1
|
Tan JZE, Wee J, Gong X, Xia K. Topology-Enhanced Machine Learning Model (Top-ML) for Anticancer Peptide Prediction. J Chem Inf Model 2025; 65:4232-4242. [PMID: 40229641 DOI: 10.1021/acs.jcim.5c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Recently, therapeutic peptides have demonstrated great promise for cancer treatment. To explore powerful anticancer peptides, artificial intelligence (AI)-based approaches have been developed to systematically screen potential candidates. However, the lack of efficient featurization of peptides has become a bottleneck for these machine-learning models. In this paper, we propose a topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction. Our Top-ML employs peptide topological features derived from its sequence "connection" information characterized by spectral descriptors. Our Top-ML model, employing an Extra-Trees classifier, has been validated on the AntiCP 2.0 and mACPpred 2.0 benchmark data sets, achieving state-of-the-art performance or results comparable to existing deep learning models, while providing greater interpretability. Our results highlight the potential of leveraging novel topology-based featurization to accelerate the identification of anticancer peptides.
Collapse
Affiliation(s)
- Joshua Zhi En Tan
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - JunJie Wee
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xue Gong
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
2
|
Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Comput Biol Med 2025; 188:109821. [PMID: 39987697 DOI: 10.1016/j.compbiomed.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications including inhibitors of SARS-COV-2 and treatments for conditions like cancer and diabetes. Distinct types of peptides possess unique characteristics, and development of peptide-specific applications require the discrimination of one peptide type from others. To the best of our knowledge, approximately 230 Artificial Intelligence (AI) driven applications have been developed for 22 distinct types of peptides, yet there remains significant room for development of new predictors. A Comprehensive review addresses the critical gap by providing a consolidated platform for the development of AI-driven peptide classification applications. This paper offers several key contributions, including presenting the biological foundations of 22 unique peptide types and categorizes them into four main classes: Regulatory, Therapeutic, Nutritional, and Delivery Peptides. It offers an in-depth overview of 47 databases that have been used to develop peptide classification benchmark datasets. It summarizes details of 288 benchmark datasets that are used in development of diverse types AI-driven peptide classification applications. It provides a detailed summary of 197 sequence representation learning methods and 94 classifiers that have been used to develop 230 distinct AI-driven peptide classification applications. Across 22 distinct types peptide classification tasks related to 288 benchmark datasets, it demonstrates performance values of 230 AI-driven peptide classification applications. It summarizes experimental settings and various evaluation measures that have been employed to assess the performance of AI-driven peptide classification applications. The primary focus of this manuscript is to consolidate scattered information into a single comprehensive platform. This resource will greatly assist researchers who are interested in developing new AI-driven peptide classification applications.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany.
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Faiza Mehmood
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Institute of Data Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
3
|
Zhao M, Zhang Y, Wang M, Ma LZ. dsAMP and dsAMPGAN: Deep Learning Networks for Antimicrobial Peptides Recognition and Generation. Antibiotics (Basel) 2024; 13:948. [PMID: 39452213 PMCID: PMC11504993 DOI: 10.3390/antibiotics13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antibiotic resistance is a growing public health challenge. Antimicrobial peptides (AMPs) effectively target microorganisms through non-specific mechanisms, limiting their ability to develop resistance. Therefore, the prediction and design of new AMPs is crucial. Recently, deep learning has spurred interest in computational approaches to peptide drug discovery. This study presents a novel deep learning framework for AMP classification, function prediction, and generation. We developed discoverAMP (dsAMP), a robust AMP predictor using CNN Attention BiLSTM and transfer learning, which outperforms existing classifiers. In addition, dsAMPGAN, a Generative Adversarial Network (GAN)-based model, generates new AMP candidates. Our results demonstrate the superior performance of dsAMP in terms of sensitivity, specificity, Matthew correlation coefficient, accuracy, precision, F1 score, and area under the ROC curve, achieving >95% classification accuracy with transfer learning on a small dataset. Furthermore, dsAMPGAN successfully synthesizes AMPs similar to natural ones, as confirmed by comparisons of physical and chemical properties. This model serves as a reliable tool for the identification of novel AMPs in clinical settings and supports the development of AMPs to effectively combat antibiotic resistance.
Collapse
Affiliation(s)
- Min Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.Z.); (Y.Z.)
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maolin Wang
- CAAC Key Laboratory of General Aviation Operation, Civil Aviation Management Institute of China, Beijing 100102, China
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Suárez T, Montaño DF, Suárez R. Construction of amino acids reduced alphabets from molecular descriptors for interpretation of N-carbamylase, luciferase and PI3K mutations. Biosystems 2024; 246:105331. [PMID: 39260761 DOI: 10.1016/j.biosystems.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The classification of amino acids has proven to be a useful tool for understanding the importance of sequence in protein function. The reduced amino acid alphabets are an example of these classifications, which, when built from physicochemical, structural and quantum characteristics of the amino acids, allow it to simplify the representation of the sequences, being useful in the modelling, design and understanding of proteins. So, an objective selection of amino acids properties is important, due classes formed in a reduced alphabet depend on the descriptors used for classification. In this research, based on a careful selection of descriptors for the 20 amino acids, through techniques such as the information content index and hierarchical cluster analysis with ties in proximity, 20,871,586 reduced amino acid alphabets were constructed. This large collection of reduced alphabets was been used to interpret alterations in the function of three proteins: N-carbamylase, Luciferase, and PI3K, caused by amino acid changes in their sequences. For this, the similar and different descriptors linked to these mutations were studied. Properties such as volume, hydrophobicity, charge and autocorrelation can be associated with variations in the behaviour of these proteins, while the frequency in specific secondary structures, the Gibbs free energy and some topological and quantum properties can be considered as the causes of preventing the deactivation of protein function. This work offers the most complete collection of reduced alphabets that promise to be a useful tool for the interpretation of alterations caused by amino acid mutations in the protein sequence.
Collapse
Affiliation(s)
- Tatiana Suárez
- CHIMA Grupo de Química Matemática, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia
| | - Diego F Montaño
- Departamento de Química, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia
| | - Rosana Suárez
- CHIMA Grupo de Química Matemática, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia
| |
Collapse
|
5
|
Sangaraju VK, Pham NT, Wei L, Yu X, Manavalan B. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations. J Mol Biol 2024; 436:168687. [PMID: 39237191 DOI: 10.1016/j.jmb.2024.168687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 09/07/2024]
Abstract
Anticancer peptides (ACPs), naturally occurring molecules with remarkable potential to target and kill cancer cells. However, identifying ACPs based solely from their primary amino acid sequences remains a major hurdle in immunoinformatics. In the past, several web-based machine learning (ML) tools have been proposed to assist researchers in identifying potential ACPs for further testing. Notably, our meta-approach method, mACPpred, introduced in 2019, has significantly advanced the field of ACP research. Given the exponential growth in the number of characterized ACPs, there is now a pressing need to create an updated version of mACPpred. To develop mACPpred 2.0, we constructed an up-to-date benchmarking dataset by integrating all publicly available ACP datasets. We employed a large-scale of feature descriptors, encompassing both conventional feature descriptors and advanced pre-trained natural language processing (NLP)-based embeddings. We evaluated their ability to discriminate between ACPs and non-ACPs using eleven different classifiers. Subsequently, we employed a stacked deep learning (SDL) approach, incorporating 1D convolutional neural network (1D CNN) blocks and hybrid features. These features included the top seven performing NLP-based features and 90 probabilistic features, allowing us to identify hidden patterns within these diverse features and improve the accuracy of our ACP prediction model. This is the first study to integrate spatial and probabilistic feature representations for predicting ACPs. Rigorous cross-validation and independent tests conclusively demonstrated that mACPpred 2.0 not only surpassed its predecessor (mACPpred) but also outperformed the existing state-of-the-art predictors, highlighting the importance of advanced feature representation capabilities attained through SDL. To facilitate widespread use and accessibility, we have developed a user-friendly for mACPpred 2.0, available at https://balalab-skku.org/mACPpred2/.
Collapse
Affiliation(s)
- Vinoth Kumar Sangaraju
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Leyi Wei
- Faculty of Applied Sciences, Macao Polytechnic University, Macau
| | - Xue Yu
- Beidahuang Industry Group General Hospital, 150001 Harbin, China.
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Medina-Ortiz D, Contreras S, Fernández D, Soto-García N, Moya I, Cabas-Mora G, Olivera-Nappa Á. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Int J Mol Sci 2024; 25:8851. [PMID: 39201537 PMCID: PMC11487388 DOI: 10.3390/ijms25168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
Collapse
Affiliation(s)
- David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
| | - Seba Contreras
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Diego Fernández
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Nicole Soto-García
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Iván Moya
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Departamento de Ingeniería Química, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
7
|
Yang S, Liu D, Song Y, Liang Y, Yu H, Zuo Y. Designing a structure-function alphabet of helix based on reduced amino acid clusters. Arch Biochem Biophys 2024; 754:109942. [PMID: 38387828 DOI: 10.1016/j.abb.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Several simple secondary structures could form complex and diverse functional proteins, meaning that secondary structures may contain a lot of hidden information and are arranged according to certain principles, to carry enough information of functional specificity and diversity. However, these inner information and principles have not been understood systematically. In our study, we designed a structure-function alphabet of helix based on reduced amino acid clusters to describe the typical features of helices and delve into the information. Firstly, we selected 480 typical helices from membrane proteins, zymoproteins, transcription factors, and other proteins to define and calculate the interval range, and the helices are classified in terms of hydrophilicity, charge and length: (1) hydrophobic helix (≤43%), amphiphilic helix (43%∼71%), and hydrophilic helix (≥71%). (2) positive helix, negative helix, electrically neutral helix and uncharged helix. (3) short helix (≤8 aa), medium-length helix (9-28 aa), and long helix (≥29 aa). Then, we designed an alphabet containing 36 triplet codes according to the above classification, so that the main features of each helix can be represented by only three letters. This alphabet not only preliminarily defined the helix characteristics, but also greatly reduced the informational dimension of protein structure. Finally, we present an application example to demonstrate the value of the structure-function alphabet in protein functional determination and differentiation.
Collapse
Affiliation(s)
- Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yuchao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Haoyu Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
8
|
Wang R, Wang T, Zhuo L, Wei J, Fu X, Zou Q, Yao X. Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization. Brief Bioinform 2024; 25:bbae078. [PMID: 38446739 PMCID: PMC10939340 DOI: 10.1093/bib/bbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Antimicrobial peptides (AMPs), short peptides with diverse functions, effectively target and combat various organisms. The widespread misuse of chemical antibiotics has led to increasing microbial resistance. Due to their low drug resistance and toxicity, AMPs are considered promising substitutes for traditional antibiotics. While existing deep learning technology enhances AMP generation, it also presents certain challenges. Firstly, AMP generation overlooks the complex interdependencies among amino acids. Secondly, current models fail to integrate crucial tasks like screening, attribute prediction and iterative optimization. Consequently, we develop a integrated deep learning framework, Diff-AMP, that automates AMP generation, identification, attribute prediction and iterative optimization. We innovatively integrate kinetic diffusion and attention mechanisms into the reinforcement learning framework for efficient AMP generation. Additionally, our prediction module incorporates pre-training and transfer learning strategies for precise AMP identification and screening. We employ a convolutional neural network for multi-attribute prediction and a reinforcement learning-based iterative optimization strategy to produce diverse AMPs. This framework automates molecule generation, screening, attribute prediction and optimization, thereby advancing AMP research. We have also deployed Diff-AMP on a web server, with code, data and server details available in the Data Availability section.
Collapse
Affiliation(s)
- Rui Wang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000 Wenzhou, China
| | - Tao Wang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000 Wenzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000 Wenzhou, China
| | - Jinhang Wei
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000 Wenzhou, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012 Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730 Chengdu, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, China
| |
Collapse
|
9
|
Zhu Z, Pan F, Wang O, Zhao L, Zhao L. Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients 2024; 16:175. [PMID: 38202004 PMCID: PMC10780390 DOI: 10.3390/nu16010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
This study aimed to screen out antibacterial peptides derived from sesame (Sesamum indicum L.) through in silico and in vitro methods. In silico proteolysis of sesame proteins with pepsin, trypsin, and chymotrypsin was performed with the online server BIOPEP-UWM. The CAMPR3 online server was used to predict the antimicrobial effect of peptides. The ToxinPred, PepCalc, and AllergenFP tools were utilized to forecast the physicochemical properties, toxicity, and allergen of the peptides. Molecular docking analysis showed that six cationic antimicrobial peptides could directly interact with the key sites of dihydropteroate synthase, whereas Ala-Gly-Gly-Val-Pro-Arg and Ser-Thr-Ile-Arg exhibited the strongest binding affinity. In vitro antibacterial experiment showed the minimum inhibitory concentration (MIC) of Ser-Thr-Ile-Arg against Escherichia coli and Staphylococcus aureus was 1024 and 512 µg/mL, respectively. Meanwhile, MIC of Ala-Gly-Gly-Val-Pro-Arg against both bacterial species was 512 µg/mL. Our results suggest that peptides from sesame possess the ability to potentially hinder bacterial activity.
Collapse
Affiliation(s)
- Zehui Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Fei Pan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| |
Collapse
|
10
|
Wang Y, Xie Y, Luo Y, Jia P, Wei J, Zhang J, Yan W, Huang J. iASMP: An interpretable in-silico predictive tool focusing on species-specific antimicrobial peptides. J Pept Sci 2023; 29:e3490. [PMID: 36994602 DOI: 10.1002/psc.3490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/02/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Antimicrobial peptides (AMPs), a crucial part of the innate immune system, have been exploited as promising candidates for antibacterial agents. Many researchers have been devoting their efforts to develop novel AMPs in recent decades. In this term, many computational approaches have been developed to identify potential AMPs accurately. However, finding peptides specific to a particular bacterial species is challenging. Streptococcus mutans is a pathogen with an apparent cariogenic effect, and it is of great significance to study AMP that inhibit S. mutans for the prevention and treatment of caries. In this study, we proposed a sequence-based machine learning model, namely iASMP, to exactly identify potential anti-S. mutans peptides (ASMPs). After collecting ASMPs, the performances of models were compared by utilizing multiple feature descriptors and different classification algorithms. Among the baseline predictors, the model integrating the extra trees (ET) algorithm and the hybrid features exhibited optimal results. The feature selection method was utilized to remove redundant feature information to improve the model performance further. Finally, the proposed model achieved the maximum accuracy (ACC) of 0.962 on the training dataset and performed on the testing dataset with an ACC of 0.750. The results demonstrated that iASMP had an excellent predictive performance and was suitable for identifying potential ASMP. Furthermore, we also visualized the selected features and rationally explained the impact of individual features on the model output.
Collapse
Affiliation(s)
- Yuqiang Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yihao Xie
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Luo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Jia
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jiaqi Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jie Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjin Yan
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jinqi Huang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Xu J, Li F, Li C, Guo X, Landersdorfer C, Shen HH, Peleg AY, Li J, Imoto S, Yao J, Akutsu T, Song J. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities. Brief Bioinform 2023; 24:bbad240. [PMID: 37369638 PMCID: PMC10359087 DOI: 10.1093/bib/bbad240] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic. A variety of computational approaches have been developed to identify AMPs based on machine learning algorithms. However, most of them are not capable of predicting the functional activities of AMPs, and those predictors that can specify activities only focus on a few of them. In this study, we first surveyed 10 predictors that can identify AMPs and their functional activities in terms of the features they employed and the algorithms they utilized. Then, we constructed comprehensive AMP datasets and proposed a new deep learning-based framework, iAMPCN (identification of AMPs based on CNNs), to identify AMPs and their related 22 functional activities. Our experiments demonstrate that iAMPCN significantly improved the prediction performance of AMPs and their corresponding functional activities based on four types of sequence features. Benchmarking experiments on the independent test datasets showed that iAMPCN outperformed a number of state-of-the-art approaches for predicting AMPs and their functional activities. Furthermore, we analyzed the amino acid preferences of different AMP activities and evaluated the model on datasets of varying sequence redundancy thresholds. To facilitate the community-wide identification of AMPs and their corresponding functional types, we have made the source codes of iAMPCN publicly available at https://github.com/joy50706/iAMPCN/tree/master. We anticipate that iAMPCN can be explored as a valuable tool for identifying potential AMPs with specific functional activities for further experimental validation.
Collapse
Affiliation(s)
- Jing Xu
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3800, Australia
| | - Chen Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Cornelia Landersdorfer
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Hsin-Hui Shen
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Anton Y Peleg
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
12
|
Liu S, Liang Y, Li J, Yang S, Liu M, Liu C, Yang D, Zuo Y. Integrating reduced amino acid composition into PSSM for improving copper ion-binding protein prediction. Int J Biol Macromol 2023:124993. [PMID: 37307968 DOI: 10.1016/j.ijbiomac.2023.124993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Copper ion-binding proteins play an essential role in metabolic processes and are critical factors in many diseases, such as breast cancer, lung cancer, and Menkes disease. Many algorithms have been developed for predicting metal ion classification and binding sites, but none have been applied to copper ion-binding proteins. In this study, we developed a copper ion-bound protein classifier, RPCIBP, which integrating the reduced amino acid composition into position-specific score matrix (PSSM). The reduced amino acid composition filters out a large number of useless evolutionary features, improving the operational efficiency and predictive ability of the model (feature dimension from 2900 to 200, ACC from 83 % to 85.1 %). Compared with the basic model using only three sequence feature extraction methods (ACC in training set between 73.8 %-86.2 %, ACC in test set between 69.3 %-87.5 %), the model integrating the evolutionary features of the reduced amino acid composition showed higher accuracy and robustness (ACC in training set between 83.1 %-90.8 %, ACC in test set between 79.1 %-91.9 %). Best copper ion-binding protein classifiers filtered by feature selection progress were deployed in a user-friendly web server (http://bioinfor.imu.edu.cn/RPCIBP). RPCIBP can accurately predict copper ion-binding proteins, which is convenient for further structural and functional studies, and conducive to mechanism exploration and target drug development.
Collapse
Affiliation(s)
- Shanghua Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia International Mongolian Hospital, Hohhot 010065, China
| | - Yuchao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot 010010, China
| | - Jinzhao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ming Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Chengfang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dezhi Yang
- Inner Mongolia International Mongolian Hospital, Hohhot 010065, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia International Mongolian Hospital, Hohhot 010065, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot 010010, China.
| |
Collapse
|
13
|
Nguyen Q, Tran HV, Nguyen BP, Do TTT. Identifying Transcription Factors That Prefer Binding to Methylated DNA Using Reduced G-Gap Dipeptide Composition. ACS OMEGA 2022; 7:32322-32330. [PMID: 36119976 PMCID: PMC9475634 DOI: 10.1021/acsomega.2c03696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Transcription factors (TFs) play an important role in gene expression and regulation of 3D genome conformation. TFs have ability to bind to specific DNA fragments called enhancers and promoters. Some TFs bind to promoter DNA fragments which are near the transcription initiation site and form complexes that allow polymerase enzymes to bind to initiate transcription. Previous studies showed that methylated DNAs had ability to inhibit and prevent TFs from binding to DNA fragments. However, recent studies have found that there were TFs that could bind to methylated DNA fragments. The identification of these TFs is an important steppingstone to a better understanding of cellular gene expression mechanisms. However, as experimental methods are often time-consuming and labor-intensive, developing computational methods is essential. In this study, we propose two machine learning methods for two problems: (1) identifying TFs and (2) identifying TFs that prefer binding to methylated DNA targets (TFPMs). For the TF identification problem, the proposed method uses the position-specific scoring matrix for data representation and a deep convolutional neural network for modeling. This method achieved 90.56% sensitivity, 83.96% specificity, and an area under the receiver operating characteristic curve (AUC) of 0.9596 on an independent test set. For the TFPM identification problem, we propose to use the reduced g-gap dipeptide composition for data representation and the support vector machine algorithm for modeling. This method achieved 82.61% sensitivity, 64.86% specificity, and an AUC of 0.8486 on another independent test set. These results are higher than those of other studies on the same problems.
Collapse
Affiliation(s)
- Quang
H. Nguyen
- School
of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Hoang V. Tran
- School
of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Binh P. Nguyen
- School
of Mathematics and Statistics, Victoria
University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Trang T. T. Do
- School
of Innovation, Design and Technology, Wellington
Institute of Technology, 21 Kensington Avenue, Lower Hutt 5012, New Zealand
| |
Collapse
|
14
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
15
|
Li Y, Li X, Liu Y, Yao Y, Huang G. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides. Pharmaceuticals (Basel) 2022; 15:707. [PMID: 35745625 PMCID: PMC9231127 DOI: 10.3390/ph15060707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/30/2022] Open
Abstract
Bioactive peptides are typically small functional peptides with 2-20 amino acid residues and play versatile roles in metabolic and biological processes. Bioactive peptides are multi-functional, so it is vastly challenging to accurately detect all their functions simultaneously. We proposed a convolution neural network (CNN) and bi-directional long short-term memory (Bi-LSTM)-based deep learning method (called MPMABP) for recognizing multi-activities of bioactive peptides. The MPMABP stacked five CNNs at different scales, and used the residual network to preserve the information from loss. The empirical results showed that the MPMABP is superior to the state-of-the-art methods. Analysis on the distribution of amino acids indicated that the lysine preferred to appear in the anti-cancer peptide, the leucine in the anti-diabetic peptide, and the proline in the anti-hypertensive peptide. The method and analysis are beneficial to recognize multi-activities of bioactive peptides.
Collapse
Affiliation(s)
- You Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Xueyong Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China;
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| |
Collapse
|
16
|
Yang J, Han SC, Poon J. A survey on extraction of causal relations from natural language text. Knowl Inf Syst 2022. [DOI: 10.1007/s10115-022-01665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractAs an essential component of human cognition, cause–effect relations appear frequently in text, and curating cause–effect relations from text helps in building causal networks for predictive tasks. Existing causality extraction techniques include knowledge-based, statistical machine learning (ML)-based, and deep learning-based approaches. Each method has its advantages and weaknesses. For example, knowledge-based methods are understandable but require extensive manual domain knowledge and have poor cross-domain applicability. Statistical machine learning methods are more automated because of natural language processing (NLP) toolkits. However, feature engineering is labor-intensive, and toolkits may lead to error propagation. In the past few years, deep learning techniques attract substantial attention from NLP researchers because of its powerful representation learning ability and the rapid increase in computational resources. Their limitations include high computational costs and a lack of adequate annotated training data. In this paper, we conduct a comprehensive survey of causality extraction. We initially introduce primary forms existing in the causality extraction: explicit intra-sentential causality, implicit causality, and inter-sentential causality. Next, we list benchmark datasets and modeling assessment methods for causal relation extraction. Then, we present a structured overview of the three techniques with their representative systems. Lastly, we highlight existing open challenges with their potential directions.
Collapse
|
17
|
Najm AAK, Azfaralariff A, Dyari HRE, Othman BA, Shahid M, Khalili N, Law D, Syed Alwi SS, Fazry S. Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Sci Rep 2021; 11:23182. [PMID: 34848729 PMCID: PMC8632885 DOI: 10.1038/s41598-021-02007-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 01/17/2023] Open
Abstract
Previous study has shown the antimicrobial activities of mucus protein extracted from Anabastestudineus. In this study, we are interested in characterizing the anticancer activity of the A.testudineus antimicrobial peptides (AMPs). The mucus was extracted, fractioned, and subjected to antibacterial activity testing to confirm the fish's AMPs production. The cytotoxic activity of each fraction was also identified. Fraction 2 (F2), which shows toxicity against MCF7 and MDA-MB-231 were sent for peptide sequencing to identify the bioactive peptide. The two peptides were then synthetically produced and subjected to cytotoxic assay to prove their efficacy against cancer cell lines. The IC50 for AtMP1 against MCF7 and MDA-MB-231 were 8.25 ± 0.14 μg/ml and 9.35 ± 0.25 μg/ml respectively, while for AtMP2 it is 5.89 ± 0.14 μg/ml and 6.97 ± 0.24 μg/ml respectively. AtMP1 and AtMP2 treatment for 48 h induced breast cancer cell cycle arrest and apoptosis by upregulating the p53, which lead to upregulate pro-apoptotic BAX gene and downregulate the anti-apoptotic BCL-2 gene, consequently, trigger the activation of the caspase-3. This interaction was supported by docking analysis (QuickDBD, HPEPDOCK, and ZDOCK) and immunoprecipitation. This study provided new prospects in the development of highly effective and selective cancer therapeutics based on antimicrobial peptides.
Collapse
Affiliation(s)
- Ahmed Abdul Kareem Najm
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Innovative Center for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Herryawan Ryadi Eziwar Dyari
- Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Babul Airianah Othman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Nahid Khalili
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Sharifah Sakinah Syed Alwi
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia. .,Innovative Center for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia. .,Chini Lake Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|