Organ Damage and Hyperinflammatory Syndrome: A Prospective Clinical Study. Front Immunol 2021; 12:715072. [PMID: 34539644 PMCID: PMC8442605 DOI: 10.3389/fimmu.2021.715072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background Prediction of the severity of COVID-19 at its onset is important for providing adequate and timely management to reduce mortality. Objective To study the prognostic value of damage parameters and cytokines as predictors of severity of COVID-19 using an extensive immunologic profiling and unbiased artificial intelligence methods. Methods Sixty hospitalized COVID-19 patients (30 moderate and 30 severe) and 17 healthy controls were included in the study. The damage indicators high mobility group box 1 (HMGB1), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), extensive biochemical analyses, a panel of 47 cytokines and chemokines were analyzed at weeks 1, 2 and 7 along with clinical complaints and CT scans of the lungs. Unbiased artificial intelligence (AI) methods (logistic regression and Support Vector Machine and Random Forest algorithms) were applied to investigate the contribution of each parameter to prediction of the severity of the disease. Results On admission, the severely ill patients had significantly higher levels of LDH, IL-6, monokine induced by gamma interferon (MIG), D-dimer, fibrinogen, glucose than the patients with moderate disease. The levels of macrophage derived cytokine (MDC) were lower in severely ill patients. Based on artificial intelligence analysis, eight parameters (creatinine, glucose, monocyte number, fibrinogen, MDC, MIG, C-reactive protein (CRP) and IL-6 have been identified that could predict with an accuracy of 83−87% whether the patient will develop severe disease. Conclusion This study identifies the prognostic factors and provides a methodology for making prediction for COVID-19 patients based on widely accepted biomarkers that can be measured in most conventional clinical laboratories worldwide.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Elena Kondakova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Olga Vershinina
- Institute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Elena Galova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Ekaterina Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mikhail Ivanchenko
- Institute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia.,Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Cancer Research Institute, Ghent, Belgium
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| |
Collapse
|
12
|
Bouchareb Y, Moradi Khaniabadi P, Al Kindi F, Al Dhuhli H, Shiri I, Zaidi H, Rahmim A. Artificial intelligence-driven assessment of radiological images for COVID-19. Comput Biol Med 2021; 136:104665. [PMID: 34343890 PMCID: PMC8291996 DOI: 10.1016/j.compbiomed.2021.104665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022]
Abstract
Artificial Intelligence (AI) methods have significant potential for diagnosis and prognosis of COVID-19 infections. Rapid identification of COVID-19 and its severity in individual patients is expected to enable better control of the disease individually and at-large. There has been remarkable interest by the scientific community in using imaging biomarkers to improve detection and management of COVID-19. Exploratory tools such as AI-based models may help explain the complex biological mechanisms and provide better understanding of the underlying pathophysiological processes. The present review focuses on AI-based COVID-19 studies as applies to chest x-ray (CXR) and computed tomography (CT) imaging modalities, and the associated challenges. Explicit radiomics, deep learning methods, and hybrid methods that combine both deep learning and explicit radiomics have the potential to enhance the ability and usefulness of radiological images to assist clinicians in the current COVID-19 pandemic. The aims of this review are: first, to outline COVID-19 AI-analysis workflows, including acquisition of data, feature selection, segmentation methods, feature extraction, and multi-variate model development and validation as appropriate for AI-based COVID-19 studies. Secondly, existing limitations of AI-based COVID-19 analyses are discussed, highlighting potential improvements that can be made. Finally, the impact of AI and radiomics methods and the associated clinical outcomes are summarized. In this review, pipelines that include the key steps for AI-based COVID-19 signatures identification are elaborated. Sample size, non-standard imaging protocols, segmentation, availability of public COVID-19 databases, combination of imaging and clinical information and full clinical validation remain major limitations and challenges. We conclude that AI-based assessment of CXR and CT images has significant potential as a viable pathway for the diagnosis, follow-up and prognosis of COVID-19.
Collapse
Affiliation(s)
- Yassine Bouchareb
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO. Box 35, Al Khod, Muscat, 123, Oman.
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO. Box 35, Al Khod, Muscat, 123, Oman.
| | | | - Humoud Al Dhuhli
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO. Box 35, Al Khod, Muscat, 123, Oman
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
13
|
Pulgar-Sánchez M, Chamorro K, Fors M, Mora FX, Ramírez H, Fernandez-Moreira E, Ballaz SJ. Biomarkers of severe COVID-19 pneumonia on admission using data-mining powered by common laboratory blood tests-datasets. Comput Biol Med 2021; 136:104738. [PMID: 34391001 PMCID: PMC8349478 DOI: 10.1016/j.compbiomed.2021.104738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the epidemiological COVID-19 research, artificial intelligence is a unique approach to make predictions about disease severity to manage COVID-19 patients. A limitation of artificial intelligence is, however, the high risk of bias. We investigated the skill of data mining and machine learning, two advanced forms of artificial intelligence, to predict severe COVID-19 pneumonia based on routine laboratory tests. A sample of 4009 COVID-19 patients was divided into Severe (PaO2< 60 mmHg, 489 cases) and Non-Severe (PaO2 ≥ 60 mmHg, 3520 cases) groups according to blood hypoxemia on admission and their laboratory datasets analyzed by the R software and WEKA workbench. After curation, data were processed for the selection of the most influential features including hemogram, pCO2, blood acid-base balance, prothrombin time, inflammation biomarkers, and glucose. The best fit of variables was successfully confirmed by either the Multilayer Perceptron, a feedforward neural network algorithm that performed machine recognition of severe COVID-19 with 96.5% precision, or by the C4.5 software, a supervised learning algorithm based on an objective-predefined variable (severity) that generated a decision tree with 89.4% precision. Finally, a complex bivariate Pearson's correlation matrix combined with advanced hierarchical clustering (dendrograms) were conducted for knowledge discovery. The hidden structure of the datasets revealed shift patterns related to the development of COVID-19-induced pneumonia that involved the lymphocyte-to-C-reactive protein and leukocyte-to-C-protein ratios, neutrophil %, pH and pCO2. The data mining approaches to the hematological fluctuations associated with severe COVID-19 pneumonia could not only anticipate adverse clinical outcomes, but also reveal putative therapeutic targets.
Collapse
Affiliation(s)
- Mary Pulgar-Sánchez
- Escuela de Ciencias Biológicas e Ingeniería. Universidad Yachay Tech, Urcuquí, Ecuador
| | - Kevin Chamorro
- Escuela de Matemáticas y Ciencias Computacionales. Universidad Yachay Tech, Urcuquí, Ecuador; Universidad Técnica Del Norte, Ibarra, Ecuador
| | - Martha Fors
- Escuela de Medicina; Universidad de las Américas, Quito, Ecuador
| | | | - Hégira Ramírez
- Escuela de Medicina; Universidad de las Américas, Quito, Ecuador
| | | | - Santiago J Ballaz
- Escuela de Ciencias Biológicas e Ingeniería. Universidad Yachay Tech, Urcuquí, Ecuador; Escuela de Medicina, Universidad Espíritu Santo, Samborondón, Ecuador.
| |
Collapse
|