1
|
Lucchesi M, Biso L, Bonaso M, Longoni B, Buchignani B, Battini R, Santorelli FM, Doccini S, Scarselli M. Mitochondrial Dysfunction in Genetic and Non-Genetic Parkinson's Disease. Int J Mol Sci 2025; 26:4451. [PMID: 40362688 PMCID: PMC12072996 DOI: 10.3390/ijms26094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial dysfunction is a hallmark of Parkinson's disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations-accounting for ~10% of PD cases-that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.
Collapse
Affiliation(s)
| | - Letizia Biso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Marco Bonaso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Biancamaria Longoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Bianca Buchignani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Marco Scarselli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| |
Collapse
|
2
|
Liu M, Gao J, Zhang Y, Zhou X, Wang Y, Wu L, Tian Z, Tang JH. Recent advances in bioresponsive macrocyclic gadolinium(III) complexes for MR imaging and therapy. Dalton Trans 2025; 54:6741-6777. [PMID: 40085150 DOI: 10.1039/d5dt00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Magnetic resonance (MR) imaging is a non-invasive clinical diagnostic modality that provides anatomical and physiological information with sub-millimetre spatial resolution at the organ and tissue levels. It utilizes the relaxation times (T1 and T2) of protons in water to generate MR images. However, the intrinsic MR contrast produced by water relaxation in organs and tissues is limited. To enhance the sensitivity and specificity of MR imaging, about 30%-45% of all clinical MR diagnoses need to use contrast media. Currently, all clinically approved MR contrast agents are linear or macrocyclic gadolinium(III) (Gd(III)) complexes, which are not specific to particular biological events. Due to the relatively high potential for releasing toxic free Gd(III), linear Gd(III) complexes raise safety concerns, making macrocyclic Gd(III) probes the preferred choice for clinical MR imaging without acute safety issues. To enhance the capability of MR imaging for detecting dynamic biological processes and conditions, many bioresponsive macrocyclic Gd(III) complexes capable of targeting diverse biomarkers have been developed. This review provides a concise and timely summary of bioresponsive macrocyclic Gd(III) contrast agents, particularly those developed between 2019 and 2024. We focus on three major types of Gd(III) agent that respond specifically to changes in pH, chemicals, and enzymes, highlighting their molecular design strategies, proton-relaxivity responses, and applications in in vitro and in vivo MR imaging for monitoring specific biomedical conditions and therapies.
Collapse
Affiliation(s)
- Ming Liu
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jingpi Gao
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Yang Zhang
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Xin Zhou
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Yu Wang
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jian-Hong Tang
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| |
Collapse
|
3
|
Lewis CJ, Chipman SI, D’Souza P, Johnston JM, Yousef MH, Gahl WA, Tifft CJ, Acosta MT. Brain Age Prediction in Type II GM1 Gangliosidosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.23.25326206. [PMID: 40313303 PMCID: PMC12045421 DOI: 10.1101/2025.04.23.25326206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
GM1 gangliosidosis is an inherited, progressive, and fatal neurodegenerative lysosomal storage disorder with no approved treatment. We calculated a predicted brain ages and Brain Structures Age Gap Estimation (BSAGE) for 81 MRI scans from 41 Type II GM1 gangliosidosis patients and 897 MRI scans from 556 neurotypical controls (NC) utilizing BrainStructuresAges, a machine learning MRI analysis pipeline. NC showed whole brain aging at a rate of 0.83 per chronological year compared with 1.57 in juvenile GM1 patients and 12.25 in late-infantile GM1 patients, accurately reflecting the clinical trajectories of the two disease subtypes. Accelerated and distinct brain aging was also observed throughout midbrain structures including the thalamus and caudate nucleus, hindbrain structures including the cerebellum and brainstem, and the ventricles in juvenile and late-infantile GM1 patients compared to NC. Predicted brain age and BSAGE both correlated with cross-sectional and longitudinal clinical assessments, indicating their importance as a surrogate neuroimaging outcome measures for clinical trials in GM1 gangliosidosis.
Collapse
Affiliation(s)
- Connor J. Lewis
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda MD 20892 USA
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| | - Selby I. Chipman
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda MD 20892 USA
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| | - Precilla D’Souza
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda MD 20892 USA
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| | - Jean M. Johnston
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda MD 20892 USA
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| | - Muhammad H. Yousef
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| | - Cynthia J. Tifft
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda MD 20892 USA
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| | - Maria T. Acosta
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda MD 20892 USA
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda MD 20892 USA
| |
Collapse
|
4
|
Rodriguez-Antiguedad J, Rajalingam R, Krüger C, Teixeira-dos-Santos D, Sun C, Fernandez-Toledo E, Duarte A, Saffie-Awad P, Barrett MJ, Flanigan JL, Emamikhah M, Patel N, San Luciano M, Cooper C, Bahr N, Oguh O, Buhrmann A, Vater M, Fuchshofen R, Vulinovic F, Parreidt MI, Weissbach A, Lohmann K, Klein C, Marras C, Camargos S. Genotype-Phenotype Relations for the Dystonia-Parkinsonism Genes GLB1, SLC6A3, SLC30A10, SLC39A14, and PLA2G6: MDSGene Systematic Review. Int J Mol Sci 2025; 26:4074. [PMID: 40362326 PMCID: PMC12071818 DOI: 10.3390/ijms26094074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The Movement Disorders Society recommends the DYT/PARK prefix for genes where dystonia and parkinsonism are prominent in approximately half or more of patients. This systematic review explores the genotype-phenotype correlations of GLB1, SLC6A3, SLC30A10, PLA2G6, and SLC39A14-recently classified as DYT SLC39A14 and historically linked to dystonia-parkinsonism. We searched PubMed and the Human Gene Mutation Database using standardized terms, including English-language, peer-reviewed publications up to February 2024. Following the MDSGene protocol, we extracted individual-level data on patients with biallelic pathogenic variants and at least one movement disorder. Features were marked "missing" if not explicitly reported. Of 1828 articles, 128 were eligible. We identified 386 patients and 262 variants. The median age at onset was 3 years for GLB1, 3 months for SLC6A3, 2.5 years for SLC30A10, 1.5 years for SLC39A14, and 16 years for PLA2G6. Missing data may reflect underreporting of negative findings. Case reports/serie, may bias toward atypical presentations. Our analysis showed dystonia-parkinsonism predominates in SLC6A3 and PLA2G6, while GLB1, SLC30A10, and SLC39A1 show predominantly dystonic phenotypes with a low frequency of parkinsonism. Ataxia was common in GLB1 and PLA2G6. Awareness of these phenotypes is essential for early diagnosis and intervention, particularly in treatable conditions like SLC30A10 or SLC39A14. The predominantly dystonic phenotype in GLB1, SLC30A10, and SLC39A14 suggest that the DYT prefix may be more appropriate, highlighting the need to reconsider their nomenclature, and the importance of systematic reviews.
Collapse
Affiliation(s)
- Jon Rodriguez-Antiguedad
- Movement Disorders Unit, Sant Pau Hospital, 08041 Barcelona, Spain;
- Institut de Investigacions Biomèdiques-Sant Pau, 08041 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Rajasumi Rajalingam
- Department of Psychiatry, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA;
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Clara Krüger
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | | | - Christine Sun
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Elias Fernandez-Toledo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Alexia Duarte
- Department of Internal Medicine, Health Sciences Sector, Federal University of Paraná, Curitiba 81531-980, Brazil;
| | | | - Matthew J. Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Joseph L. Flanigan
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Maziar Emamikhah
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Neepa Patel
- RUSH Parkinson’s Disease and Movement Disorders Program, Department of Neurological Sciences, RUSH University Medical Center, Chicago, IL 60612, USA;
| | - Marta San Luciano
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Christine Cooper
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Neurology Service, Ralph H. Johnson VA Medical Center, Charleston, CA 29401, USA
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Odinachi Oguh
- Cleveland Clinic Luo Rico Center of Brain Health, Las Vegas, NV 89106, USA;
| | - Alissa Buhrmann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Merle Vater
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Rabea Fuchshofen
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Maik-Iven Parreidt
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Anne Weissbach
- Center for Rare Diseases, University Clinic of Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Sarah Camargos
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital das Clínicas, The Federal University of Minas Gerais, Belo Horizonte 30130-100, Brazil
| |
Collapse
|
5
|
Lewis CJ, Johnston JM, D’Souza P, Kolstad J, Zoppo C, Vardar Z, Kühn AL, Peker A, Rentiya ZS, Yousef MH, Gahl WA, Shazeeb MS, Tifft CJ, Acosta MT. A Case for Automated Segmentation of MRI Data in Neurodegenerative Diseases: Type II GM1 Gangliosidosis. NEUROSCI 2025; 6:31. [PMID: 40265361 PMCID: PMC12015847 DOI: 10.3390/neurosci6020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Volumetric analysis and segmentation of magnetic resonance imaging (MRI) data is an important tool for evaluating neurological disease progression and neurodevelopment. Fully automated segmentation pipelines offer faster and more reproducible results. However, since these analysis pipelines were trained on or run based on atlases consisting of neurotypical controls, it is important to evaluate how accurate these methods are for neurodegenerative diseases. In this study, we compared five fully automated segmentation pipelines, including FSL, Freesurfer, volBrain, SPM12, and SimNIBS, with a manual segmentation process in GM1 gangliosidosis patients and neurotypical controls. METHODS We analyzed 45 MRI scans from 16 juvenile GM1 gangliosidosis patients, 11 MRI scans from 8 late-infantile GM1 gangliosidosis patients, and 19 MRI scans from 11 neurotypical controls. We compared the results for seven brain structures, including volumes of the total brain, bilateral thalamus, ventricles, bilateral caudate nucleus, bilateral lentiform nucleus, corpus callosum, and cerebellum. RESULTS We found volBrain's vol2Brain pipeline to have the strongest correlations with the manual segmentation process for the whole brain, ventricles, and thalamus. We also found Freesurfer's recon-all pipeline to have the strongest correlations with the manual segmentation process for the caudate nucleus. For the cerebellum, we found a combination of volBrain's vol2Brain and SimNIBS' headreco to have the strongest correlations, depending on the cohort. For the lentiform nucleus, we found a combination of recon-all and FSL's FIRST to give the strongest correlations, depending on the cohort. Lastly, we found segmentation of the corpus callosum to be highly variable. CONCLUSIONS Previous studies have considered automated segmentation techniques to be unreliable, particularly in neurodegenerative diseases. However, in our study, we produced results comparable to those obtained with a manual segmentation process. While manual segmentation processes conducted by neuroradiologists remain the gold standard, we present evidence to the capabilities and advantages of using an automated process that includes the ability to segment white matter throughout the brain or analyze large datasets, which pose feasibility issues to fully manual processes. Future investigations should consider the use of artificial intelligence-based segmentation pipelines to determine their accuracy in GM1 gangliosidosis, lysosomal storage disorders, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Connor J. Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD 20892, USA; (C.J.L.); (J.M.J.); (C.J.T.)
| | - Jean M. Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD 20892, USA; (C.J.L.); (J.M.J.); (C.J.T.)
| | - Precilla D’Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD 20892, USA; (C.J.L.); (J.M.J.); (C.J.T.)
| | | | - Christopher Zoppo
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.Z.); (Z.V.); (A.L.K.); (M.S.S.)
| | - Zeynep Vardar
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.Z.); (Z.V.); (A.L.K.); (M.S.S.)
| | - Anna Luisa Kühn
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.Z.); (Z.V.); (A.L.K.); (M.S.S.)
| | - Ahmet Peker
- Koç University Hospital, Istanbul 34010, Türkiye;
| | - Zubir S. Rentiya
- Department of Radiation Oncology & Radiology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Muhammad H. Yousef
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA;
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD 20892, USA;
| | - Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.Z.); (Z.V.); (A.L.K.); (M.S.S.)
| | - Cynthia J. Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD 20892, USA; (C.J.L.); (J.M.J.); (C.J.T.)
| | - Maria T. Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD 20892, USA; (C.J.L.); (J.M.J.); (C.J.T.)
| |
Collapse
|
6
|
Khalilian S, Fathi M, Alizadeh M, Larki Darabi F, Salehpour S, Anvari S, Miryounesi M, Ghafouri-Fard S. Spectrum of Genetic Mutations Among Iranian Patients with Gangliosidosis. Biochem Genet 2025:10.1007/s10528-025-11090-7. [PMID: 40172712 DOI: 10.1007/s10528-025-11090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Gangliosidosis is a hereditary metabolic disorder inherited in an autosomal recessive manner. This disorder is marked by the accumulation of gangliosides in the central nervous system, leading to considerable and progressive neurological deficits. In the current study, we described the clinical findings and genetic variations observed in 12 patients manifesting symptoms of gangliosidosis disorders. The results of molecular investigations revealed the presence of different variants in the HEXA (three cases), HEXB (four cases) and GLB1 genes (five cases) in the patients. Notably, the c.833C > T (p.A278V) variant in the HEXB was detected in two unrelated cases. Four novel variants were also detected, including two likely pathogenic variants in the HEXB gene, namely c.1083-2del and c.1616_1622dup (p.Ile541Metfs*14). A single case had three variants in the GLB1 gene, including two novel variants (c.545C > T and c.631G > C); and a previously reported pathogenic variant (c.601C > T). The current study broadens the spectrum of genetic variations in Iranian patients with different types of gangliosidosis. This information is also important for the process of genetic counseling in the affected families.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Alizadeh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Larki Darabi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadab Salehpour
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Anvari
- Department of Pediatrics, Division of Pediatric Neurology, Milad Hospital, Social Security Organisation, Tehran, Iran
| | - Mohammad Miryounesi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lewis CJ, Johnston JM, Zaragoza Domingo S, Vezina G, D'Souza P, Gahl WA, Adams DA, Tifft CJ, Acosta MT. Retrospective assessment of clinical global impression of severity and change in GM1 gangliosidosis: a tool to score natural history data in rare disease cohorts. Orphanet J Rare Dis 2025; 20:125. [PMID: 40087722 PMCID: PMC11909993 DOI: 10.1186/s13023-025-03614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/14/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Clinical trials for rare diseases pose unique challenges warranting alternative approaches in demonstrating treatment efficacy. Such trials face challenges including small patient populations, variable onset of symptoms and rate of disease progression, and ethical considerations, particularly in neurodegenerative diseases. In this study, we present the retrospective clinical global impression (RCGI) severity and change (RCGI-S/C) scale on 27 patients with GM1 gangliosidosis, a post hoc clinician-rated outcome measure to evaluate natural history study participants as historical controls for comparisons with treated patients in a clinical trial. METHODS We conducted a systematic chart review of 27 GM1 gangliosidosis natural history participants across 95 total visits. RCGI-S was assessed at the first visit and rated 1 (normal) to 7 (among the most extremely ill). Each subsequent follow-up was rated on the RCGI-C scale from 1 (very much improved) to 7 (very much worse). We demonstrate scoring guidelines of both scales with examples and justifications for this pilot in GM1 gangliosidosis natural history participants. The convergent validity of the RCGI scales was explored through correlations with magnetic resonance imaging (MRI) and the Vineland Adaptive Behavioral Scales. RESULTS We found strong association between the RCGI-S scores with gray matter volume (r(14) = -0.81; 95% CI [-0.93, -0.51], p < 0.001), and RCGI-C scores significantly correlated with increases in ventricular volume (χ2(1) = 18.6, p < 0.001). Baseline RCGI-S scores also strongly correlated with Vineland adaptive behavioral composite scores taken at the same visit (r(14) = -0.72; 95% CI [-0.93, -0.17], p = 0.02). CONCLUSION RCGI-S/C scales, which use the clinical evaluation to assess the severity of disease of each patient visit over time, were consolidated into a single quantitative metric in this study. Longitudinal RCGI-C scores allowed us to quantify disease progression in our late-infantile and juvenile GM1 patients. We suggest that the retrospective CGI may be an important tool in evaluating historical data for comparison with changes in disease progression/mitigation following therapeutic interventions.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | | | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children'S National Hospital, Washington DC, USA
| | - Precilla D'Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD, USA
| | - David A Adams
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda, MD, USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
8
|
Menkovic I, Williams M, Makhijani N, Wei R, Young SP, El-Gharbawy A, Stiles AR. Persistent elevations of alkaline phosphatase as an early indicator of GM1 gangliosidosis. Mol Genet Metab Rep 2025; 42:101191. [PMID: 39897471 PMCID: PMC11786200 DOI: 10.1016/j.ymgmr.2025.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
GLB1-related disorders are autosomal recessive lysosomal diseases caused by enzymatic deficiency of β-galactosidase. Enzymatic deficiency of β-galactosidase may lead to one of two phenotypes, GM1 gangliosidosis or mucopolysaccharidosis IVB (MPS IVB). GM1 gangliosidosis is a neurodegenerative disorder with variable skeletal disease and involvement of other systems. The age of onset correlates with the extent of neurological involvement and established genotype/phenotype correlations. Mucopolysaccharidosis IVB is characterized by a skeletal dysplasia without neurological involvement. Diagnostic work-up for GLB1-related disorders includes enzyme analysis, biomarker analysis, molecular testing, and laboratory imaging studies. We report a patient who presented with persistent elevations of alkaline phosphatase (ALP) and subtle dysmorphic facial features. An initial skeletal survey at birth was unrevealing; however, a repeat at 3 months of age was abnormal with anterior beaking of the lumbar vertebrae and hemivertebrae of the lower cervical spine. Urinary glycosaminoglycan (GAG) analysis revealed a marked elevation of keratan sulfate (KS). Clinical exome sequencing revealed pathogenic heterozygous variants in GLB1, consistent with GLB1-related GM1 gangliosidosis. Our case demonstrates that persistent elevations of ALP may be an early indicator for GM1 gangliosidosis in an infant with progressive multisystem disease, indicating the need for early genetic consultation. This case also highlights the utility of repeat skeletal surveys with abnormalities detected at 3 months of age.
Collapse
Affiliation(s)
- Iskren Menkovic
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
| | - Monika Williams
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Neelam Makhijani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ruhan Wei
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Health System Clinical Laboratories, Durham, NC, USA
| | - Sarah P. Young
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ashlee R. Stiles
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Stern S, Crisamore K, Li R, Pacanowski M, Schuck R. Evaluation of the Landscape of Pharmacodynamic Biomarkers in GM1 and GM2 Gangliosidosis. Clin Transl Sci 2025; 18:e70176. [PMID: 40016926 PMCID: PMC11868035 DOI: 10.1111/cts.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
GM1 and GM2 gangliosidosis are inherited, progressive, neurodegenerative lysosomal disorders of variable onset and disease progression. GM1 gangliosidosis is a result of biallelic pathogenic variants in the GLB1 gene, which confer absent or reduced β-galactosidase enzyme activity and lead to the accumulation of glycoconjugates such as glycosphingolipid GM1-gangliosides. GM2 is caused by biallelic pathogenic variants in one of the three genes (HEXA, HEXB, and GM2A) which confer deficiency of β-hexosaminidase or the GM2 ganglioside activator protein, responsible for the catabolism of GM2 gangliosides. In both gangliosidoses, glycosphingolipids accumulate primarily in neurons, with subsequent neuronal death, which translates to early mortality for patients. The clinical course is commonly differentiated by age of symptom onset. To date, no disease-modifying therapy has been approved globally, and treatment is typically supportive. The lack of mature biomarker development in these diseases contributes to challenges associated with quantifying treatment response. However, recent advancements in the detection of neurodegenerative biomarkers and treatment innovation have spurred interest in biomarker identification in plasma and cerebrospinal fluid in patients with GM1 and GM2 gangliosidosis as pharmacodynamic endpoints to support clinical trials and regulatory decision-making. In this review, we assess the landscape of lipid and protein biomarkers, the extent of evidence, and propose considerations for future biomarker development to measure treatment response and support drug development in GM1 and GM2 gangliosidosis.
Collapse
Affiliation(s)
- Sydney Stern
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Karryn Crisamore
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ruo‐Jing Li
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Michael Pacanowski
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Robert Schuck
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
10
|
Kolstad J, Zoppo C, Johnston JM, D’Souza P, Kühn AL, Vardar Z, Peker A, Hader A, Celik H, Lewis CJ, Lindsay C, Rentiya ZS, Lebel C, Vedantham S, Vachha B, Gray-Edwards HL, Acosta MT, Tifft CJ, Shazeeb MS. Natural history progression of MRI brain volumetrics in type II late-infantile and juvenile GM1 gangliosidosis patients. Mol Genet Metab 2025; 144:109025. [PMID: 39874851 PMCID: PMC11875878 DOI: 10.1016/j.ymgme.2025.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
OBJECTIVE GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression. METHODS Brain volumetric analysis was conducted on 56 MRI scans from 24 type II GM1 patients (8 late-infantile and 16 juvenile) and 19 healthy controls over multiple time points. The analysis included the use of semi-automated segmentation of the whole brain, ventricles, cerebellum, corpus callosum, thalamus, caudate, and lentiform nucleus. A generalized linear model was used to compare the volumetric measurements between the patient groups and healthy controls, accounting for age as a confounding factor. RESULTS Both late-infantile and juvenile GM1 patients exhibited significant whole-brain atrophy compared to healthy controls, even after adjusting for age. Notably, the late-infantile subtype displayed more pronounced atrophy in the cerebellum, thalamus, and corpus callosum compared to the juvenile subtype. Both late-infantile and juvenile subtypes showed significantly higher ventricular volumes and a significant reduction in all other structure volumes compared to the healthy controls. The volumetric measurements also correlated well with disease severity based on clinical metrics. CONCLUSIONS The findings underscore the distinct brain volumetrics of the late-infantile and juvenile subtypes of GM1 gangliosidosis compared to healthy controls. These quantifications can be used as reliable imaging biomarkers to track disease progression and evaluate responses to therapeutic interventions.
Collapse
Affiliation(s)
- Josephine Kolstad
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christopher Zoppo
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean M. Johnston
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Precilla D’Souza
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Luisa Kühn
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zeynep Vardar
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Asma Hader
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hakki Celik
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Connor J. Lewis
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clifford Lindsay
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zubir S. Rentiya
- Department of Radiation Oncology & Radiology, University of Virginia, Charlottesville, VA, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | | | - Behroze Vachha
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Neuroradiology, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Heather L. Gray-Edwards
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria T. Acosta
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J. Tifft
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohammed Salman Shazeeb
- Image Processing & Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Lewis CJ, Johnston JM, D'Souza P, Kolstad J, Zoppo C, Vardar Z, Kühn AL, Peker A, Rentiya ZS, Gahl WA, Shazeeb MS, Tifft CJ, Acosta MT. A Case for Automated Segmentation of MRI Data in Milder Neurodegenerative Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.18.25322304. [PMID: 40034761 PMCID: PMC11875249 DOI: 10.1101/2025.02.18.25322304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Volumetric analysis and segmentation of magnetic resonance imaging (MRI) data is an important tool for evaluating neurological disease progression and neurodevelopment. Fully automated segmentation pipelines offer faster and more reproducible results. However, since these analysis pipelines were trained on or run based on atlases consisting of neurotypical controls, it is important to evaluate how accurate these methods are for neurodegenerative diseases. In this study, we compared 5 fully automated segmentation pipelines including FSL, Freesurfer, volBrain, SPM12, and SimNIBS with a manual segmentation process in GM1 gangliosidosis patients and neurotypical controls. Methods We analyzed 45 MRI scans from 16 juvenile GM1 gangliosidosis patients, 11 MRI scans from 8 late-infantile GM1 gangliosidosis patients, and 19 MRI scans from 11 neurotypical controls. We compared results for 7 brain structures including volumes of the total brain, bilateral thalamus, ventricles, bilateral caudate nucleus, bilateral lentiform nucleus, corpus callosum, and cerebellum. Results We found volBrain's vol2Brain pipeline to have the strongest correlations with the manual segmentation process for the whole brain, ventricles, and thalamus. We also found Freesurfer's recon-all pipeline to have the strongest correlations with the manual segmentation process for the caudate nucleus. For the cerebellum, we found a combination of volBrain's vol2Brain and SimNIBS' headreco to have the strongest correlations depending on the cohort. For the lentiform nucleus, we found a combination of recon-all and FSL's FIRST to give the strongest correlations depending on the cohort. Lastly, we found segmentation of the corpus callosum to be highly variable. Conclusion Previous studies have considered automated segmentation techniques to be unreliable, particularly in neurodegenerative diseases. However, in our study we produced results comparable to those obtained with a manual segmentation process. While manual segmentation processes conducted by neuroradiologists remain the gold standard, we present evidence to the capabilities and advantages of using an automated process including the ability to segment white matter throughout the brain or analyze large datasets, which pose feasibility issues to fully manual processes. Future investigations should consider the use of artificial intelligence-based segmentation pipelines to determine their accuracy in GM1 gangliosidosis, lysosomal storage disorders, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Precilla D'Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | | | - Christopher Zoppo
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester MA USA
| | - Zeynep Vardar
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester MA USA
| | - Anna Luisa Kühn
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester MA USA
| | | | - Zubir S Rentiya
- Department of Radiation Oncology & Radiology, University of Virginia, Charlottesville, VA, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | | | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
12
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Koç Yekedüz M, Yağci GN, Sürücü Kara İ, Evgin M, Kose E, Eminoğlu FT. Challenges Faced by Newborns with Inherited Metabolic Disorders and Their Mothers During Antepartum, Intrapartum, and Postpartum Periods. Fetal Pediatr Pathol 2025; 44:53-62. [PMID: 39760466 DOI: 10.1080/15513815.2024.2447082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Inherited metabolic disorders (IMDs) pose various obstetric challenges. In this study investigates the prenatal and perinatal profiles of pregnancies affected by IMDs and examines their obstetric outcomes. The most frequently observed antepartum issues identified among 996 patients with IMDs were intrauterine growth restriction (IUGR), intrauterine microcephaly and oligohydramnios. It was notable that mitochondrial disorders are associated with increased incidence of oligohydramnios (p = 0.010), IUGR (p < 0.001), microcephaly (p < 0.001) and intrauterine cardiac issues (p = 0.002). Furthermore, the incidence of intrauterine and natal facial malformations was significantly elevated in the patient groups with mitochondrial (p < 0.001) and lysosomal/peroxisomal diseases (p = 0.037) when compared to the other IMD groups. The mothers of newborns with mitochondrial diseases developed significantly more complications during previous pregnancies than those with other diagnoses (p = 0.040). Identifying risk factors and complications early on can greatly improve outcomes for both mother and infant by facilitating timely intervention and treatment.
Collapse
Affiliation(s)
- Merve Koç Yekedüz
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gözde Nur Yağci
- Rare Diseases Application and Research Center, Ankara University, Ankara, Türkiye
| | - İlknur Sürücü Kara
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Merve Evgin
- Rare Diseases Application and Research Center, Ankara University, Ankara, Türkiye
| | - Engin Kose
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
14
|
Fu Z, Zhong J, Lin L, Yang J, Xiao Y, Li L, Zhang J, Yuan J. Deciphering S1P downregulation and sphingolipid homeostasis disruption in fungal keratitis via multi-omics and MALDI-MSI analysis. Ocul Surf 2025; 35:83-96. [PMID: 39653311 DOI: 10.1016/j.jtos.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
PURPOSE The absence of effective treatment strategies in Fungal Keratitis (FK) emphasizes the critical need to understand the pathogenic mechanisms to enhance therapeutic outcomes. Sphingolipids have been proved to play a pivotal role in the pathogenesis of fungal infections, but the specific alteration in sphingolipids and regulatory pathways remain elusive. Our aim is to gain insight into the pathophysiological mechanisms of sphingolipid homeostasis in FK through multi-omics analysis. METHODS Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was performed in FK patients and mouse model. Furthermore, time-course RNA-seq was performed and Weighted gene co-expression network analysis (WGCNA) was used to reveal the driver genes in FK. We further investigated the effect of FTY-720, a mimetic of sphingosine 1-phosphate (S1P), on the progression of FK. RESULTS MALDI-MSI analysis of FK patients revealed a downregulation of sphingolipids, with sphingolipid metabolism identified as the most prominently enriched pathway. These alterations were validated in mouse model, in which S1P, ceramide, ceramide 1-phosphate and sphingomyelin were found to be downregulated. Time-course transcriptomic analysis suggests that degradation of sphingolipids by specific enzymes drives the progression of FK, involving phospholipid degradation, downregulation of TOR pathway, and activation of innate immune response. Consequently, epithelial cell function was inhibited and cell death increased. Importantly, restoring sphingolipid homeostasis by FTY-720 reversed the level of S1P and relieved the progression of FK. CONCLUSION In summary, this study reveals that disruption of sphingolipid homeostasis promotes disease progression in FK. Furthermore, restoring sphingolipid homeostasis emerges as a promising strategy to mitigate the progression of FK.
Collapse
Affiliation(s)
- Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lixia Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yichen Xiao
- Eye Institute and Department of Ophthalmology Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lei Li
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
15
|
Cokyaman T, Özcan EG, Akbaş NE. High Genetic Diagnostic Yield of Whole Exome Sequencing in Children with Epilepsy and Neurodevelopmental Disorders. Fetal Pediatr Pathol 2025; 44:25-39. [PMID: 39648350 DOI: 10.1080/15513815.2024.2434919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Introduction: Nowadays, the diagnostic rate of childhood epilepsies is increasing rapidly in parallel with the advances in genetic technology. In this study, it was aimed to reveal the diagnostic yield of whole exome sequencing (WES) in children with epilepsy and neurodevelopmental disorders (NDDs). Methods: Children aged 1 to 17 years with epilepsy and NDD who underwent WES were included in this retrospective study. Demographic, epilepsy and NDD characteristics, and WES results were recorded. Results: WES was performed in 36.6% of cases. Various single nucleotide variants were detected in 86.3% of cases tested by WES, and the diagnostic yield on a case-by-case basis was found to be 50%. Discussion: The diagnostic yield of WES is quite high in children with epilepsy and NDDs without a definitive diagnosis. Revealing the genetic causes of childhood epilepsy brings up effective and individualized treatment options.
Collapse
Affiliation(s)
- Turgay Cokyaman
- Division of Pediatric Neurology, Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Eda Gül Özcan
- Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Nihan Ecmel Akbaş
- Department of Medical Genetics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
16
|
Zhou L, Wang Y, Xu Y, Zhang Y, Zhu C. Advances in AAV-mediated gene replacement therapy for pediatric monogenic neurological disorders. Mol Ther Methods Clin Dev 2024; 32:101357. [PMID: 39559557 PMCID: PMC11570947 DOI: 10.1016/j.omtm.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Pediatric monogenetic diseases encompass a spectrum of debilitating neurological disorders that affect infants and children, often resulting in profound cognitive and motor impairments. Gene replacement therapy holds immense promise in addressing the underlying genetic defects responsible for these conditions. Adeno-associated virus (AAV) vectors have emerged as a leading platform for delivering therapeutic genes due to their safety profile and ability to transduce various cell types, including neurons. This review highlights recent advancements in AAV-mediated gene replacement therapy for pediatric monogenetic diseases, focusing on key preclinical and clinical studies. We discuss various strategies to enhance transduction efficiency, target specificity, and safety. Furthermore, we explore challenges such as immune responses, along with innovative approaches to overcome these obstacles. Moreover, we examine the clinical outcomes and safety profiles of AAV-based gene therapies in pediatric patients, providing insights into the feasibility and efficacy of these interventions. Finally, we discuss future directions and potential avenues for further research to optimize the therapeutic potential of AAV-delivered gene replacement therapy for pediatric encephalopathies, ultimately aiming to improve the quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Livia Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Rha AK, Christensen CL, Kan SH, Harb JF, Andrade-Heckman P, Wang RY. Generation of an infantile GM1 gangliosidosis induced pluripotent stem cell line (CHOCi005-A) for disease modeling and therapeutic testing. Stem Cell Res 2024; 81:103552. [PMID: 39303321 DOI: 10.1016/j.scr.2024.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
GM1 gangliosidosis (GM1) is a rare autosomal recessive neurogenerative lysosomal storage disease characterized by deficiency of beta-galactosidase (β-gal) and intralysosomal accumulation of GM1 ganglioside and other glycoconjugates. Resources for GM1 disease modelling are limited, and access to relevant cell lines from human patients is not possible. Generation of iPSC lines from GM1 patient-derived dermal fibroblasts allows for disease modelling and therapeutic testing in 2D and 3D cell culture models relevant to CNS disorders, including various neuronal subtypes and cerebral organoids. The iPSC line described here will be critical to therapeutic development and set the foundation for translational gene therapy work.
Collapse
Affiliation(s)
- Allisandra K Rha
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Chloe L Christensen
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Shih-Hsin Kan
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Jerry F Harb
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Perla Andrade-Heckman
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States.
| |
Collapse
|
18
|
Quadrini KJ, Vrentas C, Duke C, Wilson C, Hinderer CJ, Weinstein DA, Al-Zaidy SA, Browne SE, Wilson JM, Ni YG. Validation of high-sensitivity assays to quantitate cerebrospinal fluid and serum β-galactosidase activity in patients with GM1-gangliosidosis. Mol Ther Methods Clin Dev 2024; 32:101318. [PMID: 39282076 PMCID: PMC11401230 DOI: 10.1016/j.omtm.2024.101318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024]
Abstract
GM1-gangliosidosis (GM1) is a lysosomal storage disorder caused by mutations in the galactosidase beta 1 gene (GLB1) that leads to reduced β-galactosidase (β-gal) activity. This enzyme deficiency results in neuronal degeneration, developmental delay, and early death. A sensitive assay for the measurement of β-gal enzyme activity is required for the development of disease-modifying therapies. We have optimized fluorometric assays for quantitative analysis of β-gal activity in human cerebrospinal fluid (CSF) and serum for the development of a GLB1 gene replacement therapy. Assay analytical performance was characterized by assessing sensitivity, precision, accuracy, parallelism, specificity, and sample stability. Sensitivity of the CSF and serum β-gal activity assays were 0.05 and 0.20 nmol/mL/3 h, respectively. Assay precision represented by inter-assay percent coefficient of variation of the human CSF and serum was <15% and <20%, respectively. The effect of pre-analytical factors on β-gal activity was examined, and rapid processing and freezing of samples post-collection was critical to preserve enzyme activity. These assays enabled measurement of CSF and serum β-gal activities in both healthy individuals and patients with GM1-gangliosidosis. This CSF β-gal activity assay is the first of its kind with sufficient sensitivity to quantitatively measure β-gal enzyme activity in CSF samples from GM1 patients.
Collapse
Affiliation(s)
| | | | - Christian Duke
- PPD, part of Thermo Fisher Scientific, Wilmington, NC, USA
| | - Chris Wilson
- PPD, part of Thermo Fisher Scientific, Wilmington, NC, USA
| | - Christian J Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan G Ni
- Passage Bio, Inc., Philadelphia, PA, USA
| |
Collapse
|
19
|
Liu S, Xie T, Huang Y. Insights into the Pathobiology of GM1 Gangliosidosis from Single-Nucleus Transcriptomic Analysis of CNS Cells in a Mouse Model. Int J Mol Sci 2024; 25:9712. [PMID: 39273659 PMCID: PMC11395632 DOI: 10.3390/ijms25179712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
GM1 gangliosidosis is a lysosomal storage disorder characterized by the accumulation of GM1 ganglioside, leading to severe neurodegeneration and early mortality. The disease primarily affects the central nervous system, causing progressive neurodegeneration, including widespread neuronal loss and gliosis. To gain a deeper understanding of the neuropathology associated with GM1 gangliosidosis, we employed single-nucleus RNA sequencing to analyze brain tissues from both GM1 gangliosidosis model mice and control mice. No significant changes in cell proportions were detected between the two groups of animals. Differential expression analysis revealed cell type-specific changes in gene expression in neuronal and glial cells. Functional analysis highlighted the neurodegenerative processes, oxidative phosphorylation, and neuroactive ligand-receptor interactions as the significantly affected pathways. The contribution of the impairment of neurotransmitter system disruption and neuronal circuitry disruption was more important than neuroinflammatory responses to GM1 pathology. In 16-week-old GM1 gangliosidosis mice, no microglial or astrocyte activation or increased expression of innate immunity genes was detected. This suggested that nerve degeneration did not induce the inflammatory response but rather promoted glial cell clearance. Our findings provide a crucial foundation for understanding the cellular and molecular mechanisms of GM1 gangliosidosis, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ting Xie
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
20
|
Rha AK, Kan SH, Andrade-Heckman P, Christensen CL, Harb JF, Wang RY. Base editing of the GLB1 gene is therapeutic in GM1 gangliosidosis patient-derived cells. Mol Genet Metab 2024; 143:108568. [PMID: 39303319 DOI: 10.1016/j.ymgme.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
GM1 gangliosidosis is an autosomal recessive neurodegenerative lysosomal storage disease caused by pathogenic variants in the GLB1 gene, limiting the production of active lysosomal β-galactosidase. Phenotypic heterogeneity is due in part to variant type, location within GLB1, and the amount of residual enzyme activity; in the most severe form, death occurs in infancy. With no FDA approved therapeutics, development of efficacious strategies for the disease is pivotal. CRISPR/Cas based approaches have revolutionized precision medicine and have been indispensable to the development of treatments for several monogenic disorders with bespoke strategies central to current research pipelines. We used CRISPR/Cas-adenine base editing to correct the GLB1 c.380G>A (p.Cys127Tyr) variant in patient-derived dermal fibroblasts compound heterozygous with the GLB1 c.481T>G (p.Trp161Gly) pathogenic variant. Nucleofection of plasmids encoding the target sgRNA and ABEmax restored the canonical guanine (32.2 ± 2.2 % of the target allele) and synthesis of active β-galactosidase. Analysis of cellular markers of pathology revealed normalization of both primary glycoconjugate storage and lysosomal pathology. Furthermore, analysis of off-target sites nominated by the in silico tools Cas-OFFinder and/or CRISTA revealed no significant editing or indels. This study supports the use of CRISPR/Cas-based approaches for the treatment of GM1 gangliosidosis, and provides foundational data for future translational studies.
Collapse
Affiliation(s)
- Allisandra K Rha
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Shih-Hsin Kan
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Perla Andrade-Heckman
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Chloe L Christensen
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Jerry F Harb
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States.
| |
Collapse
|
21
|
Lewis CJ, Vardar Z, Luisa Kühn A, Johnston JM, D'Souza P, Gahl WA, Salman Shazeeb M, Tifft CJ, Acosta MT. Differential Tractography: A Biomarker for Neuronal Function in Neurodegenerative Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.25.24312255. [PMID: 39371116 PMCID: PMC11451749 DOI: 10.1101/2024.08.25.24312255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
GM1 gangliosidosis is an ultra-rare inherited neurodegenerative lysosomal storage disorder caused by biallelic mutations in the GLB1 gene. GM1 is uniformly fatal and has no approved therapies, although clinical trials investigating gene therapy as a potential treatment for this condition are underway. Novel outcome measures or biomarkers demonstrating the longitudinal effects of GM1 and potential recovery due to therapeutic intervention are urgently needed to establish efficacy of potential therapeutics. One promising tool is differential tractography, a novel imaging modality utilizing serial diffusion weighted imaging (DWI) to quantify longitudinal changes in white matter microstructure. In this study, we present the novel use of differential tractography in quantifying the progression of GM1 alongside age-matched neurotypical controls. We analyzed 113 DWI scans from 16 GM1 patients and 32 age-matched neurotypical controls to investigate longitudinal changes in white matter pathology. GM1 patients showed white matter degradation evident by both the number and size of fiber tract loss. In contrast, neurotypical controls showed longitudinal white matter improvements as evident by both the number and size of fiber tract growth. We also corroborated these findings by documenting significant correlations between cognitive global impression (CGI) scores of clinical presentations and our differential tractography derived metrics in our GM1 cohort. Specifically, GM1 patients who lost more neuronal fiber tracts also had a worse clinical presentation. This result demonstrates the importance of differential tractography as an important biomarker for disease progression in GM1 patients with potential extension to other neurodegenerative diseases and therapeutic intervention.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Zeynep Vardar
- Department of Radiology, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester MA USA
| | - Anna Luisa Kühn
- Department of Radiology, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester MA USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Precilla D'Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester MA USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
22
|
Chakraborty S, Gupta AK, Gupta N, Meena JP, Seth R, Kabra M. Hematopoietic Stem Cell Transplantation for Storage Disorders: Present Status. Indian J Pediatr 2024; 91:830-838. [PMID: 38639861 DOI: 10.1007/s12098-024-05110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Storage disorders are a group of inborn errors of metabolism caused by the defective activity of lysosomal enzymes or transporters. All of these disorders have multisystem involvement with variable degrees of neurological features. Neurological manifestations are one of the most difficult aspects of treatment concerning these diseases. The available treatment modalities for some of these disorders include enzyme replacement therapy, substrate reduction therapy, hematopoietic stem cell transplantation (HSCT) and the upcoming gene therapies. As a one-time intervention, the economic feasibility of HSCT makes it an attractive option for treating these disorders, especially in lower and middle-income countries. Further, improvements in peri-transplantation medical care, better conditioning regimens and better supportive care have improved the outcomes of patients undergoing HSCT. In this review, we discuss the current evidence for HSCT in various storage disorders and its suitability as a mode of therapy for the developing world.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
23
|
Hosseini K, Fallahi J, Aligholi H, Heidari Z, Nadimi E, Safari F, Sisakht M, Atapour A, Khajeh S, Tabei SMB, Razban V. Creation of an in vitro model of GM1 gangliosidosis by CRISPR/Cas9 knocking-out the GLB1 gene in SH-SY5Y human neuronal cell line. Cell Biochem Funct 2024; 42:e4102. [PMID: 39076066 DOI: 10.1002/cbf.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of β-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of β-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Mohammadian Gol T, Zahedipour F, Trosien P, Ureña-Bailén G, Kim M, Antony JS, Mezger M. Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023). Life Sci 2024; 348:122685. [PMID: 38710276 DOI: 10.1016/j.lfs.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Fatemeh Zahedipour
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Trosien
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Miso Kim
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model. Cell Rep 2024; 43:114117. [PMID: 38630590 PMCID: PMC11244331 DOI: 10.1016/j.celrep.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason A Weesner
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ida Annunziata
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; St. Jude Children's Research Hospital, Compliance Office, Memphis, TN 38105, USA
| | | | - Camenzind G Robinson
- St. Jude Children's Research Hospital, Cellular Imaging Shared Resource, Memphis, TN 38105, USA
| | - Yvan Campos
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- St. Jude Children's Research Hospital, Center for Proteomics and Metabolomics, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Elida Gomero
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Huimin Hu
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; University of Tennessee Health Science Center, Department of Anatomy and Physiology, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Foster D, Williams L, Arnold N, Larsen J. Therapeutic developments for neurodegenerative GM1 gangliosidosis. Front Neurosci 2024; 18:1392683. [PMID: 38737101 PMCID: PMC11082364 DOI: 10.3389/fnins.2024.1392683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, β-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.
Collapse
Affiliation(s)
- Dorian Foster
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Noah Arnold
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
27
|
Ceni C, Clemente F, Mangiavacchi F, Matassini C, Tonin R, Caciotti A, Feo F, Coviello D, Morrone A, Cardona F, Calamai M. Identification of GM1-Ganglioside Secondary Accumulation in Fibroblasts from Neuropathic Gaucher Patients and Effect of a Trivalent Trihydroxypiperidine Iminosugar Compound on Its Storage Reduction. Molecules 2024; 29:453. [PMID: 38257371 PMCID: PMC10818339 DOI: 10.3390/molecules29020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the β-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on β-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.
Collapse
Affiliation(s)
- Costanza Ceni
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Francesca Clemente
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Francesca Mangiavacchi
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Camilla Matassini
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Rodolfo Tonin
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
| | - Anna Caciotti
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
| | - Federica Feo
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy
| | - Francesca Cardona
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Martino Calamai
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council (CNR-INO), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
28
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
29
|
Hosseini K, Fallahi J, Tabei SMB, Razban V. Gene therapy approaches for GM1 gangliosidosis: Focus on animal and cellular studies. Cell Biochem Funct 2023; 41:1093-1105. [PMID: 38018878 DOI: 10.1002/cbf.3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme β-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed M B Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Allende ML, Lee YT, Byrnes C, Li C, Tuymetova G, Bakir JY, Nicoli ER, James VK, Brodbelt JS, Tifft CJ, Proia RL. Sialidase NEU3 action on GM1 ganglioside is neuroprotective in GM1 gangliosidosis. J Lipid Res 2023; 64:100463. [PMID: 37871851 PMCID: PMC10694597 DOI: 10.1016/j.jlr.2023.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
GM1 gangliosidosis is a neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes lysosomal β-galactosidase. The enzyme deficiency blocks GM1 ganglioside catabolism, leading to accumulation of GM1 ganglioside and asialo-GM1 ganglioside (GA1 glycolipid) in brain. This disease can present in varying degrees of severity, with the level of residual β-galactosidase activity primarily determining the clinical course. Glb1 null mouse models, which completely lack β-galactosidase expression, exhibit a less severe form of the disease than expected from the comparable deficiency in humans, suggesting a potential species difference in the GM1 ganglioside degradation pathway. We hypothesized this difference may involve the sialidase NEU3, which acts on GM1 ganglioside to produce GA1 glycolipid. To test this hypothesis, we generated Glb1/Neu3 double KO (DKO) mice. These mice had a significantly shorter lifespan, increased neurodegeneration, and more severe ataxia than Glb1 KO mice. Glb1/Neu3 DKO mouse brains exhibited an increased GM1 ganglioside to GA1 glycolipid ratio compared with Glb1 KO mice, indicating that NEU3 mediated GM1 ganglioside to GA1 glycolipid conversion in Glb1 KO mice. The expression of genes associated with neuroinflammation and glial responses were enhanced in Glb1/Neu3 DKO mice compared with Glb1 KO mice. Mouse NEU3 more efficiently converted GM1 ganglioside to GA1 glycolipid than human NEU3 did. Our findings highlight NEU3's role in ameliorating the consequences of Glb1 deletion in mice, provide insights into NEU3's differential effects between mice and humans in GM1 gangliosidosis, and offer a potential therapeutic approach for reducing toxic GM1 ganglioside accumulation in GM1 gangliosidosis patients.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Y Terry Lee
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Colleen Byrnes
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiling Li
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Tuymetova
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenna Y Bakir
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elena-Raluca Nicoli
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Cynthia J Tifft
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Sandhoff R. Lipid Structure Matters in Lysosomal Storage Disease. J Lipid Res 2023; 64:100476. [PMID: 37972730 PMCID: PMC10757020 DOI: 10.1016/j.jlr.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center Heidelberg, Heidelberg, Germany.
| |
Collapse
|
32
|
Cocostîrc V, Paștiu AI, Pusta DL. An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals (Basel) 2023; 13:3568. [PMID: 38003185 PMCID: PMC10668755 DOI: 10.3390/ani13223568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hereditary neurological conditions documented in dogs encompass congenital, neonatal, and late-onset disorders, along with both progressive and non-progressive forms. In order to identify the causal variant of a disease, the main two approaches are genome-wide investigations and candidate gene investigation. Online Mendelian Inheritance in Animals currently lists 418 Mendelian disorders specific to dogs, of which 355 have their likely causal genetic variant identified. This review aims to summarize the current knowledge on the canine nervous system phenes and their genetic causal variant. It has been noted that the majority of these diseases have an autosomal recessive pattern of inheritance. Additionally, the dog breeds that are more prone to develop such diseases are the Golden Retriever, in which six inherited neurological disorders with a known causal variant have been documented, and the Belgian Shepherd, in which five such disorders have been documented. DNA tests can play a vital role in effectively managing and ultimately eradicating inherited diseases.
Collapse
Affiliation(s)
- Vlad Cocostîrc
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.I.P.); (D.L.P.)
| | | | | |
Collapse
|
33
|
Kundu S. ReDirection: an R-package to compute the probable dissociation constant for every reaction of a user-defined biochemical network. Front Mol Biosci 2023; 10:1206502. [PMID: 37942290 PMCID: PMC10628733 DOI: 10.3389/fmolb.2023.1206502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023] Open
Abstract
Biochemical networks integrate enzyme-mediated substrate conversions with non-enzymatic complex formation and disassembly to accomplish complex biochemical and physiological functions. The choice of parameters and constraints used in most of these studies is numerically motivated and network-specific. Although sound in theory, the outcomes that result depart significantly from the intracellular milieu and are less likely to retain relevance in a clinical setting. There is a need for a computational tool which is biochemically relevant, mathematically rigorous, and unbiased, and can ascribe functionality to and generate potentially testable hypotheses for a user-defined biochemical network. Here, we present "ReDirection," an R-package which computes the probable dissociation constant for every reaction of a biochemical network directly from a null space-generated subspace of the stoichiometry number matrix of the modeled network. "ReDirection" delineates this subspace by excluding all trivial and redundant or duplicate occurrences of non-trivial vectors, combinatorially summing the vectors that remain and verifying that the upper or lower bounds of the sequence of terms formed by each row of this subspace belong to the open real-valued intervals - ∞ , - 1 or 1 , ∞ or whether the number of terms that are differently signed are almost equal. "ReDirection" iterates these steps until these bounds are consistent and unambiguous for all reactions of the modeled biochemical network. Thereafter, "ReDirection" filters the terms from each row of this subspace, bins them to outcome-specific subsets, sums and maps this to an outcome-specific reaction vector, and computes the p1-norm, which is the probable dissociation constant for a reaction. "ReDirection" works on first principles, does not discriminate between enzymatic and non-enzymatic reactions, offers a biochemically relevant and mathematically rigorous environment to explore user-defined biochemical networks under baseline and perturbed conditions, and can be used to address empirically intractable biochemical problems. The utility and relevance of "ReDirection" are highlighted by numerical studies on stoichiometric number models of biochemical networks of galactose metabolism and heme and cholesterol biosynthesis. "ReDirection" is freely available and accessible from the comprehensive R archive network (CRAN) with the URL (https://cran.r-project.org/package=ReDirection).
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Weesner JA, Annunziata I, van de Vlekkert D, d'Azzo A. Glycosphingolipids within membrane contact sites influence their function as signaling hubs in neurodegenerative diseases. FEBS Open Bio 2023; 13:1587-1600. [PMID: 37014126 PMCID: PMC10476575 DOI: 10.1002/2211-5463.13605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Intracellular organelles carry out many of their functions by engaging in extensive interorganellar communication through specialized membrane contact sites (MCSs) formed where two organelles tether to each other or to the plasma membrane (PM) without fusing. In recent years, these ubiquitous membrane structures have emerged as central signaling hubs that control a multitude of cellular pathways, ranging from lipid metabolism/transport to the exchange of metabolites and ions (i.e., Ca2+ ), and general organellar biogenesis. The functional crosstalk between juxtaposed membranes at MCSs relies on a defined composite of proteins and lipids that populate these microdomains in a dynamic fashion. This is particularly important in the nervous system, where alterations in the composition of MCSs have been shown to affect their functions and have been implicated in the pathogenesis of neurodegenerative diseases. In this review, we focus on the MCSs that are formed by the tethering of the endoplasmic reticulum (ER) to the mitochondria, the ER to the endo-lysosomes and the mitochondria to the lysosomes. We highlight how glycosphingolipids that are aberrantly processed/degraded and accumulate ectopically in intracellular membranes and the PM change the topology of MCSs, disrupting signaling pathways that lead to neuronal demise and neurodegeneration. In particular, we focus on neurodegenerative lysosomal storage diseases linked to altered glycosphingolipid catabolism.
Collapse
Affiliation(s)
| | - Ida Annunziata
- Department of GeneticsSt. Jude Children's Research HospitalMemphisTNUSA
- Compliance OfficeSt. Jude Children's Research HospitalMemphisTNUSA
| | | | - Alessandra d'Azzo
- Department of GeneticsSt. Jude Children's Research HospitalMemphisTNUSA
- Department of Anatomy and Neurobiology, College of Graduate Health SciencesUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
35
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
36
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548446. [PMID: 37503265 PMCID: PMC10369868 DOI: 10.1101/2023.07.10.548446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
|
37
|
Kell P, Sidhu R, Qian M, Mishra S, Nicoli ER, D'Souza P, Tifft CJ, Gross AL, Gray-Edwards HL, Martin DR, Sena-Esteves M, Dietzen DJ, Singh M, Luo J, Schaffer JE, Ory DS, Jiang X. A pentasaccharide for monitoring pharmacodynamic response to gene therapy in GM1 gangliosidosis. EBioMedicine 2023; 92:104627. [PMID: 37267847 PMCID: PMC10277919 DOI: 10.1016/j.ebiom.2023.104627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in β-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with β-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.
Collapse
Affiliation(s)
- Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sonali Mishra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elena-Raluca Nicoli
- Medical Genetics Branch and Office of the Clinical Director, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Precilla D'Souza
- Medical Genetics Branch and Office of the Clinical Director, NHGRI, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, 20892, USA
| | - Cynthia J Tifft
- Medical Genetics Branch and Office of the Clinical Director, NHGRI, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, 20892, USA
| | - Amanda L Gross
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Manmilan Singh
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
38
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
39
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
40
|
Tang BJH, Li H, Yuan C, Parigi G, Luchinat C, Meade TJ. Molecular Engineering of Self-Immolative Bioresponsive MR Probes. J Am Chem Soc 2023; 145:10045-10050. [PMID: 37116079 PMCID: PMC10769484 DOI: 10.1021/jacs.2c13672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Real-time detection of bio-event in whole animals provides essential information for understanding biological and therapeutic processes. Magnetic resonance (MR) imaging represents a non-invasive approach to generating three-dimensional anatomic images with high spatial-temporal resolution and unlimited depth penetration. We have developed several self-immolative enzyme-activatable agents that provide excellent in vivo contrast and function as gene expression reporters. Here, we describe a vast improvement in image contrast over our previous generations of these bioresponsive agents based on a new pyridyl-carbamate Gd(III) complex. The pyridyl-carbamate-based agent has a very low MR relaxivity in the "off-state" (r1 = 1.8 mM-1 s-1 at 1.41 T). However, upon enzymatic processing, it generates a significantly higher relaxivity with a Δr1 = 106% versus Δr1 ∼ 20% reported previously. Single X-ray crystal and nuclear magnetic relaxation dispersion analyses offer mechanistic insights regarding MR signal enhancement at the molecular scale. This work demonstrates a pyridyl-carbamate-based self-immolative molecular platform for the construction of enzymatic bio-responsive MR agents, which can be adapted to a wide range of other targets for exploring stimuli-responsive materials and biomedical applications.
Collapse
Affiliation(s)
- bJian-Hong Tang
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| | - Hao Li
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| | - Chaonan Yuan
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Thomas J. Meade
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
41
|
Emecen Sanli M, Dogan M. GM1 gangliosidosis: patients with different phenotypic features and novel mutations. J Pediatr Endocrinol Metab 2023:jpem-2022-0630. [PMID: 37042746 DOI: 10.1515/jpem-2022-0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVES GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder caused by beta-galactosidase deficiency encoded by GLB1. It is mainly characterized by progressive neurodegeneration due to accumulation of glycosphingolipids in central nervous system and classified into 3 forms according to the age of onset and severity of symptoms. CASE PRESENTATIONS In this study, we described the demographic, clinical, molecular, biochemical characteristics of 4 patients from 3 unrelated families diagnosed with GM1-gangliosidosis. The ages of the patients included in the study were between 5 months and 10 years old and all were male. All families had third degree consanguinity. Two of the patients were diagnosed as infantile type and the other two siblings were diagnosed as juvenile type. Infantile type patients had coarse facial appearance, developmental delay and early neurodegeneration. Juvenile type patients had mild motor and cognitive developmental delays at the beginning, but they did not have coarse facial features. Cherry-red macula and cardiac involvement were detected in only one infantile patient, while hepatomegaly was present in both infantile type patients. Beta galactosidase enzyme levels were extremely low in all patients and two novel variants were identified in GLB1. CONCLUSIONS In this study, we identified four patients with different phenotypic features and two new mutations. GM1 gangliosidosis shows clinical heterogeneity according to age of onset. In some patients, developmental delay can be seen before the loss of gained functions. Therefore, this disorder should be kept in mind in patients with developmental delay who have not yet started neurodegeneration. There is no curative treatment for the disease yet, but ongoing gene therapy studies are promising for curing the disease in the future.
Collapse
Affiliation(s)
- Merve Emecen Sanli
- Department of Pediatrics, Division of Inborn Errors and Metabolism, Başakşehir Çam and Sakura City Hospital, Istanbul, Türkiye
| | - Mustafa Dogan
- Department of medical genetics, Başakşehir Çam and Sakura City Hospital, Istanbul, Türkiye
| |
Collapse
|
42
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
43
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
44
|
Luckett A, Yousef M, Tifft C, Jenkins K, Smith A, Munoz A, Quimby R, Porter FD, Dang Do AN. Anesthesia outcomes in lysosomal disorders: CLN3 and GM1 gangliosidosis. Am J Med Genet A 2023; 191:711-717. [PMID: 36461157 PMCID: PMC9928896 DOI: 10.1002/ajmg.a.63064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Natural history studies of pediatric rare neurometabolic diseases are important to understand disease pathophysiology and to inform clinical trial outcome measures. Some data collections require sedation given participants' age and neurocognitive impairment. To evaluate the safety of sedation for research procedures, we reviewed medical records between April 2017 and October 2019 from a natural history study for CLN3 (NCT03307304) and one for GM1 gangliosidosis (NCT00029965). Twenty-two CLN3 individuals underwent 28 anesthetic events (age median 11.0, IQR 8.4-15.3 years). Fifteen GM1 individuals had 19 anesthetic events (9.8, 7.1-14.7). All participants had the American Society of Anesthesiology classification of II (8/47) or III (39/47). Mean sedation durations were 186 (SD = 54; CLN3) and 291 (SD = 33; GM1) min. Individuals with GM1 (6/19, 31%) were more frequently prospectively intubated for sedation (CLN3 3/28, 11%). Minor adverse events associated with sedation occurred in 8/28 (28%, CLN3) and 6/19 (32%, GM1) individuals, frequencies within previously reported ranges. No major adverse clinical outcomes occurred in 47 anesthetic events in pediatric participants with either CLN3 or GM1 gangliosidosis undergoing research procedures. Sedation of pediatric individuals with rare neurometabolic diseases for research procedures is safe and allows for the collection of data integral to furthering their understanding and treatment.
Collapse
Affiliation(s)
- Amelia Luckett
- Department of Anesthesia and Surgical Services, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Muhammad Yousef
- Department of Anesthesia and Surgical Services, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia Tifft
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kisha Jenkins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Smith
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea Munoz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel Quimby
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - An Ngoc Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci 2023; 17:1117845. [PMID: 36875642 PMCID: PMC9980911 DOI: 10.3389/fnins.2023.1117845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.
Collapse
Affiliation(s)
| | | | | | - Rashid Deane
- Department of Neuroscience, Del Monte Institute Neuroscience, University of Rochester, University of Rochester Medical Center (URMC), Rochester, NY, United States
| |
Collapse
|
46
|
Bingaman A, Waggoner C, Andrews SM, Pangonis D, Trad M, Giugliani R, Giorgino R, Jarnes J, Vakili R, Ballard V, Peay HL. GM1-gangliosidosis: The caregivers' assessments of symptom impact and most important symptoms to treat. Am J Med Genet A 2023; 191:408-423. [PMID: 36541412 PMCID: PMC10107815 DOI: 10.1002/ajmg.a.63038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022]
Abstract
GM1-gangliosidosis (GM1) is a rare neurodegenerative disorder leading to early mortality and causing progressive decline of physical skills and cerebral functioning. No approved treatment for GM1 exists. In this study-the first to explore priorities of parents of subjects with pediatric onset forms of GM1-we address a crucial gap by characterizing symptoms most critical to caregivers of children with GM1 to treat. Our two-part, mixed-methods approach began with focus groups, followed by interviews with a distinct set of parents. Interviews included a prioritization activity that used best-worst scaling. Quantitative data were analyzed descriptively. Qualitative data were analyzed using thematic analysis and rapid analysis process. Parents prioritized the symptoms they believed would increase their child's lifespan and improve their perceived quality of life (QoL); these symptoms focused on communicating wants/needs, preventing pain/discomfort, getting around and moving one's body, and enhancing eating/feeding. Although lifespan was highly valued, almost all parents would not desire a longer lifespan without acceptable child QoL. Parents indicated high caregiver burden and progressive reduction in QoL for children with GM1. This novel study of caregiver priorities identified important symptoms for endpoints' selection in patient-focused drug development in the context of high disease impact and unmet treatment needs.
Collapse
Affiliation(s)
- Amanda Bingaman
- RTI International, Research Triangle, North Carolina, United States
| | | | - Sara M Andrews
- RTI International, Research Triangle, North Carolina, United States
| | - Diana Pangonis
- National Tay-Sachs & Allied Diseases Association (NTSAD), Brighton, Massachusetts, United States
| | | | - Roberto Giugliani
- PPGBM UFRGS, DASA Genomics and Casa dos Raros, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Jeanine Jarnes
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | | | | | - Holly L Peay
- RTI International, Research Triangle, North Carolina, United States
| |
Collapse
|
47
|
Nicoli ER, Huebecker M, Han ST, Garcia K, Munasinghe J, Lizak M, Latour Y, Yoon R, Glase B, Tyrlik M, Peiravi M, Springer D, Baker EH, Priestman D, Sidhu R, Kell P, Jiang X, Kolstad J, Kuhn AL, Shazeeb MS, Acosta MT, Proia RL, Platt FM, Tifft CJ. Glb1 knockout mouse model shares natural history with type II GM1 gangliosidosis patients. Mol Genet Metab 2023; 138:107508. [PMID: 36709532 PMCID: PMC10617618 DOI: 10.1016/j.ymgme.2023.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of β-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.
Collapse
Affiliation(s)
- Elena-Raluca Nicoli
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Sangwoo T Han
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karolyn Garcia
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Martin Lizak
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yvonne Latour
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robin Yoon
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Glase
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michal Tyrlik
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Phenotyping Core (D.A.S.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Morteza Peiravi
- Phenotyping Core (D.A.S.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle Springer
- Phenotyping Core (D.A.S.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eva H Baker
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - David Priestman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Josephine Kolstad
- Image Processing and Analysis Core (iPAC), Department of Radiology, UMass Chan Medical School, Worcester, MA, United States
| | - Anna Luisa Kuhn
- Image Processing and Analysis Core (iPAC), Department of Radiology, UMass Chan Medical School, Worcester, MA, United States
| | - Mohammed Salman Shazeeb
- Image Processing and Analysis Core (iPAC), Department of Radiology, UMass Chan Medical School, Worcester, MA, United States
| | - Maria T Acosta
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Cynthia J Tifft
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
48
|
Leclerc D, Goujon L, Jaillard S, Nouyou B, Cluzeau L, Damaj L, Dubourg C, Etcheverry A, Levade T, Froissart R, Dréano S, Guillory X, Eriksson LA, Launay E, Mouriaux F, Belaud-Rotureau MA, Odent S, Gilot D. Gene Editing Corrects In Vitro a G > A GLB1 Transition from a GM1 Gangliosidosis Patient. CRISPR J 2023; 6:17-31. [PMID: 36629845 PMCID: PMC9986017 DOI: 10.1089/crispr.2022.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced β-galactosidase (β-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of β-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on β-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.
Collapse
Affiliation(s)
| | - Louise Goujon
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, FHU GenOMEDS, ERN ITHACA, Hôpital Sud, Rennes, France
| | - Sylvie Jaillard
- INSERM, EHESP, IRSET-UMR_S, 1085, Université Rennes 1, Rennes, France.,Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Bénédicte Nouyou
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Laurence Cluzeau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Léna Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes Hospital, Rennes, France
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire et Génomique, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Amandine Etcheverry
- Laboratoire de Génétique Moléculaire et Génomique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Thierry Levade
- Laboratoire de Biochimie, CHU de Toulouse, Pôle biologie, Institut Fédératif de Biologie, Toulouse, France
| | - Roseline Froissart
- CHU Lyon HCL, LBMMS-Service Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Bron, France
| | - Stéphane Dréano
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Xavier Guillory
- INSERM U1242, OSS, Univ Rennes, Rennes, France.,Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Erika Launay
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Frédéric Mouriaux
- INSERM U1242, OSS, Univ Rennes, Rennes, France.,Department of Ophthalmology, CHU Rennes, Univ Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- INSERM, EHESP, IRSET-UMR_S, 1085, Université Rennes 1, Rennes, France.,Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, FHU GenOMEDS, ERN ITHACA, Hôpital Sud, Rennes, France.,Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - David Gilot
- INSERM U1242, OSS, Univ Rennes, Rennes, France.,Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| |
Collapse
|
49
|
Kasper BS, Thomas C, Albers A, Kasper EM, Sandhoff K. From amaurotic idiocy to biochemically defined lipid storage diseases: the first identification of GM1-Gangliosidosis. FREE NEUROPATHOLOGY 2023; 4:12. [PMID: 37577107 PMCID: PMC10413987 DOI: 10.17879/freeneuropathology-2023-4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
On February 23rd 1936, a boy-child ("Kn") died in an asylum near Munich after years of severe congenital disease, which had profoundly impaired his development leading to inability to walk, talk and see as well as to severe epilepsy. While a diagnosis of "Little's disease" was made during life, his postmortem brain investigation at Munich neuropathology ("Deutsche Forschungsanstalt für Psychiatrie") revealed the diagnosis of "amaurotic idiocy" (AI). AI, as exemplified by Tay-Sachs-Disease (TSD), back then was not yet understood as a specific inborn error of metabolism encompassing several disease entities. Many neuropathological studies were performed on AI, but the underlying processes could only be revealed by new scientific techniques such as biochemical analysis of nervous tissue, deciphering AI as nervous system lipid storage diseases, e.g. GM2-gangliosidosis. In 1963, Sandhoff & Jatzkewitz published an article on a "biochemically special form of AI" reporting striking differences when comparing their biochemical observations of hallmark features of TSD to tissue composition in a single case: the boy Kn. This was the first description of "GM1-Gangliosidosis", later understood as resulting from genetically determined deficiency in beta-galactosidase. Here we present illustrative materials from this historic patient, including selected diagnostic slides from the case "Kn" in virtual microscopy, original records and other illustrative material available. Finally, we present results from genetic analysis performed on archived tissue proving beta-galactosidase-gene mutation, verifying the 1963 interpretation as correct. This synopsis shall give a first-hand impression of this milestone finding in neuropathology. Original paper: On a biochemically special form of infantile amaurotic idiocy. Jatzkewitz H., Sandhoff K., Biochim. Biophys. Acta 1963; 70; 354-356. See supplement 1.
Collapse
Affiliation(s)
- Burkhard S. Kasper
- Friedrich-Alexander-Universität Erlangen-Nuremberg, University Hospital, Dept. Neurology; Erlangen, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Anne Albers
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Hamilton Health Sciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology & Biochemistry Unit, Bonn University, Bonn, Germany
| |
Collapse
|
50
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|