1
|
Li N, Webb A, Kennelly J, Sharma R, Whitson BA, Mohler PJ, Hummel JD, Zhao J, Fedorov VV. Heart Rate Mystery Unveiled: Sex Differences in Human Sinoatrial Node Genes and Female Tachycardia. Circ Arrhythm Electrophysiol 2025; 18:e013534. [PMID: 40265247 DOI: 10.1161/circep.124.013534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Despite over a century of clinical electrocardiographic studies showing that women exhibit a faster resting heart rate (HR), the mechanisms underlying sex differences in HR remain unresolved. Moreover, inappropriate sinus tachycardia primarily affects women, whereas men are at a higher risk for conduction block and atrial fibrillation. We hypothesized that the sexual dimorphism of genes responsible for sinoatrial node (SAN) pacemaking and signaling pathways may contribute to the sex differences in HR and susceptibility to arrhythmias. METHODS Human SAN central pacemaker and right atrial tissue were isolated from nondiseased ex vivo donor hearts. Gene expressions were quantified and validated using the transcriptomic panel and quantitative polymerase chain reaction. Gene set enrichment analysis, Ingenuity Pathway Analysis, and human-specific SAN models were utilized to define regulatory mechanisms and functional impacts of sex-biased gene transcription. RESULTS We identified differentially expressed region- and sex-specific genes, with gene sets enriched in HR regulation (eg, TBX3, HCN1) and metabolism (eg, ADIPOQ, LEP) pathways in female SAN. In contrast, differential genes and gene sets involved in collagen biosynthetic processes, fibrogenesis (eg, EGR1), and immune response (eg, IL6, CXCL8) pathways were enriched in males SAN and right atrial. Ingenuity Pathway Analysis predicted significant roles for TBX3 and estradiol in the sex-specific expression of genes involved in SAN function. Computational simulations showed that the sex-specific SAN differences in If (pacemaker current; HCN1) and ICa,L(L-type calcium current; CACNA1D) can explain the faster HR in female SAN, with female SAN having a lower threshold for inappropriate sinus tachycardia, whereas male SAN are more vulnerable to sinus arrest. CONCLUSIONS The human SAN exhibits region-specific sexual dimorphism in pacemaking gene sets. Higher expression of TBX3 and HCN1 in female SAN may underlie faster HR and increased susceptibility to inappropriate sinus tachycardia in women, whereas enriched gene sets related to inflammation and collagen biosynthesis in men may predispose them to conduction impairments and atrial fibrillation risk.
Collapse
Affiliation(s)
- Ning Li
- Department of Physiology and Cell Biology (N.L., P.J.M., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute (N.L., P.J.M., J.D.H., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
| | - Amy Webb
- Department of Biomedical Informatics (A.W.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
| | - James Kennelly
- Auckland Bioengineering Institute, The University of Auckland, New Zealand (J.K., R.S., J.Z.)
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, New Zealand (J.K., R.S., J.Z.)
| | - Bryan A Whitson
- Department of Surgery, Division of Cardiac Surgery (B.A.W.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
| | - Peter J Mohler
- Department of Physiology and Cell Biology (N.L., P.J.M., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute (N.L., P.J.M., J.D.H., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
- Department of Internal Medicine (P.J.M., J.D.H.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
| | - John D Hummel
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute (N.L., P.J.M., J.D.H., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
- Department of Internal Medicine (P.J.M., J.D.H.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, New Zealand (J.K., R.S., J.Z.)
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology (N.L., P.J.M., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute (N.L., P.J.M., J.D.H., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus
| |
Collapse
|
2
|
Zheng H, Wang C, Zhou A, Chen X. Transcriptomic and Lipidomic Characteristics of Subcutaneous Fat Deposition in Small-Sized Meat Ducks. Metabolites 2025; 15:158. [PMID: 40137123 PMCID: PMC11944229 DOI: 10.3390/metabo15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Subcutaneous fat deposition is associated with ducks' meat quality and the methods used to cook them. However, the reasons underlying the differences in the lipid deposition of small-sized Wuqin10 meat ducks remain unclear. Method: In the present study, to elucidate the metabolic mechanisms of lipid deposition, we comprehensively analyzed the transcriptomics and lipidomics of subcutaneous fat in Wuqin10 meat ducks with different subcutaneous thicknesses with six replicates. Results: A total of 1120 lipids were detected in the lipidomic analysis, and 39 lipids were inexorably regulated in the ducks with the thick subcutaneous layer compared to those with the thin layer; further, the up-regulated lipids were primarily triglycerides (TGs), which may have resulted in adipocyte enlargement. Furthermore, the transcriptomic analysis identified 265 differentially expressed genes (DEGs), including 119 down-regulated and 146 up-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were significantly enriched in the histidine, arginine, proline metabolism signaling and adipocytokine signaling pathways. The protein-protein interaction (PPI) network in Cytoscape 3.8.2 identified hub genes HSP90AA1, RUNX2, ACTN2, ACTA1, IL10, CXCR4, EGF, SOCS3 and PTK2, which were associated with the JAK-STAT signaling pathway and regulation of adipocyte hypertrophy. Conclusion: Taken together, our findings reveal the patterns of lipids and the gene expression of subcutaneous fat, providing a basis for future studies of subcutaneous fat deposition in small-sized meat ducks.
Collapse
Affiliation(s)
- Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Cui Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430345, China
| |
Collapse
|
3
|
Li Y, Liu Y, Li Y, Cao Y, Zhang H, Yuan P, Dong B, Shen L. Integrated lipidomics and network pharmacology analysis to determine how Gu Fu Sheng Capsule improves lipid metabolism in rats with steroid-induced osteonecrosis of the femoral head. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Wu J, Luo J, Cai H, Zhu H, Lei Z, Lu Y, Gao X, Ni L, Lu Z, Hu X. Expression characteristics of lipid metabolism-related genes and correlative immune infiltration landscape in acute myocardial infarction. Sci Rep 2024; 14:14095. [PMID: 38890389 PMCID: PMC11189450 DOI: 10.1038/s41598-024-65022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid metabolism is an important part of the heart's energy supply. The expression pattern and molecular mechanism of lipid metabolism-related genes (LMRGs) in acute myocardial infarction (AMI) are still unclear, and the link between lipid metabolism and immunity is far from being elucidated. In this study, 23 Common differentially expressed LMRGs were discovered in the AMI-related mRNA microarray datasets GSE61144 and GSE60993. These genes were mainly related to "leukotriene production involved in inflammatory response", "lipoxygenase pathway", "metabolic pathways", and "regulation of lipolysis in adipocytes" pathways. 12 LMRGs (ACSL1, ADCY4, ALOX5, ALOX5AP, CCL5, CEBPB, CEBPD, CREB5, GAB2, PISD, RARRES3, and ZNF467) were significantly differentially expressed in the validation dataset GSE62646 with their AUC > 0.7 except for ALOX5AP (AUC = 0.699). Immune infiltration analysis and Pearson correlation analysis explored the immune characteristics of AMI, as well as the relationship between these identified LMRGs and immune response. Lastly, the up-regulation of ACSL1, ALOX5AP, CEBPB, and GAB2 was confirmed in the mouse AMI model. Taken together, LMRGs ACSL1, ALOX5AP, CEBPB, and GAB2 are significantly upregulated in AMI patients' blood, peripheral blood of AMI mice, myocardial tissue of AMI mice, and therefore might be new potential biomarkers for AMI.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xinchen Gao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Zhong J, Chen H, Liu Q, Zhou S, Liu Z, Xiao Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J Pharm Anal 2024; 14:100917. [PMID: 38799233 PMCID: PMC11127228 DOI: 10.1016/j.jpha.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Many medical conditions, including hypertension, diabetes, obesity, sleep apnea, and heart failure (HF), increase the risk for AF. Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production. Significant changes occur in myocardial metabolism in AF. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus (T2DM) and obesity. GLP-1RAs have also been shown to reduce oxidative stress, inflammation, autonomic nervous system modulation, and mitochondrial function. This article reviews the changes in metabolic characteristics in cardiomyocytes in AF. Although the clinical trial outcomes are unsatisfactory, the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors, lowering the incidence of AF.
Collapse
Affiliation(s)
- Jiani Zhong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hang Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
6
|
Zhang L, Lin W, Di C, Hou H, Chen H, Zhou J, Yang Q, He G. Metabolomics and Biomarkers for Paroxysmal and Persistent Atrial Fibrillation. J Am Heart Assoc 2024; 13:e032153. [PMID: 38293949 PMCID: PMC11056137 DOI: 10.1161/jaha.123.032153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of arrhythmia worldwide and is associated with serious complications. This study investigated the metabolic biomarkers associated with AF and the differences in metabolomics and associated metabolic biomarkers between paroxysmal AF (AFPA) and persistent AF. METHODS AND RESULTS Plasma samples were prospectively collected from patients with AF and patients in sinus rhythm with negative coronary angiography. The patients were divided into 3 groups: AFPA, persistent AF, and sinus rhythm (N=54). Metabolomics (n=36) using ultra-high-performance liquid chromatography mass spectrometry was used to detect differential metabolites that were validated in a new cohort (n=18). The validated metabolites from the validation phase were further analyzed by receiver operating characteristic. Among the 36 differential metabolites detected by omics assay, 4 were successfully validated with area under the curve >0.8 (P<0.05). Bioinformatics analysis confirmed the enrichment pathways of unsaturated fatty acid biosynthesis, glyoxylate and dicarboxylate metabolism, and carbon metabolism. Arachidonic acid was a potential biomarker of AFPA, glycolic acid and L-serine were biomarkers of AFPA and persistent AF, and palmitelaidic acid was a biomarker of AFPA. CONCLUSIONS In this metabolomics study, we detected 36 differential metabolites in AF, and 4 were validated with high sensitivity and specificity. These differential metabolites are potential biomarkers for diagnosis and monitoring of disease course. This study therefore provides new insights into the precision diagnosis and management of AF.
Collapse
Affiliation(s)
- Li‐Li Zhang
- Faculty of Graduate StudiesChengde Medical University, Chengde, China, & Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical SciencesTianjinChina
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
| | - Wen‐Hua Lin
- Department of Cardiology & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Cheng‐Ye Di
- Department of Cardiology & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Hai‐Tao Hou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Huan‐Xin Chen
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Jie Zhou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Qin Yang
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Guo‐Wei He
- Faculty of Graduate StudiesChengde Medical University, Chengde, China, & Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical SciencesTianjinChina
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| |
Collapse
|
7
|
Wu J, Cai H, Hu X, Wu W. Transcriptomic analysis reveals the lipid metabolism-related gene regulatory characteristics and potential therapeutic agents for myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2024; 11:1281429. [PMID: 38347951 PMCID: PMC10859419 DOI: 10.3389/fcvm.2024.1281429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Background Impaired energy balance caused by lipid metabolism dysregulation is an essential mechanism of myocardial ischemia-reperfusion injury (MI/RI). This study aims to explore the lipid metabolism-related gene (LMRG) expression patterns in MI/RI and to find potential therapeutic agents. Methods Differential expression analysis was performed to screen the differentially expressed genes (DEGs) and LMRGs in the MI/RI-related dataset GSE61592. Enrichment and protein-protein interaction (PPI) analyses were performed to identify the key signaling pathways and genes. The expression trends of key LMRGs were validated by external datasets GSE160516 and GSE4105. The corresponding online databases predicted miRNAs, transcription factors (TFs), and potential therapeutic agents targeting key LMRGs. Finally, the identified LMRGs were confirmed in the H9C2 cell hypoxia-reoxygenation (H/R) model and the mouse MI/RI model. Results Enrichment analysis suggested that the "lipid metabolic process" was one of the critical pathways in MI/RI. Further differential expression analysis and PPI analysis identified 120 differentially expressed LMRGs and 15 key LMRGs. 126 miRNAs, 55 TFs, and 51 therapeutic agents were identified targeting these key LMRGs. Lastly, the expression trends of Acadm, Acadvl, and Suclg1 were confirmed by the external datasets, the H/R model and the MI/RI model. Conclusion Acadm, Acadvl, and Suclg1 may be the key genes involved in the MI/RI-related lipid metabolism dysregulation; and acting upon these factors may serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wei Wu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Huang F, Liu X, Liu J, Xie Y, Zhao L, Liu D, Zeng Z, Liu X, Zheng S, Xiao Z. Phosphatidylethanolamine aggravates Angiotensin II-induced atrial fibrosis by triggering ferroptosis in mice. Front Pharmacol 2023; 14:1148410. [PMID: 37288112 PMCID: PMC10242123 DOI: 10.3389/fphar.2023.1148410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
As atrial fibrosis is the main feature of atrial structural remodeling, inhibiting atrial fibrosis is crucial to the prevention of atrial fibrillation (AF) progression. Research has shown the correlation between abnormal lipid metabolism and AF progression. However, the effect of specific lipids on atrial fibrosis remains unclear. In the present study, we applied ultra-high-performance lipidomics to analyze the lipid profiles in patients with AF and identify phosphatidylethanolamine (PE) as the differential lipid associated with AF. To detect the effect of the differential lipid on atrial fibrosis, we performed the intraperitoneal injection of Angiotensin II (Ang II) to mice to induce atrial fibrosis and supplemented PE in diets. We also treated atrial cells with PE to evaluate the cellular effect of PE. We found that PE supplementation aggravated atrial fibrosis and increased the expression of the fibrosis-related protein in vitro and in vivo. Moreover, we detected the effect of PE on the atrium. We found that PE increased oxidation products and regulated the expression of ferroptosis-related proteins, which could be alleviated by a ferroptosis inhibitor. PE increased peroxidation and mitochondrial damage in vitro, which promoted cardiomyocyte death induced by Ang II. Examination of protein expression in cardiomyocytes indicated that PE triggered ferroptosis and caused cell death to participate in myocardium fibrosis. In summary, our findings demonstrated the differential lipid profiles of AF patients and revealed the potential effect of PE on atrial remodelling, suggesting that inhibition of PE and ferroptosis might serve as a potential therapy to prevent AF progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng, ; Zezhou Xiao,
| | - Shaoyi Zheng
- *Correspondence: Xiu Liu, ; Shaoyi Zheng, ; Zezhou Xiao,
| | - Zezhou Xiao
- *Correspondence: Xiu Liu, ; Shaoyi Zheng, ; Zezhou Xiao,
| |
Collapse
|
9
|
She H, Tan L, Wang Y, Du Y, Zhou Y, Zhang J, Du Y, Guo N, Wu Z, Li Q, Bao D, Mao Q, Hu Y, Liu L, Li T. Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis. Front Immunol 2023; 14:1181697. [PMID: 37180171 PMCID: PMC10172510 DOI: 10.3389/fimmu.2023.1181697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Background To identify differentially expressed lipid metabolism-related genes (DE-LMRGs) responsible for immune dysfunction in sepsis. Methods The lipid metabolism-related hub genes were screened using machine learning algorithms, and the immune cell infiltration of these hub genes were assessed by CIBERSORT and Single-sample GSEA. Next, the immune function of these hub genes at the single-cell level were validated by comparing multiregional immune landscapes between septic patients (SP) and healthy control (HC). Then, the support vector machine-recursive feature elimination (SVM-RFE) algorithm was conducted to compare the significantly altered metabolites critical to hub genes between SP and HC. Furthermore, the role of the key hub gene was verified in sepsis rats and LPS-induced cardiomyocytes, respectively. Results A total of 508 DE-LMRGs were identified between SP and HC, and 5 hub genes relevant to lipid metabolism (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) were screened. Then, we found an immunosuppressive microenvironment in sepsis. The role of hub genes in immune cells was further confirmed by the single-cell RNA landscape. Moreover, significantly altered metabolites were mainly enriched in lipid metabolism-related signaling pathways and were associated with MAPK14. Finally, inhibiting MAPK14 decreased the levels of inflammatory cytokines and improved the survival and myocardial injury of sepsis. Conclusion The lipid metabolism-related hub genes may have great potential in prognosis prediction and precise treatment for sepsis patients.
Collapse
Affiliation(s)
- Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yunxia Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ningke Guo
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhengbin Wu
- Department of Intensive Care Unit, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Liu W, Hu B, Wang Y, Zhang X, Zhu M, Shi Y, Guo C, Zhang Y. Multiple targets related to mitochondrial function unveiled by metabolomics and proteomics profiles of hearts from atrial fibrillation patients. Front Physiol 2023; 14:1123391. [PMID: 37082238 PMCID: PMC10110950 DOI: 10.3389/fphys.2023.1123391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: The prominent mitochondrial metabolic changes of the atrium reportedly have significant impact on electrical signals and structural remodeling which play important roles in the occurrence and development of atrial fibrillation (AF). However, the mechanism is not completely known.Objective: This study was aimed to explore the mitochondrial metabolism reprogrammed in AF patients by integrating metabolomics as well as proteomics of human atrium tissues.Methods and Results: Left atrial tissue samples were harvested from 10 non-valvular AF patients and 10 matched samples from healthy donors for transplantation. In metabolomics analysis, 113 metabolites were upregulated and 10 metabolites were downregulated in AF, where multiple pathways related to mitochondrial energy metabolism were enriched. Correlation analysis between the differentially expressed proteins and metabolites identified several hub proteins related to mitochondrial function including Glycerol-3-phosphate dehydrogenase 2 (GPD2), Synemin (SYNM), Plectin (PLEC), with MCC score of 27, 17, 16, respectively, which have the most interactions with the dysregulated metabolites and ranked at the top in network string interactions scored by MCC method. All 330 differentially expressed proteins including 225 upregulated and 105 downregulated molecules were revealed and analyzed, which identified the downregulation of GPD2 (p = 0.02 and FC = 0.77), PLEC (p < 0.001 and FC = 0.71) and SYNM (p = 0.04 and FC = 0.76) in AF patients. Gene Set Variation Analysis (GSEA) showed mitochondrial metabolism-associated pathways including oxidative phosphorylation (NES: −1.73) and ATP biosynthetic process (NES: −2.29), were dramatically diversified in human AF. In GSVA, the expression levels of GPD2, PLEC, and SYNM were demonstrated to be associated with multiple metabolic pathways related to mitochondrial function (e.g., lipid metabolism and AMP activated protein kinase signaling) and cardiac structural and electrical remodeling (e.g., contractile fiber, ion homeostasis), which were proven vital in the development and maintenance of AF.Conclusion: In all, this study provides new insights into understanding the mechanisms of AF progression, especially the reprogramming mitochondrial metabolism, and identifies several genes related to mitochondrial function as novel targets for AF, which may be involved in the occurrence and development of AF.
Collapse
Affiliation(s)
- Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Hu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Shi
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yangyang Zhang, ; Changfa Guo,
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yangyang Zhang, ; Changfa Guo,
| |
Collapse
|
11
|
The Impact of Sleep Disturbance on Gut Microbiota, Atrial Substrate, and Atrial Fibrillation Inducibility in Mice: A Multi-Omics Analysis. Metabolites 2022; 12:metabo12111144. [PMID: 36422284 PMCID: PMC9694206 DOI: 10.3390/metabo12111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
This study examined the effect of sleep disturbance on gut microbiota (GM), atrial substrate, and atrial fibrillation (AF) inducibility. C57BL/6 mice were subjected to six weeks of sleep deprivation (SD) using the method of modified multiple-platform. Transesophageal burst pacing was performed to evaluate AF inducibility. Feces, plasma, and an atrium were collected and analyzed by 16s rRNA sequencing, liquid chromatography−mass spectrometry (LC-MS)-based metabolome, histological studies, and transcriptome. Higher AF inducibility (2/30 of control vs. 15/30 of SD, p = 0.001) and longer AF duration (p < 0.001), concomitant with aggravated fibrosis, collagen, and lipid accumulation, were seen in the SD mice compared to control mice. Meanwhile, elevated alpha diversity, higher abundance of Flavonifractor, Ruminococcus, and Alloprevotella, as well as imbalanced functional pathways, were observed in the gut of SD mice. Moreover, the global patterns for the plasma metabolome were altered, e.g., the decreased butanoate metabolism intermediates in SD mice. In addition, disrupted metabolic homeostasis in the SD atrium, such as fatty acid metabolism, was analyzed by the transcriptome. These results demonstrated that the crosstalk between GM and atrial metabolism might be a promising target for SD-mediated AF susceptibility.
Collapse
|
12
|
Chen S, Mei Q, Guo L, Yang X, Luo W, Qu X, Li X, Zhou B, Chen K, Zeng C. Association between triglyceride-glucose index and atrial fibrillation: A retrospective observational study. Front Endocrinol (Lausanne) 2022; 13:1047927. [PMID: 36568072 PMCID: PMC9773201 DOI: 10.3389/fendo.2022.1047927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insulin resistance is associated with atrial remodeling as well as atrial fibrillation (AF). However, there was limited evidence on the relationship of triglyceride-glucose index (TyG) index, a simple, valuable marker of insulin resistance, with AF. Thus, we aimed to investigate the association between TyG index and AF among hospitalized patients. METHODS A retrospective observational study was conducted in Daping Hospital, which included 356 hospitalized patients from the Department of Cardiology. Clinical and biochemical parameters were collected from electronic medical records and AF was diagnosed from electrocardiogram (ECG) findings. RESULTS We found that the TyG index was significantly higher in the AF group than in the group without AF. Multivariate logistic regression revealed that hypertension (OR = 1.756, 95%CI 1.135-2.717, P = 0.011) and TyG index (OR = 2.092, 95%CI 1.412-3.100, P<0.001) were positively associated with AF. The analysis of the area under the ROC curve was performed and revealed that area under curve (AUC) of TyG index was 0.600 (95%CI, 0.542-0.659, P = 0.001), the optimal critical value was 8.35, the sensitivity was 65.4%, and the specificity was 52.0%. Additional subgroup analyses of diabetic and non-diabetic subjects were also performed and found the TyG index was increased in non-diabetic subjects with AF. Furthermore, a logistic regression analysis showed TyG index was associated with AF (OR = 3.065, 95% CI, 1.819-5.166, P<0.001) in non-diabetic subjects. However, TyG index was not associated with AF in diabetic subjects. CONCLUSION Elevated TyG index is an independent risk factor for AF among non-diabetic hospitalized patients.
Collapse
Affiliation(s)
- Shengnan Chen
- ChongQing Medical University, Chongqing, China
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
| | - Qiao Mei
- ChongQing Medical University, Chongqing, China
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
| | - Li Guo
- Department of Endocrinology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology, Chongqing, China
| | - Wenbin Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology, Chongqing, China
| | - Xuemei Qu
- Department of Cardiology, The Fifth People’s Hospital of Chongqing, Chongqing, China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology, Chongqing, China
| | - Bingqing Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology, Chongqing, China
| | - Ken Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, The Fifth People’s Hospital of Chongqing, Chongqing, China
- *Correspondence: Chunyu Zeng, ; Ken Chen,
| | - Chunyu Zeng
- ChongQing Medical University, Chongqing, China
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology, Chongqing, China
- *Correspondence: Chunyu Zeng, ; Ken Chen,
| |
Collapse
|