Yu JL, Liu QY, Yang B, Sun YF, Wang YJ, Jiang J, Wang B, Cheng Y, Wang QB. Immunogenicity Analysis of the Recombinant
Plasmodium falciparum Surface-Related Antigen in Mice.
Pathogens 2022;
11:550. [PMID:
35631071 PMCID:
PMC9145071 DOI:
10.3390/pathogens11050550]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Plasmodium falciparum, mainly distributed in tropical and subtropical regions of the world, has received widespread attention owing to its severity. As a novel protein, P. falciparum surface-related antigen (PfSRA) has the structural and functional characteristics to be considered as a malaria vaccine candidate; however, limited information is available on its immunogenicity. Here, we expressed three fragments of recombinant PfSRA in an Escherichia coli system and further analyzed its immunogenicity. The results showed that rPfSRA-immunized mice produced specific antibodies with high endpoint titers (1:10,000 to 1:5,120,000) and affinity antibodies (i.e., rPfSRA-F1a (97.70%), rPfSRA-F2a (69.62%), and rPfSRA-F3a (91.87%)). In addition, the sera of immunized mice recognized both the native PfSRA and recombinant PfSRA, the rPfSRA antibodies inhibited the invasion of P. falciparum into the erythrocytes, and they were dose-dependent in vitro. This study confirmed PfSRA could be immunogenic, especially the F1a at the conserved region N-terminal and provided further support for it as a vaccine candidate against P.falciparum.
Collapse