1
|
Tomsho KS, Quinn MR, Wang Z, Preston EV, Adamkiewicz G, Joseph NT, Wylie BJ, James-Todd T. Improving the Health and Environmental Health Literacy of Professionals: Evaluating the Effect of a Virtual Intervention on Phthalate Environmental Health Literacy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1571. [PMID: 39767412 PMCID: PMC11675889 DOI: 10.3390/ijerph21121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The American College of Obstetricians and Gynecologists provided updated guidance in 2021, recommending that reproductive health professionals should include discussion of environmental exposures with their patients. However, environmental health is seldom included in medical training, with endocrine-disrupting chemicals, such as phthalates-linked to adverse pregnancy outcomes-being among the least discussed. We developed a one-hour virtual educational intervention to train reproductive health professionals on the routes of phthalate exposure, potential associated health impacts, and suggestions on how to discuss exposure reduction with patients. The intervention was designed to include perspectives from patients, scientists, and clinicians. Using a pre/post/post design, we evaluated the impact of the intervention on reproductive health professionals' phthalate-related reproductive health literacy via a validated environmental health literacy (EHL) scale, their confidence in discussing phthalates, and the frequency of discussions about phthalates with patients. All materials, including the study questionnaires and intervention materials, were administered virtually to reproductive health professionals (n = 203) currently seeing patients working in the United States. After completing the intervention, reproductive health professionals' average EHL increased (pre-course: 22.3, post-course: 23.7, 2 months post-course: 24.0), as did their confidence in discussing phthalates with their patients (pre-course: 1% (2/203) reported being quite confident, post-course: 64% (131/203) reported being quite confident, and 2 months post course: 86% (174/203) reported being quite confident). Additionally, the reported frequency of discussions about phthalates with patients rose substantially (pre-course: 0% (0/203) reported usually discussing phthalates with patients, and 2 months post-course: 86% (175/203) reported usually discussing phthalates with patients): In line with the recommendations of the American College of Obstetricians and Gynecologists, this online phthalate educational intervention tool increased EHL among reproductive health professionals and shifted clinical care to include discussion about phthalates, a reproductive toxicant.
Collapse
Affiliation(s)
- Kathryn S. Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marlee R. Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zifan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Emma V. Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Naima T. Joseph
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Blair J. Wylie
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
2
|
Nowak K, Oluwayiose OA, Houle E, Maxwell DL, Sawant S, Paskavitz A, Ford JB, Minguez-Alarcon L, Calafat AM, Hauser R, Pilsner JR. Urinary concentrations of phthalate and phthalate alternative metabolites and sperm DNA methylation: A multi-cohort and meta-analysis of men in preconception studies. ENVIRONMENT INTERNATIONAL 2024; 192:109049. [PMID: 39393261 DOI: 10.1016/j.envint.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Phthalates are ubiquitous pollutants in the environment; however, the mechanisms of phthalate-associated reproductive disorders in men are not fully understood. The aim of this study is to investigate associations between urinary phthalate metabolite concentrations and sperm DNA methylation. The study was conducted on 697 men from three prospective pregnancy cohorts: Longitudinal Investigation of Fertility and the Environment (LIFE) Study, Sperm Environmental Epigenetics and Development Study (SEEDS), and Environment and Reproductive Health (EARTH) Study. Eighteen phthalate and two phthalate alternative metabolites were quantified by mass spectrometry in preconception urinary samples and sperm DNA methylation was measured via Illumina EPIC Array (v1). Regional methylation analyses were conducted to identify cohort-specific loci associated with urinary phthalate metabolites. Models were adjusted for age, body mass index (BMI), race, smoking status, urinary creatinine/specific gravity, and analytical batch for phthalate measurements. The cohort-specific results were meta-analyzed using METAL. Participants had an average age of 30 years, most (79.6 %) of whom had BMI>25 kg/m2 and were non-smokers (90.1 %). A total of 7,979 differentially methylated regions (DMRs; 7,979 LIFE-specific DMRs, 72 SEEDS-specific DMRs, and 23 EARTH-specific DMRs) were associated with urinary MBzP, MiBP, MMP, MCNP, MCPP, MBP, and MCOCH. Meta-analysis identified fewer DMRs than cohort-specific models: 946 DMRs were associated with MBzP, 27 DMRs associated with MiBP, and 1 DMR associated with MEHP. The majority of cohort-specific and meta-analysis-derived DMRs displayed a positive association with phthalate metabolite concentrations and were enriched in genes associated with spermatogenesis, response to hormones and their metabolism, embryonic organ development and developmental growth. In conclusion, several preconception urinary phthalate metabolites were associated with increased DNA methylation patterns in sperm. These findings provide an epigenetic pathway by which environmental phthalate exposures can impact couples' reproductive outcomes.
Collapse
Affiliation(s)
- Karolina Nowak
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - DruAnne L Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Savni Sawant
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Amanda Paskavitz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jennifer B Ford
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Minguez-Alarcon
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
England-Mason G, Merrill SM, Liu J, Martin JW, MacDonald AM, Kinniburgh DW, Gladish N, MacIsaac JL, Giesbrecht GF, Letourneau N, Kobor MS, Dewey D. Sex-Specific Associations between Prenatal Exposure to Bisphenols and Phthalates and Infant Epigenetic Age Acceleration. EPIGENOMES 2024; 8:31. [PMID: 39189257 PMCID: PMC11348373 DOI: 10.3390/epigenomes8030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah M. Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
| | - Amy M. MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W. Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Gladish
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Gerald F. Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
4
|
Khodasevich D, Holland N, Harley KG, Eskenazi B, Barcellos LF, Cardenas A. Prenatal exposure to environmental phenols and phthalates and altered patterns of DNA methylation in childhood. ENVIRONMENT INTERNATIONAL 2024; 190:108862. [PMID: 38972116 PMCID: PMC11620025 DOI: 10.1016/j.envint.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Epigenetic marks are key biomarkers linking the prenatal environment to health and development. However, DNA methylation associations and persistence of marks for prenatal exposure to multiple Endocrine Disrupting Chemicals (EDCs) in human populations have not been examined in great detail. METHODS We measured Bisphenol-A (BPA), triclosan, benzophenone-3 (BP3), methyl-paraben, propyl-paraben, and butyl-paraben, as well as 11 phthalate metabolites, in two pregnancy urine samples, at approximately 13 and 26 weeks of gestation in participants of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study (N = 309). DNA methylation of cord blood at birth and child peripheral blood at ages 9 and 14 years was measured with 450K and EPIC arrays. Robust linear regression was used to identify differentially methylated probes (DMPs), and comb-p was used to identify differentially methylated regions (DMRs) in association with pregnancy-averaged EDC concentrations. Quantile g-computation was used to assess associations of the whole phenol/phthalate mixture with DMPs and DMRs. RESULTS Prenatal BPA exposure was associated with 1 CpG among males and Parabens were associated with 10 CpGs among females at Bonferroni-level significance in cord blood. Other suggestive DMPs (unadjusted p-value < 1 × 10-6) and several DMRs associated with the individual phenols and whole mixture were also identified. A total of 10 CpG sites at least suggestively associated with BPA, Triclosan, BP3, Parabens, and the whole mixture in cord blood were found to persist into adolescence in peripheral blood. CONCLUSIONS We found sex-specific associations between prenatal phenol exposure and DNA methylation, particularly with BPA in males and Parabens in females. Additionally, we found several DMPs that maintained significant associations with prenatal EDC exposures at age 9 and age 14 years.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kim G Harley
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Jedynak P, Siroux V, Broséus L, Tost J, Busato F, Gabet S, Thomsen C, Sakhi AK, Sabaredzovic A, Lyon-Caen S, Bayat S, Slama R, Philippat C, Lepeule J. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. ENVIRONMENT INTERNATIONAL 2024; 189:108763. [PMID: 38824843 DOI: 10.1016/j.envint.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; ISGlobal, Barcelona, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Lucile Broséus
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Stephan Gabet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), 59000 Lille, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | | | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
6
|
Xie X, Yan B, Yang L, Deng L, Xue X, Gao M, Wei H, Chen S, Wu Y, Yang X, Ma P. Prenatal co-exposure to diisodecyl phthalate and ozone contribute to depressive behavior in offspring mice through oxidative stress and TWIST1 participation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172411. [PMID: 38608898 DOI: 10.1016/j.scitotenv.2024.172411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Exposure to diisodecyl phthalate (DIDP) during early pregnancy may be a risk factor for depressive behavior in offspring. While ozone (O3) exposure also raises the probability of depressive behavior during the preceding DIDP-induced process. In the present study, we investigated the effects of prenatal exposure to DIDP and O3 on the development of depressive-like behavior in offspring mice. The study found that prenatal exposure to both DIDP and O3 significantly increased depressive-like behavior in the offspring mice compared to either DIDP or O3 alone. Prenatal exposure to DIDP and O3 obviously increased the levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol, and decreased the levels of brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the brain tissues of offspring mice. Transcriptome analysis further revealed significant alterations in genes related to oxidative stress and TWIST1 (a helix-loop-helix transcription factor) in response to the combined exposure to DIDP and O3. HPA axis activation, dysregulation of neurodevelopmental factors, oxidative stress and TWIST1 involvement, collectively contributed to the development of depression-like behaviors in offspring mice following prenatal exposure to DIDP and O3. Moreover, the study also verified the potential role of oxidative stress using vitamin E as an antioxidant. The findings provide valuable evidence for the relationship between co-exposure to DIDP and O3 and depression, highlighting the importance of considering the combined effects of multiple environmental pollutants in assessing their impact on mental health outcomes.
Collapse
Affiliation(s)
- Xiaomin Xie
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Linjing Deng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212000, PR China
| | - Xin Xue
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Minmin Gao
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Huaqin Wei
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Shaohui Chen
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
7
|
Petroff RL, Dolinoy DC, Wang K, Montrose L, Padmanabhan V, Peterson KE, Ruden DM, Sartor MA, Svoboda LK, Téllez-Rojo MM, Goodrich JM. Translational toxicoepigenetic Meta-Analyses identify homologous gene DNA methylation reprogramming following developmental phthalate and lead exposure in mouse and human offspring. ENVIRONMENT INTERNATIONAL 2024; 186:108575. [PMID: 38507935 PMCID: PMC11463831 DOI: 10.1016/j.envint.2024.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Luke Montrose
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Douglas M Ruden
- Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Maureen A Sartor
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Guo Z, Wang L, Li Y, Wu Z, Wang K, Duan J. Dust phase and window film phase phthalates in dormitories: profile characteristics, source screening, and estimated gas-phase concentration and dermal exposure comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15257-15270. [PMID: 38291205 DOI: 10.1007/s11356-024-32019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Recently, phthalate exposure has become a major public health concern. However, gaps still remain in our understanding of phthalate profile characteristics, source screening, and gas-phase estimation. This study measured phthalate concentrations in dust and window films in 101 dormitories at 13 universities in Beijing, China, from October to December 2019. Based on the phthalate concentrations in the dust and window films, we estimated the gas-phase phthalate concentrations using steady-state and instantaneous equilibrium models, respectively, and male and female students' dermal exposure using the Monte Carlo simulation. Commonly used materials and supplies were screened for phthalate sources and evaluated using the positive matrix factorization (PMF) model. The results showed that the detection frequency of ten phthalates ranged from 79.2 to 100% in dust and from 84.2 to 100% in window films. Dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), and dibutyl phthalate (DBP) were the most abundant phthalates in both indoor media and were also predominant in the indoor materials and supplies. The PMF results indicated that the potential sources of phthalates in dust and window films had both similarities and differences. Indoor door seals, paint, coatings, cables, air-conditioning rubber cable ties, wallpaper, and window seals were highly probable sources of phthalates. The gas-phase phthalate concentrations estimated using the two methods differed, especially for phthalates with high octanol-air partition coefficients (Koa), varying by 1-2 orders of magnitude. Moreover, compared with related studies, the gas-phase concentrations were significantly underestimated for phthalates with high Koa values, while the estimated gas-phase concentrations of phthalates with low Koa values were closer to the measured values. The estimated dermal exposure using the two methodologies also considerably differed. Such findings suggest that more attention should be focused on the exposure risk from the dust phase and window film phase phthalates.
Collapse
Affiliation(s)
- Zichen Guo
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jiahui Duan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
9
|
Tao HW, Han WW, Liu YJ, Du HZ, Li ZN, Qin LQ, Chen GC, Chen JS. Association of phthalate exposure with all-cause mortality across renal function status: The U.S. National Health and Nutrition Examination Survey, 2005-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115881. [PMID: 38147775 DOI: 10.1016/j.ecoenv.2023.115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Wide phthalate exposure has been associated with both declines in renal function and an elevated risk of mortality. Whether phthalate-associated risk of premature mortality differs by renal function status remains unclear. METHODS This study included 9605 adults from the U.S. National Health and Nutrition Examination Survey. Urinary concentrations of 11 phthalate metabolites were assessed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. According to estimated glomerular filtration rate (eGFR), participants were grouped as having normal or modestly declined renal functions, or chronic kidney disease (CKD). Multivariable Cox regression models estimated all-cause mortality associated with phthalate exposure, overall and by renal function status. RESULTS Overall, Mono-n-butyl phthalate (MnBP), Mono-benzyl phthalate (MBzP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and Mono-(2-ethyl-5-carbox-ypentyl) phthalate (MECPP) were associated with an elevated risk of mortality (P-trend across tertile <0.05). Moreover, significant interactions were observed between eGFR and MEHHP, MEOHP, MECPP, DEHP in the whole population (P for interactions <0.05). After stratification by renal function, total Di (2-ethylhexyl) phthalate (DEHP) was additionally found to be associated with mortality risk in the CKD group (HR = 1.12; 95% CI: 1.01, 1.25). Co-exposure to the 11 phthalate metabolites was associated with a higher risk of all-cause mortality in the CKD (HR = 1.47; 95% CI: 1.18, 1.84) and modestly declined renal function group (HR = 1.25; 95% CI: 1.09, 1.44). CONCLUSIONS The associations between phthalate exposure and risk of all-cause mortality were primarily observed in CKD patients, reinforcing the need for monitoring phthalate exposure in this patient population.
Collapse
Affiliation(s)
- Hao-Wei Tao
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen-Wen Han
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu-Jie Liu
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Zhen Du
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Zeng-Ning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China; Hospital of Stomatology of Hebei Medical University Shijiazhuang, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jing-Si Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Rabotnick MH, Ehlinger J, Haidari A, Goodrich JM. Prenatal exposures to endocrine disrupting chemicals: The role of multi-omics in understanding toxicity. Mol Cell Endocrinol 2023; 578:112046. [PMID: 37598796 PMCID: PMC10592024 DOI: 10.1016/j.mce.2023.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a diverse group of toxicants detected in populations globally. Prenatal EDC exposures impact birth and childhood outcomes. EDCs work through persistent changes at the molecular, cellular, and organ level. Molecular and biochemical signals or 'omics' can be measured at various functional levels - including the epigenome, transcriptome, proteome, metabolome, and the microbiome. In this narrative review, we introduce each omics and give examples of associations with prenatal EDC exposures. There is substantial research on epigenomic modifications in offspring exposed to EDCs during gestation, and a growing number of studies evaluating the transcriptome, proteome, metabolome, or microbiome in response to these exposures. Multi-omics, integrating data across omics layers, may improve understanding of disrupted function pathways related to early life exposures. We highlight several data integration methods to consider in multi-omics studies. Information from multi-omics can improve understanding of the biological processes and mechanisms underlying prenatal EDC toxicity.
Collapse
Affiliation(s)
- Margaret H Rabotnick
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jessa Ehlinger
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ariana Haidari
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Mervish N, Valle C, Teitelbaum SL. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. CURR EPIDEMIOL REP 2023; 10:148-157. [PMID: 38318392 PMCID: PMC10840994 DOI: 10.1007/s40471-023-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
12
|
Lee J, Kim J, Zinia SS, Park J, Won S, Kim WJ. Prenatal phthalate exposure and cord blood DNA methylation. Sci Rep 2023; 13:7046. [PMID: 37120575 PMCID: PMC10148847 DOI: 10.1038/s41598-023-33002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/05/2023] [Indexed: 05/01/2023] Open
Abstract
Exposure to phthalates has been shown to impede the human endocrine system, resulting in deleterious effects on pregnant women and their children. Phthalates modify DNA methylation patterns in infant cord blood. We examined the association between prenatal phthalate exposure and DNA methylation patterns in cord blood in a Korean birth cohort. Phthalate levels were measured in 274 maternal urine samples obtained during late pregnancy and 102 neonatal urine samples obtained at birth, and DNA methylation levels were measured in cord blood samples. For each infant in the cohort, associations between CpG methylation and both maternal and neonate phthalate levels were analyzed using linear mixed models. The results were combined with those from a meta-analysis of the levels of phthalates in maternal and neonatal urine samples, which were also analyzed for MEOHP, MEHHP, MnBP, and DEHP. This meta-analysis revealed significant associations between the methylation levels of CpG sites near the CHN2 and CUL3 genes, which were also associated with MEOHP and MnBP in neonatal urine. When the data were stratified by the sex of the infant, MnBP concentration was found to be associated with one CpG site near the OR2A2 and MEGF11 genes in female infants. In contrast, the concentrations of the three maternal phthalates showed no significant association with CpG site methylation. Furthermore, the data identified distinct differentially methylated regions in maternal and neonatal urine samples following exposure to phthalates. The CpGs with methylation levels that were positively associated with phthalate levels (particularly MEOHP and MnBP) were found to be enriched genes and related pathways. These results indicate that prenatal phthalate exposure is significantly associated with DNA methylation at multiple CpG sites. These alterations in DNA methylation may serve as biomarkers of maternal exposure to phthalates in infants and are potential candidates for investigating the mechanisms by which phthalates impact maternal and neonatal health.
Collapse
Affiliation(s)
- Jooah Lee
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Sabrina Shafi Zinia
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea.
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- RexSoft Corp, Seoul, South Korea.
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
13
|
Sol CM, Gaylord A, Santos S, Jaddoe VWV, Felix JF, Trasande L. Fetal exposure to phthalates and bisphenols and DNA methylation at birth: the Generation R Study. Clin Epigenetics 2022; 14:125. [PMID: 36217170 PMCID: PMC9552446 DOI: 10.1186/s13148-022-01345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phthalates and bisphenols are non-persistent endocrine disrupting chemicals that are ubiquitously present in our environment and may have long-lasting health effects following fetal exposure. A potential mechanism underlying these exposure-outcome relationships is differential DNA methylation. Our objective was to examine the associations of maternal phthalate and bisphenol concentrations during pregnancy with DNA methylation in cord blood using a chemical mixtures approach. METHODS This study was embedded in a prospective birth cohort study in the Netherlands and included 306 participants. We measured urine phthalates and bisphenols concentrations in the first, second and third trimester. Cord blood DNA methylation in their children was processed using the Illumina Infinium HumanMethylation450 BeadChip using an epigenome-wide association approach. Using quantile g-computation, we examined the association of increasing all mixture components by one quartile with cord blood DNA methylation. RESULTS We did not find evidence for statistically significant associations of a maternal mixture of phthalates and bisphenols during any of the trimesters of pregnancy with DNA methylation in cord blood (all p values > 4.01 * 10-8). However, we identified one suggestive association (p value < 1.0 * 10-6) of the first trimester maternal mixture of phthalates and bisphenols and three suggestive associations of the second trimester maternal mixture of phthalates and bisphenols with DNA methylation in cord blood. CONCLUSIONS Although we did not identify genome-wide significant results, we identified some suggestive associations of exposure to a maternal mixture of phthalates and bisphenols in the first and second trimester with DNA methylation in cord blood that need further exploration in larger study samples.
Collapse
Affiliation(s)
- Chalana M. Sol
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Abigail Gaylord
- grid.137628.90000 0004 1936 8753Department of Population Health, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY 10016 USA
| | - Susana Santos
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W. V. Jaddoe
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F. Felix
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,Department of Pediatrics, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,Department of Environmental Medicine, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,New York Wagner School of Public Service, New York City, NY, 10016, USA. .,New York University Global Institute of Public Health, New York City, NY, 10016, USA.
| |
Collapse
|